首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out a global survey of all major types of transposable elements in Silene latifolia, a model species with sex chromosomes that are in the early stages of their evolution. A shotgun genomic library was screened with genomic DNA to isolate and characterize the most abundant elements. We found that the most common types of elements were the subtelomeric tandem repeat X-43.1 and Gypsy retrotransposons, followed by Copia retrotransposons and LINE non-LTR elements. SINE elements and DNA transposons were less abundant. We also amplified transposable elements with degenerate primers and used them to screen the library. The localization of elements by FISH revealed that most of the Copia elements were accumulated on the Y chromosome. Surprisingly, one type of Gypsy element, which was similar to Ogre elements known from legumes, was almost absent on the Y chromosome but otherwise uniformly distributed on all chromosomes. Other types of elements were ubiquitous on all chromosomes. Moreover, we isolated and characterized two new tandem repeats. One of them, STAR-C, was localized at the centromeres of all chromosomes except the Y chromosome, where it was present on the p-arm. Its variant, STAR-Y, carrying a small deletion, was specifically localized on the q-arm of the Y chromosome. The second tandem repeat, TR1, co-localized with the 45S rDNA cluster in the subtelomeres of five pairs of autosomes. FISH analysis of other Silene species revealed that some elements (e.g., Ogre-like elements) are confined to the section Elisanthe while others (e.g. Copia or Athila-like elements) are present also in more distant species. Similarly, the centromeric satellite STAR-C was conserved in the genus Silene whereas the subtelomeric satellite X-43.1 was specific for Elisanthe section. Altogether, our data provide an overview of the repetitive sequences in Silene latifolia and revealed that genomic distribution and evolutionary dynamics differ among various repetitive elements. The unique pattern of repeat distribution is found on the Y chromosome, where some elements are accumulated while other elements are conspicuously absent, which probably reflects different forces shaping the Y chromosome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554–561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8–10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy ∼10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragments with sizes varying from 68–127 bp, and constituted a larger HinfI repeat of approximately 400 bp. Southern hybridization showed a similar molecular organization of the tandem repeats in each of the Brazilian Alstroemeria species tested. None of the repeats hybridized with DNA from Chilean Alstroemeria species, which indicates that they are specific for the Brazilian species. In-situ localization studies revealed the tandem repeats to be localized in clusters on the chromosomes of A. inodora and A. psittacina: distal hybridization sites were found on chromosome arms 2PS, 6PL, 7PS, 7PL and 8PL, interstitial sites on chromosome arms 2PL, 3PL, 4PL and 5PL. The applicability of the tandem repeats for cytogenetic analysis of interspecific hybrids and their role in heterochromatin organization are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Three novel families of repetitive DNA sequences were molecularly cloned from the Korean field mouse (Apodemus peninsulae) and characterized by chromosome in-situ hybridization and filter hybridization. They were all localized to the centromeric regions of all autosomes and categorized into major satellite DNA, type I minor, and type II minor repetitive sequences. The type II minor repetitive sequence also hybridized interspersedly in the non-centromeric regions. The major satellite DNA sequence, which consisted of 30 bp elements, was organized in tandem arrays and constituted the majority of centromeric heterochromatin. Three families of repetitive sequences hybridized with B chromosomes in different patterns, suggesting that the B chromosomes of A. peninsulae were derived from A chromosomes and that the three repetitive sequences were amplified independently on each B chromosome. The minor repetitive sequences are present in the genomes of the other seven Apodemus species. In contrast, the major satellite DNA sequences that had a low sequence homology are present only in a few species. These results suggest that the major satellite DNA was amplified with base substitution in A. peninsulae after the divergence of the genus Apodemus from the common ancestor and that the B chromosomes of A. peninsulae might have a species-specific origin.  相似文献   

5.
Crocodilians have several unique karyotypic features, such as small diploid chromosome numbers (30–42) and the absence of dot-shaped microchromosomes. Of the extant crocodilian species, the Siamese crocodile (Crocodylus siamensis) has no more than 2n = 30, comprising mostly bi-armed chromosomes with large centromeric heterochromatin blocks. To investigate the molecular structures of C-heterochromatin and genomic compartmentalization in the karyotype, characterized by the disappearance of tiny microchromosomes and reduced chromosome number, we performed molecular cloning of centromeric repetitive sequences and chromosome mapping of the 18S-28S rDNA and telomeric (TTAGGG) n sequences. The centromeric heterochromatin was composed mainly of two repetitive sequence families whose characteristics were quite different. Two types of GC-rich CSI-HindIII family sequences, the 305 bp CSI-HindIII-S (G+C content, 61.3%) and 424 bp CSI-HindIII-M (63.1%), were localized to the intensely PI-stained centric regions of all chromosomes, except for chromosome 2 with PI-negative heterochromatin. The 94 bp CSI-DraI (G+C content, 48.9%) was tandem-arrayed satellite DNA and localized to chromosome 2 and four pairs of small-sized chromosomes. The chromosomal size-dependent genomic compartmentalization that is supposedly unique to the Archosauromorpha was probably lost in the crocodilian lineage with the disappearance of microchromosomes followed by the homogenization of centromeric repetitive sequences between chromosomes, except for chromosome 2.  相似文献   

6.
We have isolated families of subtelomeric satellite DNA sequences from species of four sections of the genus Beta and from spinach, a related Chenopodiaceae. Twenty-five clones were sequenced and representative repeats of each family were characterized by Southern blotting and FISH. The families of ApaI restriction satellite repeats were designated pAv34, pAc34, the families of RsaI repeats pRp34, pRn34 and pRs34. The repeating units are 344–362 bp long and 45.7–98.8% homologous with a clear species-specific divergence. Each satellite monomer consists of two subrepeats SR1 and SR2 of 165–184 bp, respectively. The repeats of each subrepeat group are highly identical across species, but share only a homology of 40.8–54.8% with members of the other subrepeat group. Two evolutionary steps could be supposed in the phylogeny of the subtelomeric satellite family: the diversification of an ancestor satellite into groups representing SR1 and SR2 in the progenitor of Beta and Spinacea species, followed by the dimerization and diversification of the resulting 360 bp repeats into section-specific satellite DNA families during species radiation. The chromosomal localization of telomeric, subtelomeric and rDNA tandem repeats was investigated by multi-colour FISH. High-resolution analysis by fibre FISH revealed a unique physical organization of B. vulgaris chromosome ends with telomeric DNA and subtelomeric satellites extending over a maximum of 63 kb and 125 kb, respectively.  相似文献   

7.
Lee  C.  Ritchie  D. B. C.  Lin  C. C. 《Chromosome research》1994,2(4):293-306
A highly repetitive DNA clone, designated Rt-Pst3, was isolated from thePstI digest of Canadian woodland caribou (Rangifer tarandus caribou; 2n = 70) genomic DNA. It was found to be a 991 bp monomer of a tandemly repeated DNA sequence comprising about 5.7% of the genome and localized to the centromeric regions of all caribou acrocentric autosomes. Southern blot analyses revealed that this caribou satellite DNA sequence was well conserved in the genomes of five other deer species studied.In situ hybridization studies revealed Rt-Pst3-homologous DNA sequences in the centromeric regions of white-tailed deer chromosomes and Asian muntjac chromosomes, as well as at several interstitial chromosome regions in Indian muntjac chromosomes. Comparisons of the Rt-Pst3 DNA sequence to previously identified centromeric satellite DNA fragments from three other deer species revealed considerable DNA sequence similarity. The first ca. 800 bp of the Rt-Pst3 clone was found to share 73.8% similarity to theCCsatI clone of the European roe deer, 64.7% sequence similarity to the C5 DNA clone of the Chinese muntjac, and 64.8% and 65.6% sequence similarity to the 1A and B1 clones of the Indian muntjac, respectively. Moreover, the last 191 bp of the Rt-Pst3 clone was found to share about 60% DNA sequence similarity to the first 191 bp of the same clone. Amplification of one originalca. 800 bp monomer unit, along with the first 191 bp of the following juxtaposed monomer unit could have resulted in the tandemly repeated, 991 bp monomer unit now seen in the caribou genome. It is postulated that the centromeric satellite DNA found in other deer species, having repeat lengths greater than 800 bp, could also have evolved in a similar manner from a more ancestral monomeric unit ofca. 800 bp.  相似文献   

8.
The aim of the present work was to propose a new method of solubilizing thymol for use as an acaricide and to evaluate the resulting product’s efficacy on Rhipicephalus microplus larvae. Two experiments were performed, both employing the larval packet test to evaluate the potential of the solutions formulated. In the first experiment, R. microplus larvae were exposed to three new formulations: formulation 1—distilled water (70%) + ethanol (30%) + thymol (10.0 mg/ml); formulation 2—distilled water (50%) + ethanol (50%) + thymol (10.0 mg/ml); and formulation 3—distilled water (55%) + ethanol (40%) + DMSO (5%) + thymol (10.0 mg/ml). A control was prepared for each formulation (same formulations except thymol), and another control group was formed where the larvae did not receive any treatment. From the results obtained in the first experiment, the formulation with the best performance and cost–benefit relation was chosen and was tested at concentrations of 2.5, 5.0 and 10.0 mg/ml on larvae of this tick. In the first experiment, the mortality of the groups treated with thymol was greater than 95% for all three formulations, with significant differences (p < 0.05) in comparison with the control groups, where the mortality was under 1%. In the second experiment, formulation 2 was selected because of its better cost–benefit relation, and the mortality rates were 94.0%, 96.5% and 99.9% for the concentrations of 2.5, 5.0 and 10.0 mg/ml, respectively, demonstrating that thymol dissolved in ethanol has high acaricide activity on cattle tick larvae.  相似文献   

9.
Fluorescencein situ hybridization (FISH) has been used to analyse the structure of the rye B chromosome. Genomicin situ hybridization (GISH) demonstrates the high level of overall similarity between A and B chromosomes of rye, as well as the presence of a number of specific sequences. The B-specific repeat families D1100 and E3900 have been analysed in terms of their physical location and possible contiguity. Rye Bs contain members of the rye-specific dispersed repetitive family R173, as well as centromeric regions similar to those of the As. The B chromosomes analysed in our study lack detectable rDNA sequences. Anomalous results have been obtained with a number of subtelomeric repetitive probes from rye. Bs usually lack these sequences, but evidence is presented that in some cases A–B translocation events may relocate such sequences from the As to the Bs. These data are discussed in the context of current models for the origin of the B chromosome.  相似文献   

10.
In the present study, four hard tick species and one soft tick species, namely, Dermacentor marginatus, Haemaphysalis punctata, Haemaphysalis parva, Ixodes ricinus, and Dermanyssus gallinae, from south-western Romania were characterized genetically by the first (ITS-1) and second (ITS-2) internal transcribed spacers (ITS) of nuclear ribosomal DNA (rDNA), using a hard tick, Haemaphysalis longicornis, from China for comparative purposes. The ITS rDNA was amplified by polymerase chain reaction (PCR) and sequenced from individual ticks. The lengths of the ITS-1 sequences were 238–1819 bp, and the lengths of ITS-2 were 137–1695 bp, respectively, for all ticks sequenced. While sequence variation within a hard tick species was 0–1.5%, nucleotide differences between hard tick species ranged 2–25.2%, indicating that ITS rDNA sequences provide genetic markers for the differentiation of hard ticks from Romania. Hence, a PCR-linked restriction fragment length polymorphism approach was developed for their unequivocal differentiation based on ITS-1 rDNA. This is the first characterization of ticks from Romania using a genetic approach, which provides the foundation for further studies on ticks in Romania and has implications for studying the population genetic structure of the Romanian ticks and for identification and differentiation of closely related ticks. An erratum to this article can be found at  相似文献   

11.
Three families of highly repeated sequences from rye and the rRNA multigenes (NOR and 5S) have been mapped by FISH and C-banding, in chromosomes of triticale. The pSc119.2 probe showed interstitial hybridization in chromosome arms 1RS, 1RL, 4RL, 5RL, 6RS, 6RL, 7RS and 7RL, and is very effective for chromosome identification of rye chromosomes in triticale. This sequence also hybridizes to the 4A, 5A and the seven B-genome wheat chromosomes. Simultaneous hybridization with the pSc119.2 and pTa794 (5S rRNA) is very useful to distinguish the metacentric chromosomes 2R and 3R. The pSc74 probe appears at interstitial sites in the long arm of the most heterobrachial chromosomes (5R and 6R). The three repetitive sequences of 120 bp, 480 bp, and 610 bp hybridize to telomeric regions in rye chromosomes. Different arrangements and complex organizations consisting of arrays of three or more family sequences were found. The results demonstrate a great variation in the relative arrangement of the repetitive sequences in the telomeres of the rye chromosomes. There were quantitative differences in each cytological marker between triticale lines in bothin situ labelling and C-banding, probably as the result of differences in the number and/or kind of repeat sequence.  相似文献   

12.
In the haploid dioecious liverwort, Marchantia polymorpha, the X chromosome, but not the Y, carries a cluster of ribosomal RNA genes (rDNAs). Here we show that sequences of 5S, 17S, 5.8S and 26S rDNAs are highly conserved (>99% identity) between the X chromosomal and autosomal rDNA repeat units, but the intergenic spacer sequences differ considerably. The most prominent difference is the presence of a 615-bp DNA fragment in the intergenic spacer, X615, which has accumulated predominantly in the rDNA cluster of the X chromosome. These observations suggest that the rDNA repeat unit on the X chromosome evolved independently of that on autosomes, incorporating sex chromosome-specific sequences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems.  相似文献   

14.
The present study was based on assessments of the anti-parasitic activities to determine the efficacies of synthesized zinc oxide nanoparticles (ZnO NPs) prepared by wet chemical method using zinc nitrate and sodium hydroxide as precursors and soluble starch as stabilizing agent against the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae); head louse Pediculus humanus capitis, De Geer (Phthiraptera: Pediculidae); larvae of malaria vector, Anopheles subpictus, Grassi; and filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae). R. microplus larvae were exposed to filter paper envelopes impregnated with different ZnO NP concentrations. Direct contact method was conducted to determine the potential of pediculocidal activity. Parasite larvae were exposed to varying concentrations of synthesized ZnO NPs for 24 h. The results suggested that the mortality effects of synthesized ZnO NPs were 43% at 1 h, 64% at 3 h, 78% at 6 h, and 100% after 12 h against R. microplus activity. In pediculocidal activity, the results showed that the optimal times for measuring mortality effects of synthesized ZnO NPs were 38% at 10 min, 71% at 30 min, 83% at 1 h, and 100% after 6 h against P. humanus capitis. One hundred percent lice mortality was observed at 10 mg/L treated for 6 h. The mortality was confirmed after 24 h of observation period. The larval mortality effects of synthesized ZnO NPs were 37%, 72%, 100% and 43%, 78% and 100% at 6, 12, and 24 h against A. subpictus and C. quinquefasciatus, respectively. It is apparent that the small size and corresponding large specific surface area of small nanometer-scale ZnO particles impose several effects that govern its parasitic action, which are size dependent. ZnO NPs were synthesized by wet chemical process, and it was characterized with the UV showing peak at 361 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the zinc oxide with lattice constants a = 3.249 and c = 5.206 ?. The FTIR spectrum showed the range of 400–4,000 cm−1. The band at 899.56 cm−1; 1,151.87 cm−1; 1,396 cm−1; and these bands showed the complete composition of ZnO NPs. SEM micrograph showed 60–120-nm size and aggregates of spherical shape nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of zinc oxide. The maximum efficacy was observed in zinc oxide against the R. microplus, P. humanus capitis, and the larvae of A. subpictus, C. quinquefasciatus with LC50 values of 29.14, 11.80, 11.14, and 12.39 mg/L; r 2 = 0.805, 0.876, 0.894, and 0.904, respectively. The synthesized ZnO NPs showed the LC50 and r 2 values against the R. microplus (13.41 mg/L; 0.982), P. humanus capitis (11.80 mg/L; 0.966), and the larvae of A. subpictus (3.19; 0.945 mg/L), against C. quinquefasciatus (4.87 mg/L; 0.970), respectively. The control (distilled water) showed nil mortality in the concurrent assay. This is the first report on anti-parasitic activity of the synthesized ZnO NPs.  相似文献   

15.
Amphibians employ genetic sex determination systems with male and female heterogamety. The ancestral state of sex determination in amphibians has been suggested to be female heterogamety; however, the origins of the sex chromosomes and the sex-determining genes are still unknown. In Xenopus laevis, chromosome 3 with a candidate for the sex- (ovary-) determining gene (DM-W) was recently identified as the W sex chromosome. This study conducted comparative genomic hybridization for X. laevis and Xenopus tropicalis and FISH mapping of eight sexual differentiation genes for X. laevis, X. tropicalis, and Rana rugosa. Three sex-linked genes of R. rugosaAR, SF-1/Ad4BP, and Sox3—are all localized to chromosome 10 of X. tropicalis, whereas AR and SF-1/Ad4BP are mapped to chromosome 14 and Sox3 to chromosome 11 in X. laevis. These results suggest that the W sex chromosome was independently acquired in the lineage of X. laevis, and the origins of the ZW sex chromosomes are different between X. laevis and R. rugosa. Cyp17, Cyp19, Dmrt1, Sox9, and WT1 were localized to autosomes in X. laevis and R. rugosa, suggesting that these five genes probably are not candidates for the sex-determining genes in the two anuran species.  相似文献   

16.
Acaricidal activity of essential oils extracted from cumin seeds (Cuminum cyminum), allspice berries (Pimenta dioica) and basil leaves (Ocimum basilicum) were tested on 10-day-old Rhipicephalus (Boophilus) microplus tick larvae using the LPT. Two-fold dilutions of the three essential oils were tested from a starting dilution of 20% down to 1.25%. Results showed a high toxicological effect for cumin, producing 100% mortality in all tested concentrations on R. microplus larvae. Similarly, allspice essential oil produced 100% mortality at all concentrations with the exception of a dramatic decrease at 1.25% concentration. Conversely, basil essential oil was not shown to be toxic against R. microplus larvae. The most common compounds detected by gas chromatography-mass spectrometry were as follows: cumin: cuminaldehyde (22.03%), γ-terpinene (15.69%) and 2-caren-10-al (12.89%); allspice: methyl eugenol (62.7%) and eugenol (8.3%); basil: linalool (30.61%) and estragole (20.04%). Results clearly indicate that C. cyminum and P. dioica essential oils can be used as an effective alternative for R. microplus tick control, and there is a high probability they can be used for other ticks affecting cattle in Mexico and throughout the world, thereby reducing the necessity for traditional and unfriendly synthetic acaricides.  相似文献   

17.
18.
19.
In spite of the global medical and veterinary importance of Ixodid ticks, relatively little is known about their genome organization. To address this, we developed the first fluorescence in situ hybridization (FISH)-based chromosome markers in the Lyme disease vector, Ixodes scapularis. Shotgun genomic DNA (gDNA) sequences were used to identify three major tandem repeat families which were localized to specific heterochromatic regions of I. scapularis chromosomes prepared from the mitotic cell line ISE18. Together, these repeats were estimated to contribute ∼159 Mb (8%) of the 2.1 Gb (haploid) I. scapularis genome. The relative arrangement of each tandem repeat family and the nucleolar organizing regions was determined by rehybridization to individual chromosome spreads, which was useful to distinguish different chromosomes in the ISE18 karyotype. Long stretches (>20 kb) of tandem repeat-containing gDNA were resistant to digestion by the methylation-sensitive restriction enzyme HpaII and localized to the presumed peri-centromeric regions of the chromosomes. A telomeric probe based on the arthropod-conserved (TTAGG) n tandemly repetitive motif was localized to the termini of each I. scapularis chromosome. Localization of these markers produced the first link between DNA sequences and major structural features of I. scapularis chromosomes and thereby provided the framework for a FISH-based physical map.  相似文献   

20.
Centromeres play crucial roles in faithful chromosome segregation and genome integrity. In simian primates, centromeres possess tandem array of alpha satellite DNA (also referred to as alphoid DNA). Average sizes of alpha satellite repeat units vary between species, for example, 171 bp in human and 343–344 bp in many platyrrhini species (New World monkeys). Interestingly, Azara's owl monkey (Aotus azarae), a platyrrhini species, possesses alpha satellite DNA of two distinct unit sizes, OwlAlp1 (185 bp) and OwlAlp2 (344 bp), both of which present as megasatellite DNAs in the genome. It is, however, unknown which repeat sequence is responsible for functional centromere formation. To investigate the localization of centromeres in vivo, we carried out chromatin immunoprecipitation (ChIP) assay using Azara's owl monkey cells. We found that CENP‐A, a histone H3 variant essential for centromere formation, was enriched at OwlAlp1, but not at OwlAlp2. Moreover, CENP‐A was detected only at constricted regions of chromosomes by immunofluorescent microscopy. In contrast, trimethylation of histone H3‐K9 (H3K9me3), a marker of heterochromatin, was enriched at both OwlAlp1 and OwlAlp2. Our results show that the shorter alpha satellite repeat, OwlAlp1, is selectively used for centromere formation in this monkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号