首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, aramid fiber (Kevlar® 29 fiber) and carbon fiber were added into concrete in a hybrid manner to enhance the static and impact mechanical properties. The coupling agent presence on the surface of carbon fibers was spotted in Scanning Electron Microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) graphs. The carbon fiber with a coupling agent affected the mechanical strength of the reinforced concrete. At 1% fiber/cement weight percentage, the hybrid fiber-reinforced concrete (HFRC) prepared using Kevlar fiber and carbon fiber of 12 and 24 mm in length under different mix proportions was investigated to determine the maximum mechanical strengths. From the test results, the mechanical strength of the HFRC attained better performance than that of the concrete with only Kevlar or carbon fibers. Foremost, the mix proportion of Kevlar/carbon fiber (50–50%) significantly improved the compressive, flexural, and splitting tensile strengths. Under different impact energies, the impact resistance of the HFRC specimen was much higher than that of the benchmark specimen, and the damage of the HFRC specimens was examined with an optical microscope to identify slippage or rupture failure of the fiber in concrete.  相似文献   

2.
Prior studies in the literature show promising results regarding the improvements in strength and durability of concrete upon incorporation of glass fibers into concrete formulations. However, the knowledge regarding glass fiber usage in concrete is scattered. Moreover, this makes it challenging to understand the behavior of glass fiber-reinforced concrete. Therefore, a detailed review is required on glass fiber-reinforced concrete. This paper provides a compressive analysis of glass fiber-reinforced composites. All-important properties of concrete such as flowability, compressive, flexural, tensile strength and modulus of elasticity were presented in this review article. Furthermore, durability aspects such as chloride ion penetration, water absorption, ultrasonic pulse velocity (UPV) and acid resistance were also considered. Finally, the bond strength of the fiber and cement paste was examined via scanning electron microscopy. Results indicate that glass fibers improved concrete’s strength and durability but decreased the concrete’s flowability. Higher glass fiber doses slightly decreased the mechanical performance of concrete due to lack of workability. The typical optimum dose is recommended at 2.0%. However, a higher dose of plasticizer was recommended for a higher dose of glass fiber (beyond 2.0%). The review also identifies research gaps that should be addressed in future studies.  相似文献   

3.
This paper analyzes the efficiency of shrinkage reducing additives for the shrinkage deformations of ordinary Portland cement (OPC) concrete and its mechanical properties. OPC concrete was modified with an organic compound-based shrinkage reducing additive (SRA), quicklime, polypropylene fiber, and hemp fiber. It was found that a combination of 2.5% quicklime and 1.5% SRA led to the highest reduction in shrinkage deformations in concrete, and the values of shrinkage reached up to 40.0%. On the contrary, compositions with 1.5% SRA were found to have a significant reduction in compressive strength after 100 freeze-thaw cycles. Hemp fiber did not show a significant shrinkage reduction, but it is an environmentally friendly additive, which can improve OPC concrete flexural strength. Polypropylene fiber can be used in conjunction with shrinkage reducing additives to improve other mechanical properties of concrete. It was observed that 3.0 kg/m3 of polypropylene fiber in concrete could increase flexural strength by 11.7%. Moreover, before degradation, concrete with polypropylene fiber shows high fracture energy and decent residual strength of 1.9 MPa when a 3.5 mm crack appears. The tests showed a compressive strength decrease in all compositions with shrinkage reducing additives and its combinations after 28 days of hardening.  相似文献   

4.
Concrete structures are constructed in various geographical environments and climates, and frequently fail to fulfill their original functions over time due to issues such as aging and damage. Research on concrete structure repair materials is being conducted to solve these problems. This study evaluated the durability of a repair material composed of ultra-rapid hardening cement, styrene–butadiene (SB) latex polymer, and wollastonite mineral fiber. The performance targets were as follows: compressive strength of 20 MPa at 1 day of age and 45 MPa at 28 days of age, chloride ion charge passed of less than 1000 Coulombs, carbonation depth of 20 mm or less, and resistance to repeated freezing and thawing (relative dynamic modulus of elasticity) of 80% or more. The ultra-rapid hardening cement:silica sand ratio of 1:1.5 was the experimental variable, and the unit weight of each material in the mix proportion was determined to satisfy the flow requirement of 200 ± 5 mm. This flow ensured sufficient fluidity for spraying, which is the most widely used method for applying repair material. Wollastonite mineral fiber and SB latex polymer were added at 3% and 5% of the unit weight of the binder, respectively. The mechanical property of the repair material was evaluated through compressive strength, and durability was evaluated through chloride ion penetration, alkali resistance, resistance to carbonation, water absorption, and repeated freezing and thawing tests. The compressive strength satisfied both target values, regardless of the addition of SB latex polymer and wollastonite mineral fiber. The chloride ion penetration test, which was used as an indicator of durability, showed that mixtures without SB latex and wollastonite mineral fiber were not satisfied the target charge passed of 1000 Coulombs, while mixtures with latex and mineral fiber reached the target value. Notably, the co-addition of latex and wollastonite fiber showed the highest resistance to chloride ion penetration, alkali ion, carbonation, repeated freezing and thawing, and the least absorption. The results confirmed that the durability of the repair material based on ultra-rapid hardening cement was most effectively improved by the co-addition of SB latex polymer and wollastonite mineral fiber.  相似文献   

5.
The paper reports experimental research regarding the mechanical characteristics of concrete reinforced with natural cellulosic fibers like jute, sisal, sugarcane, and coconut. Each type of natural fiber, with an average of 30 mm length, was mixed with a concrete matrix in varying proportions of 0.5% to 3% mass. The tensile and compressive strength of the developed concrete samples with cellulosic fiber reinforcement gradually increased with the increasing proportion of natural cellulosic fibers up to 2%. A further increase in fiber loading fraction results in deterioration of the mechanical properties. By using jute and sisal fiber reinforcement, about 11.6% to 20.2% improvement in tensile and compressive strength, respectively, was observed compared to plain concrete, just by adding 2% of fibers in the concrete mix. Bending strength increased for the natural fiber-based concrete with up to 1.5% fiber loading. However, a decrease in bending strength was observed beyond 1.5% loading due to cracks at fiber−concrete interface. The impact performance showed gradual improvement with natural fiber loading of up to 2%. The water absorption capacity of natural cellulosic fiber reinforced concrete decreased substantially; however, it increased with the loading percent of fibers. The natural fiber reinforced concrete can be commercially used for interior or exterior pavements and flooring slabs as a sustainable construction material for the future.  相似文献   

6.
Polymer-modified concrete and fiber concrete are two excellent paving materials that improve the performance of some concrete, but the performance of single application material is still limited. In this paper, polymer-modified concrete with strong deformation and fiber concrete with obvious crack resistance and reinforcement effect were compounded by using the idea of composite material design so as to obtain a high-performance pavement material. The basic mechanical properties of high-content hybrid fiber–polymer-modified concrete, such as workability, compression, flexural resistance, and environmental durability (such as sulfate resistance) were studied by using the test regulations of cement concrete in China. The main results were as follows. (1) The hybrid fiber–polymer concrete displayed reliable working performance, high stiffness, and a modulus of elasticity as high as 35.93 GPa. (2) The hybrid fiber–polymer concrete had a compressive strength of 52.82 MPa, which was 31.2% higher than that of the plain C40 concrete (40.25 MPa); the strength of bending of the hybrid concrete was 11.51 MPa, 191.4% higher than that of the plain concrete (3.95 MPa). (3) The corrosion resistance value of the hybrid fiber–polymer concrete was 81.31%, indicating its adjustability to sulfate attack environments. (4) According to cross-sectional scanning electron microscope (SEM) images, the hybrid fiber–polymer concrete was seemingly more integrated with a dense layer of cementing substance on its surface along with fewer microholes and microcracks as when compared to the ordinary concrete. The research showed that hybrid fiber–polymer concrete had superior strength and environmental erosion resistance and was a pavement material with superior mechanical properties.  相似文献   

7.
High performance fiber-reinforced concrete (HPFRC) has been frequently investigated in recent years. Plenty of studies have focused on different materials and types of fibers in combination with the concrete matrix. Experimental tests show that fiber dosage improves the energy absorption capacity of concrete and enhances the robustness of concrete elements. Fiber reinforced concrete has also been illustrated to be a material for developing infrastructure sustainability in RC elements like façade plates, columns, beams, or walls. Due to increasing costs of the produced fiber reinforced concrete and to ensure the serviceability limit state of construction elements, there is a demand to analyze the necessary fiber dosage in the concrete composition. It is expected that the surface and length of used fiber in combination with their dosage influence the structure of fresh and hardened concrete. This work presents an investigation of the mechanical parameters of HPFRC with different polymer fiber dosage. Tests were carried out on a mixture with polypropylene and polyvinyl alcohol fiber with dosages of 15, 25, and 35 kg/m3 as well as with control concrete without fiber. Differences were observed in the compressive strength and in the modulus of elasticity as well as in the flexural and splitting tensile strength. The flexural tensile strength test was conducted on two different element shapes: square panel and beam samples. These mechanical properties could lead to recommendations for designers of façade elements made of HPFRC.  相似文献   

8.
Orthogonal experiments were designed for hybrid fiber rubber concrete (HFRC). The mechanical properties of HFRC were tested and compared with ordinary concrete. The effects of basalt fiber volume ratio (VBF), PVA fiber volume ratio (VPF) and rubber volume ratio (VR) on the compressive strength, splitting tensile strength and flexural strength of HFRC were analyzed. The results show that the strength of HFRC is the best when the volume ratio of basalt fiber is 0.3%, the volume ratio of PVA fiber is 0.2% and the volume ratio of rubber is 5%. Basalt fiber has the greatest influence on the strength of HFRC. The strength of HFRC mixed with hybrid fiber is greatly improved, which reflects the good fiber “positive hybrid effect”. With the increase of rubber volume ratio, the strength of HFRC decreases gradually. With the help of SEM and EDS, the toughening and cracking resistance mechanism of the fiber to HFRC was analyzed. Finally, the strength of HFRC was predicted by model.  相似文献   

9.
Steel fibers are widely used because they can effectively improve the tensile, compressive and flexural properties of concrete structures. The selection of steel fiber dosage and aspect ratio at high temperature has an important impact on the flexural toughness of concrete components post-fire. In this paper, discussions are made on the simulated fire test in compliance with the ISO 834 standard to study the steel fiber-reinforced concrete (SFRC) components post-fire. The research reveals the influence of two commonly used steel fiber aspect ratios (50, 70) and steel fiber dosages (30 kg/m3, 40 kg/m3, 45 kg/m3) on the changes of the internal temperature field, the initial crack flexural strength and the flexural toughness of the SFRC components under a single-side fire. Moreover, combined with the four-point flexural test of the SFRC components post fire, the research also describes the damage of high temperatures to the flexural toughness of SFRC components, and suggests a calculation formula for SFRC thermal conductivity by way of the numerical inversion method. The results of this study have verified that the incorporation of steel fiber into concrete helps to reduce its internal thermal stress difference and improve the crack resistance and fire resistance of the concrete. Moreover, under high temperature conditions, the concrete component added with the steel fiber in an aspect ratio of 70 and a dosage of 45 kg/m3 increased their initial crack flexural strength by 56.8%, higher than that of plain concrete components, and the loss of equivalent flexural strength and flexural toughness of SFRC post fire was only 45.2% and 13.6%, respectively. The proposed calculation formula of thermal conductivity can provide a reference for a numerical simulation study of the temperature field of SFRC components in a high temperature environment.  相似文献   

10.
This study focused on the faint interface bonding between carbon fiber (CF) and poly(phthalazinone ether ketone) (PPEK) thermoplastic, a multistage hybrid interface layer was constructed via the condensation reaction of N-[3-(Trimethoxysilyl)propyl]-N,N,N-trimethylammonium chloride (KHN+) and the electrostatic adsorption of graphene oxide (GO). The influence of the contents of GO (0.2 wt%, 0.4 wt%, 0.6 wt%) on the interfacial properties of composites was explored. FTIR, Raman spectra, XPS tests indicated the successful preparation of CF-KHN+-GO reinforcements. The multistage hybrid interface layer significantly increased fiber surface roughness without surface microstructure destruction. Simultaneously, polarity and wettability are remarkably improved as evidenced by the dynamic contact angle experiment. The interlaminar shear strength (ILSS) and flexural strength of the CF/PPEK composites with 0.4 wt% GO (CF-KHN+-4GO) were 74.57 and 1508 MPa, which was 25.2% and 23.5% higher than that of untreated CF/PPEK composite, respectively. Dynamic mechanical analysis proved that CF/GO/PPEK composites have excellent high-temperature mechanical properties. This study furnishes an unsophisticated and valid strategy to build an interface transition layer with a strong binding force, which would offer a new train of thought in preparing high-performing structural composites.  相似文献   

11.
Worldwide concern and ascendancy of emissions and carbon footprints have propelled a substantial number of explorations into green concrete technology. Furthermore, construction material costs have increased along with their gradual impact on the environment, which has led researchers to recognize the importance of natural fibers in improving the durability and mechanical properties of concrete. Natural fibers are abundantly available making them relatively relevant as a reinforcing material in concrete. Presently, it should be recognized that most construction products are manufactured using resources that demand a high quantity of energy and are not sustainable, which may lead to a global crisis. Consequently, the use of plant fibers in lightweight foamed concrete (LFC) is deemed a practical possibility for making concrete a sustainable material that responds to this dilemma. The main objective of this study is to investigate the effect of the addition of lignocellulosic fibers on the performance of LFC. In this investigation, four different types of lignocellulosic plant fibers were considered which were kenaf, ramie, hemp and jute fibers. A total of ten mixes were made and tested in this study. LFC samples with a density of 700 kg/m3 and 1400 kg/m3 were fabricated. The weight fraction for the lignocellulosic plant fibers was kept at 0.45%. The durability parameters assessed were flowability, water absorption capability, porosity and ultrasonic pulse velocity (UPV). The results revealed that the presence of cellulosic plant fibers in LFC plays an important role in enhancing all the durability parameters considered in this study. For workability, the addition of ramie fiber led to the lowest slump while the inclusion of kenaf fiber provided optimum UPV. For porosity and water absorption, the addition of jute fiber led to the best results.  相似文献   

12.
The internally cured material known as superabsorbent polymer (SAP) is an important innovation in concrete engineering technology. This paper investigates the effect of adding a polymer with superabsorbent capabilities on the physical and mechanical performance of concrete. The microstructure of the new hybrid concrete was also studied, and the influence of the polymer particle size and volume on the mechanical durability was evaluated. The mechanical properties of the new hybrid concrete, such as compressive strength, flexural strength, elastic modulus, and splitting tensile strength, were measured through laboratory experiments. The microstructure characteristics of the concrete were also investigated by scanning electron microscopy (SEM). The results show that shrinkage was reduced, while the volume stability of the concrete improved. Moreover, we found that cracking was reduced, while issues such as chloride penetration and freeze-thaw resistance were also improved. In addition, the SAP could effectively improve the microstructure of the concrete and refine the pore structure, as seen in the microscopic test. This paper helps to promote the development of internally cured material and improve technology for the prevention of concrete construction cracks.  相似文献   

13.
This research investigates the flexural and durability performances of reinforced concrete (RC) beams made with induction furnace steel slag aggregate (IFSSA) as a replacement for fired clay brick aggregate (FCBA). To achieve this, 27 RC beams (length: 750 mm, width: 125 mm, height: 200 mm) were made with FCBA replaced by IFSSA at nine replacement levels of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% (by volume). Flexural tests of RC beams were conducted by a four-point loading test, where the deflection behavior of the beams was monitored through three linear variable displacement transducers (LVDT). The compressive strength and durability properties (i.e., porosity, resistance to chloride ion penetration, and capillary water absorption) were assessed using the same batch of concrete mix used to cast RC beams. The experimental results have shown that the flexural load of RC beams made with IFSSA was significantly higher than the control beam (100% FCBA). The increment of the flexural load was proportional to the content of IFSSA, with an increase of 27% for the beam made with 80% IFSSA than the control beam. The compressive strength of concrete increased by 56% and 61% for the concrete made with 80% and 100% IFSSA, respectively, than the control concrete, which is in good agreement with the flexural load of RC beams. Furthermore, the porosity, resistance to chloride ion penetration, and capillary water absorption were inversely proportional to the increase in the content of IFSSA. For instance, porosity, chloride penetration, and water absorption decreased by 43%, 54%, and 68%, respectively, when IFSSA entirely replaced FCBA. This decreasing percentage of durability properties is in agreement with the flexural load of RC beams. A good linear relationship of porosity with chloride penetration resistance and capillary water absorption was observed.  相似文献   

14.
This paper studies aligned glass fiber-reinforced composites for printing. To determine the influence of fiber content and alignment on the mechanical properties of this novel material, a large number of standard test specimens were prepared, which included samples fabricated by mold-casting, randomly dispersed fiber reinforced mixtures and aligned fiber cement composites containing 10 types of fiber volume ratios manufactured by nozzle sizes ranging of 24 and 10 mm (fiber length = 12 mm). Mechanical properties and failure modes of the specimens under compression and flexural tests were studied experimentally. The anisotropic behaviors of printed samples were analyzed by different loading directions. As a result, the compressive and flexural strength of printed samples showed obvious anisotropy. With the increase of fiber volume ratio, flexural strength of the fiber reinforced composite was elevated tremendously but its compression strength reduced slightly. Moreover, fiber alignment also had a significant influence on the mechanical properties of the fiber reinforced composite. The composite cement-based material with 1 vol.-% aligned fiber exhibited an excellent flexural strength of 9.38 MPa, which increased by 483% in comparison to that of the plain cement paste.  相似文献   

15.
Oil palm shell (OPS) is an agricultural solid waste from the extraction process of palm oil. All these wastes from industry pose serious disposal issues for the environment. This research aims to promote the replacement of conventional coarse aggregates with eco-friendly OPS aggregate which offers several advantages, such as being lightweight, renewable, and domestically available. This paper evaluates the mechanical and thermal performances of renewable OPS lightweight concrete (LWC) reinforced with various type of synthetic polypropylene (SPP) fibers. Monofilament polypropylene (MPS) and barchip polypropylene straight (BPS) were added to concrete at different volume fractions (singly and hybrid) of 0%, 0.1%, 0.3% and 0.4%. All specimens were mixed by using a new mixing method with a time saving of up to 14.3% compared to conventional mixing methods. The effects of SPP fibers on the mechanical properties were investigated by compressive strength, splitting tensile strength and residual strength. The strength of the oil palm shell lightweight concrete hybrid 0.4% (OPSLWC–HYB–0.4%) mixture achieved the highest compressive strength of 29 MPa at 28 days. The inclusion of 0.3% of BPS showed a positive outcome with the lowest thermal conductivity value at 0.55 W/m °C. Therefore, the results revealed that incorporation of BPS fiber enhanced the performance of thermal conductivity tests as compared to inclusion of MPS fiber. Hence, renewable OPS LWC was proven to be a highly recommended environmentally friendly aggregate as an alternative solution to replace natural aggregates used in the concrete industry.  相似文献   

16.
Flexural strength of concrete is an important property, especially for pavements. Concrete with higher flexural strength has fewer cracking and durability issues. Researchers use different materials, including fibers, polymers, and admixtures, to increase the flexural strength of concrete. Silicon carbide and tungsten carbide are some of the hardest materials on earth. In this research, the mechanical properties of carbide concrete composites were investigated. The silicon carbide and tungsten carbide at different percentages (1%, 2%, 3%, and 4%) by weight of cement along with hybrid silicon carbide and tungsten carbide (2% and 4%) were used to produce eleven mixes of concrete composites. The mechanical tests, including a compressive strength test and flexural strength test, along with the rapid chloride permeability test (RCPT), were conducted. It was concluded that mechanical properties were enhanced by increasing the percentages of both individual and hybrid carbides. The compressive strength was increased by 17% using 4% tungsten carbide, while flexural strength was increased by 39% at 4% tungsten carbide. The significant effect of carbides on flexural strength was also corroborated by ANOVA analysis. The improvement in flexural strength makes both carbides desirable for use in concrete pavement. Additionally, the permeability, the leading cause of durability issues, was reduced considerably by using tungsten carbide. It was concluded that both carbides provide promising results by enhancing the mechanical properties of concrete and are compatible with concrete to produce composites.  相似文献   

17.
Considering that it is difficult for traditional materials to simultaneously meet the requirements for filling grouting of water-filled karst caves and subsequent shield tunneling, an environmentally friendly and controllable new underwater cementitious filling material (NUC-FM) is developed, with abandoned shield mud as the basic raw material. Through laboratory tests, the mechanical property parameters of NUC-FM are tested, and its micromechanism is analyzed. The research results show that there is excellent synergistic interactions among shield mud, cement, flocculant, fly ash and other raw materials. The NUC-FM grouting filling material with superior performance can be prepared when the water binder ratio is between 0.45 and 0.6 and the water consumption is between 270 and 310 kg/m3. It has the characteristics of non-dispersion underwater and moderate consolidated body strength. The compressive strength of the NUC-FM consolidated body samples under each mix proportion is much higher than 0.5 MPa, which meets the technical strength requirements of a construction site, and the microstructure shows that there is an obvious dense and stable block structure inside. The cost of the NUC-FM prepared with an optimized mix proportion is only 34.57 dollars/m3, which is far lower than the market purchase price of concrete and cement mortar. It can be predicted that the NUC-FM is an ideal filling grouting material for water-filled karst caves in shield tunnels in water-rich karst areas.  相似文献   

18.
The use of a high volume of industrial solid waste mineral admixture and hybrid fiber can greatly reduce the amount of cement in mortar or concrete, improve its performance, ensure the service properties of mortar or concrete, and reuse industrial solid waste to reduce the environmental burden, which has significant research significance. In this paper, the mechanical properties, wear resistance and microstructure of hybrid fiber-reinforced mortar (HFRM) with a high content of industrial solid waste mineral admixture were systematically studied under different water/binder ratios. Mineral admixtures include fly ash, silica fume and granulated blast furnace slag (slag). The total content of hybrid glass fiber (GF) and polypropylene fiber (PPF) was 2% by volume fractions, and six different water/binder ratios ranging from 0.27 to 0.62 were used. The following conclusions were drawn: fibers have a significant negative effect on the properties of mortars with a low water/binder ratio (w/b = 0.27) and high content of mineral admixtures. In general, the effect of adding hybrid fiber on improving the wear resistance of mortar is more obvious. The average residual weight of hybrid fiber-reinforced mortar is the highest after the wear resistance test. Comprehensively considering the compressive strength, flexural strength, wear resistance and microstructure of the mortar samples, G8PP2-0.40 is the optimal mix ratio. At this time, the replacement rates of fly ash, silica fume and slag are: 20%, 5% and 30%, the water/binder ratio is 0.40, and the content of GF and PPF is 1.6% and 0.4%, respectively.  相似文献   

19.
This paper provides a state-of-the-art report on the up-to-date research on the emerging 3D concrete printing technology from the concrete materials perspective. It reviews the recent research focused on understanding and characterizing the rheological necessities of the concrete printing process and discusses how the researchers are tailoring compatible mix proportions for the 3D concrete printing process by using eco-friendly binders, waste aggregates, chemical admixtures, and nano-additives. This paper systematically evaluates anisotropic behavior in the mechanical properties of printed concrete and establishes an order for anisotropic behavior in the compressive, flexural, and tensile strengths along three different axes (X, Y, and Z axes) of printed concrete. It evaluates the ratio of flexural strength to the compressive strength of printed concrete along the above three axes. This article explains the influence of variation of printing process parameters on the mechanical properties and discusses reinforcement approaches used for increasing structural performance. The microstructure at the interface of adjacent layers and also at the interface of the reinforcement-cement matrix is discussed. The recent research on the durability performance of printed concrete is critically discussed and future research needs for 3D concrete printing are identified in this paper.  相似文献   

20.
This research aims to determine the mechanical, chemical, and physical properties of old concrete used in the former Leipziger Palace in Wrocław, Poland. The cylindrical specimens were taken from the basement concrete walls using a concrete core borehole diamond drill machine. The determination of the durability and strength of old concrete was based on specified chosen properties of the old concrete obtained through the following set of tests: measurements of dry density, tests of water absorption, specification of concrete compressive strength and frost resistance, determination of the modulus of elasticity, measurement of the pH value, determination of water-soluble chloride salts and sulphate ions, and X-ray diffraction analyses. Large dispersions of the compressive strength (10.4 MPa to 34.2 MPa), density (2049 kg/m3 to 2205 kg/m3), water absorption (4.72% to 6.55%), and stabilized secant modulus of elasticity (15.25 Gpa to 19.96 GPa) were observed. The paper is intended to provide scientists, civil engineers, and designers with guidelines for examining and assessing the long-term durability of old concrete, and also extending knowledge in the field of archaeological restoration and the protection of old concrete structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号