首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We recorded somatosensory evoked magnetic fields (SEFs) by a whole head magnetometer to elucidate cortical receptive areas involved in pain processing, focusing on the primary somatosensory cortex (SI), following painful CO(2) laser stimulation of the dorsum of the left hand in 12 healthy human subjects. In seven subjects, three spatially segregated cortical areas (contralateral SI and bilateral second (SII) somatosensory cortices) were simultaneously activated at around 210 ms after the stimulus, suggesting parallel processing of pain information in SI and SII. Equivalent current dipole (ECD) in SI pointed anteriorly in three subjects whereas posteriorly in the remaining four. We also recorded SEFs following electric stimulation of the left median nerve at wrist in three subjects. ECD of CO(2) laser stimulation was located medial-superior to that of electric stimulation in all three subjects. In addition, by direct recording of somatosensory evoked potentials (SEPs) from peri-Rolandic cortex by subdural electrodes in an epilepsy patient, we identified a response to the laser stimulation over the contralateral SI with the peak latency of 220 ms. Its distribution was similar to, but slightly wider than, that of P25 of electric SEPs. Taken together, it is postulated that the pain impulse is received in the crown of the postcentral gyrus in human.  相似文献   

2.
Cerebral magnetic responses to stimulation of ulnar and median nerves   总被引:1,自引:0,他引:1  
We have compared spatial patterns of somatosensory evoked magnetic fields (SEFs) to stimulation of the ulnar and median nerves at the wrist. An oddball paradigm was used additionally to examine whether an infrequent change in the stimulation site would alter the field pattern. The response consisted of 3 parts: an early small deflection at 22-28 msec, a large deflection peaking between 34 and 86 msec, and a late deflection at 110-180 msec. The wave forms and amplitudes of the responses to ulnar and median nerve stimulation were similar, without any additional deflections for the infrequent stimuli. The field patterns, which were interpreted in terms of the dipole model, could be explained by activation of the primary sensorimotor cortex during all peaks of the response. For the early parts of the response at 22-46 msec, the locations of the equivalent sources for median and ulnar nerve stimulation differed from each other, in agreement with the known somatotopy of SI. No somatotopical order was found for the sources of the later deflections.  相似文献   

3.
OBJECTIVES: The source of the N30 potential in the median nerve somatosensory evoked potentials (SEP) has been previously attributed to a pre-central origin (motor cortex or the supplementary motor area, SMA) or a post-central located generator (somatosensory cortex). This attribution was made from results of lesion studies, the behavior of the potential under pathological conditions, and dipole source localization within spherical volume conductor models. METHODS: The present study applied dipole source localization and current density reconstruction within individual realistically shaped head models to median nerve SEPs obtained during explorative finger movements. RESULTS: The SEPs associated with movement of the stimulated hand showed a minor reduction of the N20 amplitude and a markedly reduced amplitude for the frontal N30 and parietal P27, exhibiting a residual frontal negativity around 25 ms. The brain-stem P14 remained unchanged. Mapping of the different SEPs (movement of the non-stimulated hand minus movement of the stimulated hand) showed a bipolar field pattern with a maximum around 30 ms post-stimulus. In eight out of ten normal subjects, both the N30 and the gN30 (subtraction data) sources resided within the pre-central gyrus, more medially than the post-centrally located N20. Two subjects, in contrast, showed rather post-centrally localized sources in this time range. A model of the cortical SEP sources is introduced, explaining the data with respect to previously described findings of dipole localization, and from lesion studies and the alterations seen in motor diseases. CONCLUSIONS: The results provide evidence for a pre-central N30 generator, predominantly tangentially oriented, located within the motor cortex, while no sources were detected elsewhere. It is suggested that the mechanisms underlying the 'gating' effect during explorative finger movements in the 30 ms time range predominantly arise in the motor cortex.  相似文献   

4.
Somatosensory Evoked Potentials (SEPs) and Somatosensory Evoked magnetic Fields (SEFs) to median nerve stimulation at wrist were recorded in 5 healthy subjects and the components between 15 and 30 ms after the stimulus were evaluated on the hemiscalp contralateral to the stimulated wrist. SEPs were measured by means of a 32-channel recorder and compared with SEFs obtained via multiple measurements with a 4-channel sensor. Equivalent dipole localization was carried out for the magnetic components peaking at about 15, 20 and 24 ms. The scalp distribution of SEPs, illustrated by bit mapped color images, were qualitatively explained by three separate sources. The first is described as a tangentially oriented dipole placed behind the Central Sulcus and responsible for the parietal N20-"late P25" waves and for the frontal P20-N30 ones. The second is represented by a radieal dipole placed just in front of the Central Sulcus and pointing towards the motor strip, responsible for the rolandic P22 component. The third is just behind the Central Sulcus and is radieally oriented towards the surface of the postcentral sensory area for the "early P25" parietal wave. The SEFs distributions, illustrated by color isofield contour maps, were quantitatively explained by a unique tangential dipole localized, with good resolution, well behind the Sulcus for the 15 ms waves and slightly frontal to this site for the waves peaking at around 20 and 24 ms. The equivalent dipole has been localized at a depth of about 5 cm (15 ms component), 2 cm (20 ms components) and 4 cm (24 ms component), across the studied subjects. It is stressed that the dipole responsible for the magnetic pattern is likely to be the same tangential dipole responsible for a part of the electric pattern. Due to their radieal orientation, the other two dipoles, proposed for the SEPs maps, would be mostly undetectable by a magnetic investigation.  相似文献   

5.
OBJECTIVES: To investigate the possible contribution of the second somatosensory (SII) area in the generation of the N60 somatosensory evoked potential (SEP).METHODS: In 7 epileptic patients and in 6 healthy subjects scalp SEPs were recorded by 19 electrodes placed according to the 10-20 system. All epileptic patients but one were also investigated using depth electrodes chronically implanted in the parieto-rolandic opercular cortex. Scalp SEPs underwent brain electrical source analysis.RESULTS: In both epileptic patients and healthy subjects, scalp recordings showed two middle-latency components clearly distinguishable on the basis of latency and scalp distribution: a fronto-central N60 potential contralateral to stimulation and a later bilateral temporal N70 response. SEP dipolar source modelling showed that a contralateral perisylvian dipole was activated in the scalp N70 latency range whereas separate perirolandic and frontal sources were activated at the scalp N60 latency. Depth electrodes recorded a biphasic N60/P90 response in the parieto-rolandic opercular regions contra- and ipsilateral to stimulation.CONCLUSIONS: Two different middle-latency SEP components N60 and N70 can be distinguished by topographic analysis and source modelling of scalp recordings, the sources of which are located in the fronto-central cortex contralateral to stimulation and in the supra-sylvian cortex on both sides, respectively. The source location of the scalp N70 in the SII area is strongly supported by its spatio-temporal similarities with SEPs directly recorded in the supra-sylvian opercular cortex.  相似文献   

6.
We recorded somatosensory evoked magnetic fields (SEFs) to median nerve stimulation from 15 patients in the acute stage (1-15 days from the onset of the symptoms) of their first-ever unilateral stroke involving sensorimotor cortical and/or subcortical structures in the territory of the middle cerebral artery (MCA). Neuronal activity corresponding to the peaks of the N20m, P35m and P60m SEF deflections from the contralateral primary somatosensory cortex (SI) was modelled with equivalent current dipoles (ECDs), the locations and strengths of which were compared with those of an age-matched normal population. Four patients with pure motor stroke had symmetric SEFs. In one of the 4 patients with pure sensory stroke, and in 5 of the 7 patients with sensorimotor paresis, the SEFs were markedly attenuated or missing. All except one patient with abnormal SEFs had deficient two-point discrimination ability; especially the attenuation of N20m was more clearly correlated with two-point discrimination than with joint-position or vibration senses. Of the different SEF deflections, P35m and P60m were slightly more sensitive indicators of abnormality than N20m, the former being affected in two patients with symmetric N20m. Three patients with pure sensory stroke and lesions in the opercular cortex had normal SEFs from SI. We conclude that the SEF deflections N20m, P35m and P60m from SI are related to cutaneous sensation, in particular discriminative to touch. The results also demonstrate that basic somatosensory perception can be affected by lesions in the opercular cortex in patients with functionally intact SI.  相似文献   

7.
We tested the possible role of dopaminergic activity in the processing of somatosensory afferent information in healthy humans. Somatosensory evoked magnetic fields (SEFs) were recorded in seven subjects in response to left median nerve stimulation. SEFs were obtained in all subjects after oral administration of 2 mg haloperidol, an antagonist to dopaminergic D2 receptors, and placebo, which were given in a randomized, double-blind cross-over design. SEFs were analyzed using a multiple equivalent current dipole (ECD) model, with one dipole at the right primary somatosensory cortex (SI) and at both left and right secondary somatosensory cortices (SII). The earliest responses from SI, peaking at about 20 ms (N20m) and 35 ms (P35m), were not affected by haloperidol. A later deflection peaking at about 75 ms (P60m), however, was slightly reduced (p < 0.05). Responses arising from SII were not significantly changed. The results suggest that dopaminergic activity may be involved in modulating somatosensory processing after the initial stages of cortical activation.  相似文献   

8.
The amplitudes of many scalp-recorded evoked potential (EP) deflections are higher in females than in males, and in elderly than in young subjects. Since EPs critically depend on the electric conductivity of the cranium, it is not known whether these differences reflect age- and gender-dependent changes in the intensity of neuronal activation, or changes in the volume conductor. Evoked magnetic fields are not significantly affected by the conductivities of the cranial tissues and therefore reflect more directly the neuronal activation than EPs. We report here on the effects of age and gender on somatosensory evoked fields (SEFs) from the primary somatosensory cortex (SI) in 43 healthy subjects (21 males) aged from 20 to 73 years (males 51+/-18 years, females 51+/-14 years). The intensity of neuronal activation was estimated with equivalent current dipoles (ECDs) found at the peaks of the N20m, P35m and P60m deflections from the left SI after right median nerve stimulation. The peak latencies of N20m and P35m (but not of P60m) were shorter in females than in males. The N20m latency was positively correlated with age in males, but otherwise the latencies did not correlate with age. The ECD amplitudes did not differ between males and females for any of the deflections. The N20m ECD strength showed a significant positive correlation (r=0.39, p<0.01) with age while P35m and P60m ECD strengths did not. The results thus did not disclose gender differences in the activation strengths of the somatosensory cortex, implying that such differences in evoked potentials may possibly be due to gender differences in the volume conductor. On the other hand, the results suggest a slight age-related increase in cortical excitability.  相似文献   

9.
OBJECTIVE: To determine whether standardised low-resolution brain electromagnetic tomography modified for a quantifiable method (sLORETA-qm) can be used for quantitative analysis in magnetoencephalography (MEG). METHODS: Somatosensory evoked fields (SEFs) were obtained from 10 hemispheres of five healthy volunteers stimulated on the median nerve at 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 x threshold of thenar muscle twitch (TMT). N20 m intensity changes were analysed quantitatively using sLORETA-qm. Then, SEFs were measured with stimulation on the median nerve at 1.5 x TMT from 47 hemispheres in 24 subjects. sLORETA-qm intensity and the equivalent current dipole (ECD) moment of N20 m were calculated, and relationships between the values were evaluated. RESULTS: sLORETA-qm intensity increased linearly with stimulus intensity between 0.75 and 1.5 x TMT, and tended to reach a plateau or decrease at higher stimulus intensities. The distribution of sLORETA-qm intensity after natural logarithmic transformation was normal and a close correlation was found between the ECD moment and sLORETA-qm intensity (r(s)=0.91, p<0.001). CONCLUSIONS: The results of this study focusing on N20 m suggested that sLORETA-qm is reliable for quantitative analysis of MEG as well as ECD models. SIGNIFICANCE: sLORETA-qm appears promising for quantitative analyses of MEG for which ECD models are inappropriate.  相似文献   

10.
目的:研究急性脑梗死患者脑磁图(magnetoencephalography,MEG)体感诱发磁场发生源等价电流偶极子(equivalentcurrentdipole,ECD)强度变化特征。方法:对15例急性脑梗死患者于发病后3~4周进行体感诱发磁场(SEFS)检测;同时检测16例健康志愿者作为对照。电刺激部位为腕部正中神经处,电流脉冲宽度0.3ms,刺激间隔0.5s。SEFS波峰由ECD评估。结果:所有受检者SEFs的最基本波形为M20,急性脑梗死患者患侧ECD强度减小(P<0.01)。结论:MEG可灵敏地检测出急性脑梗死患者体感皮层中枢功能损伤。  相似文献   

11.
Distributed source models of magnetoencephalographic (MEG) and electroencephalographic (EEG) data employ dense distributions of current sources in a volume or on a surface. Previously, anatomical magnetic resonance imaging (MRI) data have been used to constrain locations and orientations based on cortical geometry extracted from anatomical MRI data. We extended this approach by first calculating cortical patch statistics (CPS), which for each patch corresponding to a current source location on the cortex comprise the area of the patch, the average normal direction, and the average deviation of the surface normal from its average. The patch areas were then incorporated in the forward model to yield estimates of the surface current density instead of dipole amplitudes at the current locations. The surface normal data were employed in a loose orientation constraint (LOC), which allows some variation of the current direction from the average normal. We employed this approach both in the l(2) minimum-norm estimates (MNE) and in the more focal l(1) minimum-norm solutions, the minimum-current estimate (MCE). Simulations in auditory and somatosensory areas with current dipoles and 10- or 20-mm diameter cortical patches as test sources showed that applying the LOC can increase localization accuracy. We also applied the method to in vivo auditory and somatosensory data.  相似文献   

12.
OBJECTIVE: The aim of this study is to investigate a source of cortical magnetic fields evoked by index finger movements. METHODS: We analysed both movement-related cortical fields (MRCFs) and somatosensory-evoked fields (SEFs) by single equivalent current dipole (ECD) method in six healthy subjects. Dipole locations were superimposed on MR images of each individual subject. RESULTS: The first component after finger movement (movement-evoked field I, MEFI) was observed in all subjects. The dipole of MEFI was oriented posteriorly, and was located on the posterior wall of the central sulcus of the hemisphere contralateral to the movement. The SEFs showed three major components: N20m, P30m and P60m. The dipoles of P30m and P60m were orientated posteriorly, similarly to the MEFI dipole, while that of N20m was orientated anteriorly. The dipole location of MEFI was closely located to P60m, not to N20m and P30m. The mean location of the MEFI dipole was significantly (p<0.05) superior to N20m. CONCLUSION: These findings suggest that MEFI would be generated in the sensory area (area 3b) affected by multiple afferents and activities, and that the source of the MEFI is not identical to that of the N20m component.  相似文献   

13.
OBJECTIVE: To assess the clinical value of magnetoencephalography (MEG) in localising the primary hand motor area and evaluating cortical distortion of the sensorimotor cortices in patients with intracerebral tumour. METHODS: 10 normal volunteers (controls) and 14 patients with an intracerebral tumour located around the central region were studied. Somatosensory evoked magnetic fields (SEFs) following median nerve stimulation, and movement related cerebral magnetic fields (MRCFs) following index finger extension, were measured in all subjects and analysed by the equivalent current dipole (ECD) method to ascertain the neuronal sources of the primary sensory and motor components (N20m and MF, respectively). These ECD locations were defined as the primary hand sensory and motor areas and the positional relations between these two functional areas in controls and patients were investigated. RESULTS: The standard range of ECD locations of MF to N20m was determined in controls. In 11 of the 14 patients, MRCFs could identify the primary motor hand area. ECD locations of MF were significantly closer to the N20m in the medial-lateral direction in patients than in controls. In patients with a tumour located below the sensorimotor hand area, relative ECD locations of MF to N20m moved anteriorly over the standard range determined in the control subjects. These MEG findings correlated well with radiological tumour locations. The mean estimated ECD strength of MF was significantly lower in patients than in controls. CONCLUSIONS: MRCF was useful in localising the primary motor hand area in patients with intracerebral tumour. The relative ECD locations of MF to N20m describe the anatomical distortion of the sensorimotor cortex.  相似文献   

14.
OBJECTIVE: To identify low and high-frequency median nerve (MN) somatosensory evoked potential (SEP) generators by means of chronically implanted electrodes in the parietal lobe (SI and neighbouring areas) of two epileptic patients. METHODS: Wide-pass short-latency and long-latency SEPs to electrical MN stimulation were recorded in two epileptic patients by stereotactically chronically implanted electrodes in the parietal lobe (SI and neighbouring areas). To study high-frequency responses (HFOs) an off-line digital filtering of depth short-latency SEPs was performed (500-800 Hz, 24 dB roll-off). Spectral analysis was performed by fast Fourier transform. RESULTS: In both patients we recorded a N20/P30 potential followed by a biphasic N50/P70 response. A little negative response in the 100 ms latency range was the last detectable wide-pass SEP in both patients. Two HFOs components (called iP1 and iP2) were detected by mere visual analysis and spectral analysis, and were supposed to be originated within the parietal cortex. CONCLUSIONS: This was the very first study that recorded wide bandpass and high frequency SEPs by electrodes, exploring both the lateral and the mesial part of the parietal lobe and particularly that of the post-central gyrus.  相似文献   

15.
Increasing interest in cortical plasticity has prompted the growing use of somatosensory evoked potentials (SEPs) to estimate changes in the cortical representation of body regions. Here, we tested the effect of different sites of hand stimulation and of the density of spatial sampling in the quality of estimation of somatosensory sources. Sources of two SEP components from the primary somatosensory cortex (N20/P20 and P45) were estimated using two levels of spatial sampling (64- vs. 128-channel) and stimulation of four distal sites in the upper limbs, including single digits (first vs. fifth) and distal nerves with comparable cortical projection (superficial branch of the radial nerve and distal ulnar nerve). The most robust separation of somatosensory sources was achieved by comparing the cortical representations of the first digit and the distal ulnar nerve territories on the N20/P20 component of SEPs. Although both the 64- and the 128-electrode montages correctly discriminated these two areas, only the 128-electrode montage was able to significantly separate sources in the other cases, notably when using first versus fifth digit stimulation. Trustworthy distinction of cortical representations was not obtainable when using the P45 component, probably because of greater activation volume, radial orientation of sources in areas 1-2 and increased variability with attention and vigilance. Assessment of tangential SEP components to stimulation of first digit versus ulnar nerve appears the best option to assess plastic somatosensory changes, especially when using relatively low-electrode sampling.  相似文献   

16.
OBJECTIVE: To evaluate the cortical function quantitatively in patients in the chronic phase of severe traumatic brain injury. METHODS: Thirteen patients with severe traumatic brain injury due to traffic accident followed by persistent consciousness disturbance and disability were studied. Somatosensory evoked magnetic fields (SEFs) for unilateral median nerve stimulation were measured using a whole-head magnetoencephalography system. The latency and electrical current dipole (ECD) moment for the N20m, P30m, N45m and P60m components were calculated and compared with those of 14 age-matched healthy adults. RESULTS: The peak latency of N20m was longer (P<0.05) and those of P30m and N45m were shorter (P<0.01) in the patients than in normal adults. The ECD moment of N20m and P30m was smaller and that of N45m and P60m was larger in the patients than in normal adults (P<0.01). CONCLUSIONS: These results can be explained by the hypothesis that diffuse brain injury induces decreased and delayed input of the somatosensory afferent and compensational amplification of the response in the primary somatosensory cortex. Middle-latency SEFs may be applicable as a cortical functional measure for patients with severe traumatic brain injury.  相似文献   

17.
OBJECTIVE: In humans, the somatic evoked potentials (SEPs) and magnetic fields (SEFs) elicited by peripheral nerve stimulation contain high-frequency oscillations (HFOs) around 600 Hz superimposed on the initial cortical response N20. Responses elicited by snout stimulation in the swine also contain similar HFOs during the rising phase of the porcine N20. This study examined the generators of the N20 and HFOs in the swine. METHODS: We recorded intracortical SEPs and multi-unit activities in the sulcal area of the primary somatosensory cortex (SI) simultaneously with SEFs. The laminar profiles of the potential and current-source-density (CSD) were analyzed. RESULTS: The CSD analysis revealed that the N20 was produced by two dipolar generators, both directed toward the cortical surface. After the arrival of the initial thalamocortical volley in layer IV, the sink of the first generator shifted toward shallower layers II-III with a velocity of 0.109+/-0.038 m/s (mean+/-SD). The sink of the second generator moved to layer V. The initial thalamocortical axonal component of the HFO was produced by repolarizing current with the sink in layer IV. The CSD laminar profile of the postsynaptic component was very similar to the profile of intracortical N20. The current sink within each cycle of HFO propagated upward with a velocity of 0.633+/-0.189 m/s, indicating backpropagation. CONCLUSIONS: We propose that the N20 is generated by two sets of excitatory neurons which also produce the HFOs. Although the loci of synaptic inputs are unknown, these neurons appear to fire initially in the soma and produce backpropagating spikes toward distal apical dendrites. SIGNIFICANCE: These conclusions relate the N20 to the HFO and provide a new explanation of how the current underlying the N20 is invariantly directed toward superficial layers across species.  相似文献   

18.
OBJECTIVE: To investigate the possible contribution of the primary somatosensory area (SI) to pain sensation. METHODS: Depth recordings of CO2 laser evoked potentials (LEPs) and somatosensory evoked potentials (SEPs) were performed in an epileptic patient with a stereotactically implanted electrode (Talairach coordinates y=-23, z=40) that passed about 10 mm below the hand representation in her left SI area, as assessed by the source of the N20 SEP component. RESULTS: The intracerebral electrode was able to record the N20 SEP component after non-painful electrical stimulation of her right median nerve. The N20 potential showed a phase reversal in the bipolar montage (at about 31 mm from the midline), which confirms that the electrode was located near its generator in area 3b. In contrast, no reliable response was recorded from the SI electrode after painful CO2 laser stimulation of the right hand. An N2-P2 response was evoked at the vertex electrode (Cz), thus demonstrating the effectiveness of the delivered CO2 laser stimuli. CONCLUSIONS: Since the N20 SEP component originates from the anterior bank of the post-central gyrus (area 3b), our result suggests that this part of SI does not participate in LEP generation. In fact, the previously published LEP sources in the SI area estimated from scalp recordings are about 10-17 mm posterior of the electrode in our patient, suggesting that they are more likely located in area 1, 2 or posterior parietal cortex.  相似文献   

19.
The origins of surface recorded evoked potentials have been investigated by combining recordings of single unit responses and somatosensory evoked potentials (SEPs) from the postcentral gyrus of 4 alert macaque monkeys. Responses were elicited by mechanical tactile stimuli (airpuffs) which selectively activate rapidly adapting cutaneous mechanoreceptors, and permit patterned stimulation of a restricted area of skin. Epidurally recorded SEPs consisted of an early positive complex, beginning 8-10 msec after airpuff onset, with two prominent positive peaks (P15 and P25), succeeded by a large negative potential (N43) lasting 30 msec, and a late slow positivity (P70). SEPs, while consistent in wave form, varied slightly between monkeys. The amplitude of the early positive complex was enhanced by increasing the number of stimulated points, or by placing the airpuffs in the receptive fields of cortical neurons located beneath the SEP recording electrode. SEP amplitude was depressed when preceded 20-40 msec earlier by a conditioning stimulus to the same skin area. Single unit responses in areas 3b and 1 of primary somatosensory (SI) cortex consisted of a burst of impulses, beginning 11-12 msec after the airpuff onset, and lasting another 15-20 msec. Peak unitary activity occurred at 12-15 msec, corresponding to the P15 wave in the SEP. No peak in SI unit responses occurred in conjunction with the P25 wave. Although SI neurons fired at lower rates during P25, the lack of any peak in SI unit responses suggests that activity in other cortical areas, such as SII cortex, contributes to this wave. Most unit activity in SI cortex ceased by the onset of N43, and was replaced by a period of profound response depression, in which unit responses to additional tactile stimuli were reduced. We propose that the N43 wave reflects IPSPs in cortical neurons previously depolarized and excited by the airpuff stimulus. Late positive potentials (P70) in the SEP had no apparent counterpart in SI unit activity, suggesting generation at other cortical loci.  相似文献   

20.
In order to investigate functional topography of the hand somatosensory cortex in five patients with peri-Rolandic tumors (four frontal lobes and one parietal lobe), we recorded somatosensory evoked fields (SEFs) using magnetoencephalography (MEG) after stimulation of the median nerve (MN) and the five digits. The results obtained were compared with those of five normal healthy subjects. In all five patients, SEFs following MN and digit stimulation showed the previously described respective N20m and N22m components of primary sensory response. Single dipole modeling was applied to determine the three dimensional cortical representations of the N20m and N22m components. The cortical representations of the hand were identical to those of normal subjects, arranging in an orderly somatotopic way from lateral inferior to medial superior in the sequence thumb, MN, index, middle, ring, and little fingers. This sensory homunculus was confirmed by cortical recording of the somatosensory evoked potentials (SEPs) at the time of surgery. Thus, we demonstrate that SEFs, recorded on MEG in conjunction with source localization techniques, are useful to non-invasively investigate the functional topography of the human hand somatosensory cortex in pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号