首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Ink4a/Arf tumor suppressor locus is widely inactivated in cancer but little is known about the tumor biology of its two products, p16(Ink4a) (p16) and Arf. Both the p16 and Arf promoters are methylated in a significant fraction of human colon carcinomas, implying a functional role. We have demonstrated previously that Ink4a/Arf-null colon tumors display increased growth and vascularity in C57Bl6 mice carrying the Min (multiple intestinal neoplasia) mutation. We present here an analysis in a mixed genetic background of Min colon tumors (N=215) in mice with or without selective deficiencies in p16 or Arf, respectively. Absence of Arf did not significantly alter tumor formation. In contrast, tumors in mice lacking p16 were moderately larger and redder. Histological analysis demonstrated that these tumors contained significantly more pockets of necrosis (p=0.02), a marker of carcinoma in situ; less apoptosis (p=0.02); and higher red blood cell density (p=0.02, 0.006 within vessels). Biochemical analyses demonstrated increased levels of vascular endothelial cell growth factor (VEGF, p<0.01). Exogenous p16 expression in human colon tumor cells in vitro inhibited VEGF production. These results suggest that p16 constrains colon tumor progression, in part through inhibiting angiogenic signaling.  相似文献   

2.
The cell of origin of tumors and the factors determining the cell of origin remain unclear. In this study, a mouse model of precursor B acute lymphoblastic leukemia/lymphoma (pre-B ALL/LBL) was established by retroviral transduction of Myc genes (N-Myc or c-Myc) into mouse bone marrow cells. Hematopoietic stem cells (HSCs) exhibited the highest susceptibility to N-Myc-induced pre-B ALL/LBL versus lymphoid progenitors, myeloid progenitors and committed progenitor B cells. N-Myc was able to induce pre-B ALL/LBL directly from progenitor B cells in the absence of Ink4a and Arf. Arf was expressed higher in progenitor B cells than Ink4a. In addition, N-Myc induced pre-B ALL/LBL from Arf(-/-) progenitor B cells suggesting that Arf has a predominant role in determining the cell of origin of pre-B ALL/LBL. Tumor cells derived from Ink4a/Arf(-/-) progenitor B cells exhibited a higher rate of proliferation and were more chemoresistant than those derived from wild-type HSCs. Furthermore, the Mdm2 inhibitor Nutlin-3 restored p53 and induced massive apoptosis in mouse pre-B ALL/LBL cells derived from Ink4a/Arf(-/-) cells and human B-ALL cell lines lacking Ink4a and Arf expression, suggesting that Mdm2 inhibition may be a novel therapeutic approach to the treatment of Ink4a/Arf(-/-) B-ALL/LBL, such as is frequently found in Ph(+) ALL and relapsed ALL. Collectively, these findings indicate that Ink4a and Arf are critical determining factors of the cell of origin and the therapeutic sensitivity of Myc-induced lymphoid tumors.  相似文献   

3.
Aberrant activation of rat sarcoma (Ras) signaling contributes to the development of a variety of human cancers, including gliomas. To determine the dependence of high-grade gliomas on continued Ras signaling, we developed a doxycycline-regulated Kirsten Ras (KRas) glioma mouse model. We previously demonstrated that KRas is required for the maintenance of glioblastoma multiforme tumors arising in the context of activated Akt signaling in vivo; inhibition of KRas expression resulted in apoptotic tumor regression and significantly increased survival. We utilized a well-established glioma mouse model to determine the reliance of gliomas on continued KRas signaling in the context of Ink4a/Arf deficiency, a common occurrence in human gliomas. Despite the dependency of primary gliomas on continued KRas signaling, a significant percentage of tumors progressed to a KRas-independent state in the absence of Ink4a/Arf expression, demonstrating that these tumor suppressors play a critical role in the suppression of glioma recurrence. While even advanced stages of gliomas may remain dependent upon KRas signaling for maintenance and growth, our findings demonstrate that loss of Ink4a/Arf facilitates the acquisition of oncogene independence and tumor recurrence. Furthermore, reactivation of the Ras mitogen-activated protein kinase pathway in the absence of virally delivered KRas expression is a common mechanism of recurrence in this context.  相似文献   

4.
The role of Ink4a/Arf in ErbB2 mammary gland tumorigenesis   总被引:5,自引:0,他引:5  
Most human tumors display inactivation of the p53 and the p16(INK4)/pRb pathway. The Ink4a/alternative reading frame (ARF) locus encodes the p16(INK4a) and p14(ARF) (murine p19(ARF)) proteins. p16(INK4a) is deleted in 40-60% of breast cancer cell lines, and p16(INK4a) inactivation by DNA methylation occurs in < or =30% of human breast cancers. In mice genetically heterozygous for p16(INK4a) or Ink4a/Arf, predisposition to specific tumor types is enhanced. Ink4a/Arf(+/-) mice have increased E micro -Myc-induced lymphomagenesis and epidermal growth factor receptor-induced gliomagenesis. ErbB2 (epidermal growth factor receptor-related protein B2) is frequently overexpressed in human breast cancer and is sufficient for mammary tumorigenesis in vivo. We determined the role of heterozygosity at the Ink4a/Arf locus in ErbB2-induced mammary tumorigenesis. Compared with mouse mammary tumor virus-ErbB2 Ink4a/Arf(+/-) mice, mouse mammary tumor virus-ErbB2 Ink4a/Arf(wt) mammary tumors showed increased p16(INK4a), reduced Ki-67 expression, and reduced cyclin D1 protein but increased mammary tumor apoptosis with no significant change in the risk of developing mammary tumors. These studies demonstrate the contribution of Ink4a/Arf heterozygosity to tumor progression is tissue specific in vivo. In view of the important role of Ink4a/Arf in response to chemotherapy, these transgenic mice may provide a useful model for testing breast tumor therapies.  相似文献   

5.
Tumor-initiating cells have been suggested to be rare in many cancers. We tested this in mouse malignant peripheral nerve sheath tumors (MPNSTs) and found that 18% of primary and 49% of passaged MPNST cells from Nf1(+/-); Ink4a/Arf(-/-) mice formed tumors upon transplantation, whereas only 1.8% to 2.6% of MPNST cells from Nf1(+/-); p53(+/-) mice did. MPNST cells of both genotypes require laminin binding to β1-integrin for clonogenic growth. Most MPNST cells from Nf1(+/-); Ink4a/Arf(-/-) mice expressed laminin, whereas most MPNST cells from Nf1(+/-); p53(+/-) mice did not. Exogenous laminin increased the percentage of MPNST cells from Nf1(+/-); p53(+/-) but not Nf1(+/-); Ink4a/Arf(-/-) mice that formed tumorigenic colonies. Tumor-forming potential is common among MPNST cells, but the assay conditions required to detect it vary with tumor genotype.  相似文献   

6.
Cancer immunotherapy based on vaccination with defined tumor antigens has not yet shown strong clinical efficacy, despite promising results in preclinical models. This discrepancy might result from the fact that available preclinical models rely on transplantable tumors, which do not recapitulate the long-term host-tumor interplay that occurs in patients during progressive tumor development and results in tumor tolerance. To create a faithful preclinical model for cancer immunotherapy, we generated a transgenic mouse strain developing autologous melanomas expressing a defined tumor antigen recognized by T cells. We chose the antigen encoded by P1A, a well-characterized murine cancer germ line gene. To transform melanocytes, we aimed at simultaneously activating the Ras pathway and inactivating tumor suppressor Ink4a/Arf, thereby reproducing two genetic events frequently observed in human melanoma. The melanomas are induced by s.c. injection of 4-OH-tamoxifen (OHT). By activating a CreER recombinase expressed from a melanocyte-specific promoter, this treatment induces the loss of the conditional Ink4a/Arf gene in melanocytes. Because the CreER gene itself is also flanked by loxP sites, the activation of CreER also induces the deletion of its own coding sequence and thereby allows melanocyte-specific expression of genes H-ras and P1A, which are located downstream on the same transgene. All melanomas induced in those mice with OHT show activation of the Ras pathway and deletion of gene Ink4a/Arf. In addition, these melanomas express P1A and are recognized by P1A-specific T lymphocytes. This model will allow to characterize the interactions between the immune system and naturally occurring tumors and thereby to optimize immunotherapy approaches targeting a defined tumor antigen.  相似文献   

7.
Haviernik P  Schmidt M  Hu X  Wolff L 《Oncogene》2003,22(11):1600-1610
Cyclin-dependent kinase inhibitors p16(INK4a) and p15(INK4b), encoded by the CDKN2A and B loci, play an important role in negative regulation of the cell cycle. Furthermore, p19(ARF) also encoded by the CDKN2A locus, has been shown to regulate positively the p53 pathway leading to growth arrest and apoptosis. All three genes have been inactivated in human tumors. In myeloid cells, p15(INK4b) mRNA is upregulated during cytokine-induced differentiation and/or growth arrest, and hypermethylation of the p15(INK4b) gene promoter region is a common event in acute myeloid leukemia. In the present study, we examined murine monocyte/macrophage tumors with deregulated c-myc for evidence of Ink4 gene inactivation. p15(Ink4b) mRNA and protein were detected in the majority of leukemias, and p16(Ink4a) mRNA and protein were highly expressed in two of them. pRb was in a hypophosphorylated state in most of the neoplasms indicating that the Cdk inhibitors that were expressed in the cells were functional. The observed expression of p15(Ink4b) is inconsistent with their proliferation state, although it might be expected to be expressed owing to the maturity of the cells. These data suggest, therefore, that deregulated c-Myc bypasses the pRb restriction point and cell cycle arrest in these tumors. An examination of p19(Arf) exons revealed deletions of the gene in up to 94% of the tumors. Since this gene shares exon 2 with p16(Ink4a), it is often difficult to determine which gene is the relevant tumor suppressor. However, the loss of only the p19(Arf)-specific exon 1 beta was observed in a tumor that had normal p16(Ink4a) protein expression. In addition, the p19(Arf)-specific exon was deleted in another tumor that expressed a functional chimeric protein, p15Ex1-p16Ex2-3; it was demonstrated here that this fusion protein is capable of inducing G1 arrest. These data overall supports the hypothesis that the critical inactivation event in these hematopoietic neoplasms is elimination of p19(Arf), and not Ink4 function.  相似文献   

8.
9.
Wang Y  Zhang Z  Kastens E  Lubet RA  You M 《Cancer research》2003,63(15):4389-4395
p53 transgenic mice carrying a dominant negative mutation were crossed with Ink4A/Arf heterozygous-deficient mice to investigate whether there is a synergy between these two germ-line mutations in promoting carcinogen-induced lung tumor progression in mice. Mice with a p53 dominant negative mutation and Ink4A/Arf heterozygous deficiency exhibited >20-fold increase in tumor volume compared with approximately 4-fold increase in Ink4A/Arf heterozygous-deficient mice and a 9-fold increase in mice with only the p53 dominant negative mutation. The effect of Ink4A/Arf heterozygous deficiency on lung tumor progression occurred late in the carcinogenesis process (>30 weeks after carcinogen treatment). In addition, most of the lung tumors (approximately 80%) from mice with a p53 mutation and deletion of Ink4A/Arf were lung adenocarcinomas. In contrast, lung adenocarcinomas were seen in <10% of the lung tumors from the wild-type mice and approximately 50% of the lung tumors from Ink4a/Arf heterozygous-deficient or p53 mutant mice. These results indicate a significant synergistic interaction between the presence of a mutant p53 transgene and the Ink4A/Arf deletion during lung tumor progression (P < 0.01). The usefulness of this new mouse model in lung cancer chemoprevention was examined. The chemopreventive efficacy of budesonide was examined in wild-type mice, mice with Ink4A/Arf heterozygous deficiency, mice with a mutation in the p53 gene, or mice with both a mutation in the p53 gene and deletion in the Ink4A/Arf locus. Mice treated with budesonide displayed an average of 90% inhibition of lung tumor progression in a standard 18-week chemoprevention assay, regardless of p53 and/or Ink4A/Arf status. However, the efficacy of budesonide against lung tumor progression decreased from 94 to 77% (P = 0.07) in mice with alterations in both p53 and Ink4A/Arf in a 40-week chemoprevention assay. Similarly, when mice bearing established lung adenomas were treated with budesonide, genotype-dependent differential effects of budesonide in wild-type and mutant mice were clearly revealed with a 82, 64, 45, and 33% decrease in tumor volume in wild-type mice, p53(+/+)Ink4a/Arf(+/-) mice, p53(+/-)Ink4a/Arf(+/+) mice, and p53(+/-)Ink4a/Arf(+/-), respectively. Thus, mutant mice with alterations in p53 and/or Ink4A/Arf exhibited a significant resistance to chemoprevention by budesonide. Because p53 and Ink4a/Arf mutations are the most prevalent mutations in human lung cancers, the effectiveness of chemopreventive agents on the mutant A/J mice containing alterations with p53 and Ink4a/Arf is the best preclinical estimate of their efficacy in humans. Thus, the mutant A/J mouse model should prove useful for chemoprevention studies.  相似文献   

10.
In a subset of gliomas, the platelet-derived growth factor (PDGF) signaling pathway is perturbed. This is usually an early event occurring in low-grade tumors. In high-grade gliomas, the subsequent loss of the INK4a-ARF locus is one of the most common mutations. Here, we dissected the separate roles of Ink4a and Arf in PDGFB-induced oligodendroglioma development in mice. We found that there were differential functions of the two tumor suppressor genes. In tumors induced from astrocytes, both Ink4a-loss and Arf-loss caused a significantly increased incidence compared to wild-type mice. In tumors induced from glial progenitor cells there was a slight increase in tumor incidence in Ink4a-/- mice and Ink4a-Arf-/- mice compared to wild-type mice. In both progenitor cells and astrocytes, Arf-loss caused a pronounced increase in tumor malignancy compared to Ink4a-loss. Hence, Ink4a-loss contributed to tumor initiation from astrocytes and Arf-loss caused tumor progression from both glial progenitor cells and astrocytes. Results from in vitro studies on primary brain cell cultures suggested that the PDGFB-induced activation of the mitogen-activated protein kinase pathway via extracellular signal-regulated kinase was involved in the initiation of low-grade oligodendrogliomas and that the additional loss of Arf may contribute to tumor progression through increased levels of cyclin D1 and a phosphoinositide 3-kinase-dependent activation of p70 ribosomal S6 kinase causing a strong proliferative response of tumor cells.  相似文献   

11.
12.
We used gene targeting in mice to insert a His(6)-tagged mouse c-Myc cDNA, Myc(His), head to head into the mouse immunoglobulin heavy-chain locus, Igh, just 5' of the intronic enhancer, Emu. The insertion of Myc(His) mimicked both the human t(8;14)(q24;q32) translocation that results in the activation of MYC in human endemic Burkitt lymphomas and the homologous mouse T(12;15) translocation that deregulates Myc in certain mouse plasmacytomas. Beginning at the age of 6 months, Myc(His) transgenic mice developed B-cell and plasma neoplasms, such as IgM(+) lymphoblastic B-cell lymphomas, Bcl-6(+) diffuse large B-cell lymphomas, and CD138(+) plasmacytomas, with an overall incidence of 68% by 21 months. Molecular studies of lymphoblastic B-cell lymphoma, the most prevalent neoplasm (50% of all tumors), showed that the lymphomas were clonal, overexpressed Myc(His), and exhibited the P2 to P1 promoter shift in Myc expression, a hallmark of MYC/Myc deregulation in human endemic Burkitt lymphoma and mouse plasmacytoma. Only 1 (6.3%) of 16 lymphoblastic B-cell lymphomas contained a BL-typical point mutation in the amino-terminal transactivation domain of Myc(His), suggesting that most of these tumors are derived from naive, pregerminal center B cells. Twelve (46%) of 26 lymphoblastic B-cell lymphomas exhibited changes in the p19(Arf)-Mdm2-p53 tumor suppressor axis, an important pathway for Myc-dependent apoptosis. We conclude that Myc(His) insertion into Igh predictably induces B-cell and plasma-cell tumors in mice, providing a valuable mouse model for understanding the transformation-inducing consequences of the MYC/Myc-activating endemic Burkitt lymphoma t(8;14)/plasmacytoma T(12;15) translocation.  相似文献   

13.
14.
15.
The Ink4a/Arf locus is functionally linked to the Rb and p53 pathways through the action of its two gene products. Mouse models null for this locus show rapid onset of cancer with a preponderance of lymphomas and sarcomas. We report on a study of cell lines derived from sarcomas arising in Ink4a/Arf null mice. The cytogenetics of these lines was monitored over the course of serial passage. Results indicate that early passage cells are relatively normal. However, after multiple passages chromosomal instability becomes apparent as evidenced by increasing tetraploidy and aneuploidy, and the concomitant loss of clonality. To further evaluate the effect of Ink4a/Arf-deficiency on chromosomal stability in vitro, we isolated Ink4a/Arf deficient primary murine embryonic fibroblasts (MEFs), serially passaged them, and analyzed their chromosomal stability by spectral karyotyping (a 24-color chromosome paint-FISH technique). We found that chromosomal instability in Ink4a/Arf deficient MEFs developed with the same timing as seen in cell lines derived from Ink4a/Arf deficient sarcomas. Thus, chromosomal instability seen in Ink4a/Arf deficient tumors in vitro may be unrelated to the original phenotype of the tumor in vivo. Therefore, interpretation of cytogenetic data from cell lines derived from Ink4a/Arf deficient tumors should be done on early passage cells.  相似文献   

16.
Antagonism of Myc functions by Arf   总被引:2,自引:0,他引:2  
The Arf-Mdm2-p53 tumor suppressor pathway is activated by sustained hyperproliferative signals emanating from oncoproteins such as Myc. A recent study reveals a novel level of feedback control, whereby induced p19(Arf) binds to Myc and blocks cell proliferation by selectively impairing its transactivation functions.  相似文献   

17.
18.
Overexpression of c-Myc and inactivation of p53 are hallmarks of human Burkitt's lymphomas. We had previously showed that transduction of murine p53-null bone marrow cells with a Myc-encoding retrovirus is sufficient for B lymphomagenesis. To address the role of Myc in tumor sustenance, we generated lymphomas induced by the Myc-estrogen receptor fusion protein (MycER). Engrafted hosts were continuously treated with the ER ligand 4-hydroxytamoxifen (4-OHT) to allow tumor formation. Subsequent inactivation of MycER via 4-OHT deprivation resulted in tumor stasis but only partial regression. At the cellular level, dormant neoplastic lymphocytes withdrew from mitosis and underwent further B-cell differentiation. Concomitantly, they up-regulated genes involved in lymphocyte proliferation and survival, most notably interleukin 10 receptor alpha (IL10Ralpha) and CD20, the target for antibody therapy with Rituxan. We found that overexpression of IL10Ralpha affords significant proliferative advantages and in 4-OHT-deprived animals correlates with eventual tumor relapse. Both dormant and relapsing tumors maintain IL10Ralpha expression suggesting that they might be sensitive to emerging drugs targeting the IL-10 pathway. Up-regulation of CD20 following Myc inactivation was also observed in immortalized human lymphocytes. Importantly, in this system, Myc(OFF)CD20(HIGH) cells were more prone to Rituxan-induced apoptosis than Myc(ON)CD20(MED). Thus, targeting Myc, while moderately effective on its own, shapes the phenotype of dormant neoplastic cells and sensitizes them to adjuvant molecular therapies.  相似文献   

19.
20.
We have previously shown that forced expression of CDK4 in mouse skin (K5CDK4 mice) results in increased susceptibility to squamous cell carcinoma (SCC) development in a chemical carcinogenesis protocol. This protocol induces skin papilloma development, causing a selection of cells bearing activating Ha-ras mutations. We have also shown that myc-induced epidermal proliferation and oral tumorigenesis (K5Myc mice) depends on CDK4 expression. Biochemical analysis of K5CDK4 and K5Myc epidermis as well as skin tumors showed that keratinocyte proliferation is mediated by CDK4 sequestration of p27Kip1 and p21Cip1, and activation of CDK2. Here, we studied the role of CDK2 in epithelial tumorigenesis. In normal skin, loss of CDK2 rescues CDK4-induced, but not myc-induced epidermal hyperproliferation. Ablation of CDK2 in K5CDK4 mice results in decreased incidences and multiplicity of skin tumors as well as malignant progression to SCC. Histopathologic analysis showed that K5CDK4 tumors are drastically more aggressive than K5CDK4/CDK2-/- tumors. On the other hand, we show that CDK2 is dispensable for myc-induced tumorigenesis. In contrast to our previous report of K5Myc/CDK4-/-, K5Myc/CDK2-/- mice developed oral tumors with the same frequency as K5Myc mice. Overall, we have established that ras-induced tumors are more susceptible to CDK2 ablation than myc-induced tumors, suggesting that the efficacy of targeting CDK2 in tumor development and malignant progression is dependent on the oncogenic pathway involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号