首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The responses to alpha- and gamma-thrombin were studied in normal and Bernard-Soulier platelets labelled with [32P]phosphate, to investigate the relationship between thrombin binding to the platelet membrane glycoprotein Ib (GPIb) and thrombin-induced platelet activation. For this purpose we conducted parallel studies of the kinetics of platelet aggregation, granule secretion, hydrolysis of polyphosphoinositides, formation of phosphatidic acid, phosphorylation of the myosin light chain (p20) and of the 43 kDa protein (p43), and thromboxane B2 formation. Like alpha-thrombin, gamma-thrombin activated control platelets via all the above metabolic responses, but only after a prolonged lag. In Bernard-Soulier platelets, alpha-thrombin induced polyphosphoinositide hydrolysis and phosphatidic acid formation, p20 and p43 phosphorylation, thromboxane B2 formation, secretion and to a lesser extent aggregation, but only after a prolonged lag. The metabolic responses of Bernard-Soulier platelets to gamma-thrombin were very similar to those of control platelets. We have previously showed that GPIb which is not present in Bernard-Soulier platelets binds alpha- but not gamma-thrombin. The present results indicate that thrombin binding to GPIb is not directly coupled either with the activation of phospholipase C specific to polyphosphoinositides, or with the activation of protein kinase C and phospholipase A2. However, thrombin binding to GPIb appears to promote an early mechanism which accelerates all the platelet responses.  相似文献   

2.
N J Greco  T E Tenner  N N Tandon  G A Jamieson 《Blood》1990,75(10):1989-1990
We have re-evaluated the previously reported ability of TLCK-thrombin (N alpha-tosyl-L-lysine chloromethyl ketone-treated alpha-thrombin) and PPACK-thrombin (D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone-treated alpha-thrombin) to inhibit alpha-thrombin-induced platelet activation (Harmon JT, Jamieson GA: J Biol Chem 261:15928, 1986; and Harmon JT, Jamieson GA: Biochemistry 27:2151, 1988). Despite several cycles of derivatization with TLCK (10,000-fold molar excess), preparations of TLCK-thrombin have been found to contain about 4% residual alpha-thrombin activity, suggesting that these preparations are an equilibrium mixture of TLCK-thrombin and alpha-thrombin and cannot be used for evaluating competition between these two agents. In contrast, alpha-thrombin activity was completely inhibited by PPACK at 15-fold molar excess. PPACK-thrombin, free of unreacted PPACK and devoid of residual alpha-thrombin activity, did not markedly affect platelet shape change at concentrations as high as 1 mumol/L, but inhibited aggregation and secretion in intact platelets activated with the minimal concentration of alpha-thrombin causing a full response (0.3 to 0.5 nmol/L) and yielded a 50% inhibition constant (IC50) for inhibition of aggregation by PPACK-thrombin of 110 nmol/L. This inhibition was specific for alpha-thrombin-induced platelet activation, and no inhibition was seen with activation induced by ADP, collagen, epinephrine, ristocetin, or arachidonate. At these low alpha-thrombin concentrations (approximately 0.4 nmol/L), a persistent cytoplasmic acidification was observed of -0.062 +/- 0.016 pH units, although alkalinization was observed at higher alpha-thrombin concentrations (greater than 1 nmol/L). While inhibition of aggregation and secretion occurred when alpha-thrombin and PPACK-thrombin were added simultaneously, inhibition of cytoplasmic acidification and of the elevation of cytoplasmic [Ca2+] induced by low concentrations of alpha-thrombin (0.4 nmol/L) occurred only if platelets were preincubated with PPACK-thrombin for 5 minutes before the addition of alpha-thrombin. In platelets treated with Serratia marcescens protease to remove glycoprotein lb (GPlb), alpha-thrombin-induced shape change was attenuated but persisted in the presence of a high concentration (2 mumol/L) of PPACK-thrombin, although aggregation and secretion were inhibited, as seen in intact platelets. The IC50 value for inhibition of aggregation by PPACK-thrombin was approximately 1 mumol/L at the higher alpha-thrombin concentrations (5 nmol/L) required for full activation in this case. These results suggest that PPACK-thrombin may be a useful probe of platelet function since it specifically blocks platelet aggregation and secretion induced by alpha-thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Rao  AK; Willis  J; Kowalska  MA; Wachtfogel  YT; Colman  RW 《Blood》1988,71(2):494-501
We describe a family whose members have impaired platelet aggregation and secretion responses to epinephrine with normal responses to adenosine diphosphate and collagen. Platelet alpha 2-adrenergic receptors (measured using 3H methyl-yohimbine) were diminished in the propositus (78 sites per platelet), his two sisters (70 and 27 sites per platelet), and parents (37 and 63 sites per platelet), but not in two maternal aunts (12 normal subjects, 214 +/- 18 sites per platelet; mean +/- SE). However, the inhibition of cyclic adenosine monophosphate (cAMP) levels by epinephrine in platelets exposed to 400 nmol/L PGI2 was similar in the patients and five normal subjects (epinephrine concentration for 50% inhibition, 0.04 +/- 0.01 mumol/L v 0.03 +/- 0.01 mumol/L; P greater than .05). In normal platelets, the concentration of yohimbine (0.18 mumol/L) required for half maximal inhibition of aggregation induced by 2 mumol/L epinephrine was lower than that for inhibition of its effect on adenylate cyclase (1.6 mumol/L). In quin2 loaded platelets, thrombin (0.1 U/mL) stimulated rise in cytoplasmic Ca2+ concentration, [Ca2+]i, was normal in the two patients studied. The PGI2 analog ZK 36,374 completely inhibited thrombin-induced rise in [Ca2+]i; the reversal of this inhibition by epinephrine was normal in the two patients. Thus, despite the impaired aggregation response to epinephrine, platelets from these patients have normal ability to inhibit PGI2-stimulated cAMP levels. These patients with an inherited receptor defect provide evidence that fewer platelet alpha 2-adrenergic receptors are required for epinephrine-induced inhibition of adenylate cyclase than for aggregation.  相似文献   

4.
Legrand  C; Dubernard  V; Nurden  AT 《Blood》1989,73(5):1226-1234
Affinity purified anti-fibrinogen (anti-Fg) Fab fragments were used to study the mechanism of expression of alpha-granule fibrinogen on activated platelets. Low amounts of the radiolabeled anti-Fg Fab bound to unstimulated or adenosine diphosphate (ADP)-stimulated cells. They readily bound to platelets stimulated with collagen, alpha-thrombin or gamma-thrombin in the presence of divalent cations. At 1 n mol/L alpha- thrombin or 25 nmol/L gamma-thrombin, platelet fibrinogen was expressed on the surface of the cells notwithstanding the presence of AP-2, a monoclonal antibody to the glycoprotein (GP) IIb-IIIa complex, or the synthetic peptides Arg-Gly-Asp-Ser and gamma 400-411, all substances that prevented the binding of plasma fibrinogen to platelets. These results suggest that platelet fibrinogen may interact with its receptors during its translocation from the alpha-granules to the plasma membrane and, thus, not occupy the same sites as those available for plasma fibrinogen on the surface of the cell. Furthermore, we found that platelet fibrinogen was expressed on the thrombin-stimulated platelets of a Glanzmann's thrombasthenia variant that failed to bind plasma fibrinogen. Normal platelets stimulated with 5 nmol/L alpha- thrombin bound increased amounts of the anti-fg Fab, the additional expression being inhibited by the anti-GP IIb-IIIa monoclonal antibody or by Gly-Pro-Arg-Pro, an inhibitor of fibrin polymer formation. This suggests that rebinding to externally located GP IIb-IIIa complexes becomes important once fibrin is formed.  相似文献   

5.
Brower  MS; Walz  DA; Garry  KE; Fenton  JW d 《Blood》1987,69(3):813-819
During blood coagulation, polymorphonuclear leukocytes release elastase in amounts that can exceed 100 nmol/L. We therefore studied the interaction between human leukocyte elastase and human alpha-thrombin. Elastase cleaved the thrombin B chain (Ala 150-Asn 151) near the gamma- cleavage site, resulting in two fragments held together by noncovalent interactions. The NH2-terminal fragment (FI), mol wt approximately 18,000, was disulfide-linked to the thrombin A chain. The COOH-terminal fragment (FII), mol wt approximately 13,000, contained the active-site serine and formed a covalent bond with antithrombin III. Heparin accelerated proteolysis of alpha-thrombin by elastase. Proteolyzed alpha-thrombin (T theta) retained full amidolytic activity; however, the concentration of T theta causing 50% maximal platelet aggregation and adenosine triphosphate (ATP) release was 7.9 nmol/L (1.1 nmol/L for alpha-thrombin and 220 nmol/L for gamma-thrombin). Fibrinogen clotting activity of T theta and gamma-thrombin was 32% and 1% that of alpha- thrombin, respectively. Elastase released during the coagulation process may modulate thrombin activity. In addition, elastase-modified thrombin may be a useful probe of the structure and function of the gamma-cleavage region.  相似文献   

6.
Greenberg  CS; Achyuthan  KE; Fenton  JW d 《Blood》1987,69(3):867-871
Fibrin polymers (des A,B fibrinogen) reduced the concentration of alpha- thrombin required for 50% activation of plasma factor XIII (a2b2 tetramer) by approximately 100-fold. In the presence of fibrin, the amount of gamma-thrombin required for activation was not affected. Catalytically inactive i-Pr2P- and D-Phe-Pro-Arg-CH2-alpha-thrombin were found to inhibit over 95% of the activation by alpha-thrombin in the presence of fibrin. Unlike plasma factor XIII, the concentration of alpha-thrombin required for 50% activation of platelet factor XIII (a2 dimer) was lower, and the activation was not enhanced by fibrin. However, when the a2 platelet factor XIII was incubated with purified b- chains, the alpha- and gamma-thrombin concentrations required for activation increased tenfold and reached levels similar to those required for activation of the plasma factor XIII. When fibrin was present, the alpha-thrombin concentrations needed for activation of the a2b2 complexes were reduced, and the presence of fibrin had no effect on gamma-thrombin cleavage of the a2b2 complexes. Therefore, the b- chains must inhibit a-chain cleavage by alpha-thrombin in the absence of fibrin. These results imply that the formation of a cocomplex involving alpha-thrombin, fibrin, and plasma factor XIII causes some conformational change in plasma factor XIII such that the b-chains no longer inhibit cleavage of the a-chains.  相似文献   

7.
The development of drugs to neutralize the action of thrombin has to date focused on the alpha form of the protease. It is generally agreed that inactive prothrombin is proteolytically converted to active alpha-thrombin which may be further hydrolyzed to beta- and gamma-thrombin. While all three forms of the enzyme retain catalytic activities, only alpha-thrombin is presumed to be physiologically important. The beta- and gamma-thrombin are presumed to be degradation products of no physiological significance. Our demonstration that beta- and gamma-thrombin selectively activate PAR-4 in this and a previous report (J. Biol. Chem. 276, 21173-21183, 2001) necessitates a reevaluation of how we view their physiological roles and how we approach the pharmacological regulation of their actions. Beta-thrombin, like gamma-thrombin, at nM levels selectively activates PAR-4. This was demonstrated by full retention of aggregatory activity with platelets whose PAR-1 and GP Ib receptors were inactivated. Furthermore, the beta-thrombin response was abrogated by desensitizing platelets with suboptimal levels of the thrombin receptor activating peptide for PAR-4 (TRAP-4). For beta-thrombin and gamma-thrombin to have a physiological role, it is necessary to show they can be generated under physiological conditions. We demonstrate, for the first time, that alpha-thrombin is hydrolyzed in less than 1 min by activated factor X at physiological pH, in vitro. This implies that alpha-thrombin may be rapidly converted to beta-thrombin and/or gamma-thrombin in vivo in the proper microenvironment. The differential activation of the three platelet thrombin receptors by alpha-, beta- and gamma-thrombin implies selective structural variations between these thrombin species. Structural differences are likely to account for the marked differential responses observed with the antithrombotic, hirudin, which inhibits alpha-thrombin , is a slightly weaker inhibitor of beta-thrombin and a very weak inhibitor of gamma-thrombin -induced platelet aggregations. The converse order of inhibition is observed with the physiological protease inhibitor, alpha(1)-antitrypsin. Finally, a non-traditional inhibitor, histone-1, selectively inhibits only beta- and gamma-thrombin , primarily at the receptor level of PAR-4 rather than on the thrombin molecule. Trypsin, like beta- and gamma-thrombin , activates PAR-4 and is also inactive with TRAP-4 desensitized platelets. Therefore, it was reasoned that trypsin would be more structurally similar to gamma-thrombin than to alpha-thrombin. The analysis of the crystalline structures of alpha-, gamma-thrombin and trypsin from the databases confirm that this is the case. These findings should help to elucidate structure-function relationships of the different thrombins and may aid in the development of new anti-thrombotic drugs.  相似文献   

8.
The possibility that thrombin acts on platelets by a mechanism other than proteolysis was investigated. The proteolytic site of thrombin was modified with phenylmethylsulfonyl fluoride (PMSF). This modified enzyme did not induce platelet aggregation or the platelet release reaction. Platelets were then incubated with the inactivated enzyme (PMS-thrombin) and later with active thrombin. In this sequence of incubation, PMS-thrombin enhanced not only platelet aggregation induced by active thrombin but also the thrombin-induced release reaction. Preincubation with PMS-thrombin was essential for this enhancement as the inhibited enzyme did not affect aggregation if added after active thrombin. The effect of PMS-thrombin was limited to thrombin-induced reactions of the platelet. The inhibited enzyme had no effect on aggregation induced by adenosine diphosphate or collagen, or on thrombin-induced coagulation of fibrinogen. These results suggest (1) that both proteolytic and binding sites for thrombin are present on the human platelet plasma membrane; and (2) that interaction of thrombin with the binding site potentiates the activity of the proteolytic site.  相似文献   

9.
In subagglutinating amounts, an IgG antibody isolated from the plasma of a polytransfused thrombasthenic patient (L) inhibited ADP-, epinephrine-, collagen-, and thrombin-induced aggregation of normal human platelets. The inhibition of ADP-induced aggregation was strongly diminished following the prior incubation of the antibody with control human platelet stroma but not with the stroma prepared from the platelets of two different thrombasthenic patients. The IgG(L) did not affect the binding of 14C-ADP to control human platelet membranes and did not inhibit the ADP-induced shape change. Bovine factor VIIIVWF- induced agglutination and ristocetin-induced aggregation of control human platelets were not inhibited in the presence of the antibody. The IgG(L) strongly inhibited ADP-induced retraction of reptilase clot and thrombin-induced clot retraction. This antibody therefore induced a thrombasthenialike state in normal human platelets, suggesting that the antigenic site recognized by the antibody plays a central role in the later stages of the mechanism of platelet aggregation induced by physiologic aggregation-inducing agents.  相似文献   

10.
Members of the Src family of kinases are abundant in platelets. Although their localization is known, their role(s) in platelet function are not well understood. Lyn is a Src-family kinase that participates in signal transduction pathways elicited by collagen-related peptide; it has also been implicated through biochemical studies in the regulation of von Willebrand factor signaling. Here, we provide evidence that Lyn plays a role in gamma-thrombin activation of platelets. Unlike the wild-type platelets, platelets from Lyn-deficient mice do not undergo irreversible aggregation, produce thromboxane A2, or secrete adenosine diphosphate in response to submaximal gamma-thrombin concentrations that cause secretion-dependent irreversible aggregation. Phosphorylation of Akt, a downstream effector of phosphatidylinositol 3-kinase, also requires a higher concentration of gamma-thrombin in Lyn-deficient platelets than in wild-type platelets. These findings demonstrate that Lyn signaling is required for thrombin induction of secretion-dependent platelet aggregation. Specifically, Lyn is required under these conditions to enable thrombin-induced TxA2 production and adenosine diphosphate secretion, necessary steps in secretion-dependent platelet aggregation.  相似文献   

11.
C Legrand  V Thibert  V Dubernard  B Bégault  J Lawler 《Blood》1992,79(8):1995-2003
We have investigated the molecular requirements for thrombospondin (TSP) to bind to the platelet surface and to support the subsequent secretion-dependent platelet aggregation. For this, we used two distinct murine monoclonal antibodies (MoAbs), designated MAI and MAII, raised against human platelet TSP, and three polyclonal antibodies, designated R3, R6, and R5, directed against fusion proteins containing the type 1 (Gly 385-Ile 522), type 2 (Pro 559-Ile 669), and type 3 (Asp 784-Val 932) repeating sequences, respectively. Among them, R5 and R6, but not R3, inhibited thrombin-induced aggregation of washed platelets and the concomitant secretion of serotonin. These antibodies, however, did not inhibit the expression of TSP on thrombin-activated platelets, as measured by the binding of a radiolabeled MoAb to TSP, suggesting that they may inhibit platelet aggregation by interfering with a physiologic event subsequent to TSP binding. In contrast, MoAb MAII, which reacts with an epitope located within the heparin-binding domain of TSP, inhibited both TSP surface expression and platelet aggregation/secretion induced by thrombin. In addition, this MoAb inhibited in a dose-dependent manner (IC50 approximately 0.5 mumol/L) the interaction of 125I-TSP with immobilized fibrinogen and platelet glycoprotein IV, both potential physiologic receptors for TSP on thrombin-activated platelets. These results indicate that the interaction of TSP with the surface of activated platelets can be modulated at the level of a specific epitope located within the amino terminal heparin-binding domain of the molecule. Thus, selective inhibition of the platelet/TSP interaction may represent an alternative approach to the inhibition of platelet aggregation.  相似文献   

12.
Proteoglycan (PG), isolated and purified from bovine aorta (intima-media), consisted of 68.6% chondroitin 4/6-sulfate (CS 4/6-S), 30% dermatan sulfate (DS), 1.4% heparan sulfate (HS), and a trace of hyaluronic acid (HA). PG did not affect platelet aggregation induced by ADP, collagen, and epinephrine, but inhibited that induced by thrombin. Of the standard GAGs investigated, hyaluronic acid (HA) and CS-4/6-S slightly inhibited only thrombin-induced platelet aggregation. However, PG and standard GAGs did not affect the thrombin induced aggregation of washed platelets. The effect of PG after papain digestion on thrombin-induced platelet aggregation was less potent than that before. It is suggested by the results of this study that PG in the aorta inactivates plasma thrombin, probably by inhibiting thrombin activators or potentiating substances which inactivate thrombin and that these effect of PG would be mainly due to PG-DS and partly due to PG-HS.  相似文献   

13.
To clarify further the activity of rT3, we examined the effect of rT3 on collagen-induced platelet activation as reflected by aggregation, serotonin release, and protein phosphorylation. rT3, T4, T3, and triiodothyroacetic acid inhibited collagen-induced platelet aggregation and serotonin release from platelets in a dose-dependent manner. However, thyronine did not inhibit collagen-induced platelet aggregation. The concentration at which rT3 inhibited by 50% collagen-induced platelet aggregation was 30 +/- 4 (mean +/- SE) mumol/L. rT3, T4, and T3 did not differ significantly in their abilities to inhibit platelet aggregation. Moreover, rT3 inhibited collagen-induced phosphorylation of the 20-kilodalton protein (myosin light chain) in platelets. In contrast, rT3 did not inhibit 12-O-tetradecanoylphorbol 13-acetate (TPA)- or thrombin-induced platelet aggregation and inhibited only minimally TPA-induced 40-kilodalton protein phosphorylation. These results suggest that rT3 inhibits collagen-induced platelet activation by inhibiting the activity of myosin light chain kinase and that it may be interesting to investigate some kinds of activity of rT3.  相似文献   

14.
M Aviram  J G Brook 《Artery》1983,11(4):297-305
Platelet aggregation as well as [14C] serotonin release were increased in platelet-rich plasma in comparison to gel-filtered platelet preparation. The addition of red blood cells to platelet-rich plasma enhanced thrombin-induced [14C] serotonin release by 7%, whereas in a gel-filtered platelet preparation free of any plasma constituents a 47% increment was noted. In the presence of white blood cells, no effect could be shown. Purified lipoproteins were incubated (in their normal plasma concentration) with gel-filtered platelets for 30 minutes at 37 degrees C, and the effect on in vitro platelet function was studied. Very low density lipoprotein and low density lipoprotein increased thrombin-induced platelet aggregation and [14C] serotonin release induced by epinephrine, ADP, and thrombin. In contrast, high density lipoprotein inhibited these platelet functions. Lipoprotein-deficient plasma increased platelet aggregation and release reaction. It appears that plasma lipoproteins have a profound effect on in vitro platelet function. Since both platelets and lipoproteins are of importance in atherosclerosis, the platelet-lipoprotein interaction might be of major significance in this process.  相似文献   

15.
In this study, the question of whether glycoprotein Ib (GPIb) mediates both high and moderate affinity pathways of alpha-thrombin-induced platelet activation was examined. Flow cytometric studies, using a panel of monoclonal antibodies (MoAbs), showed that Serratia marcescens protease treatment removed greater than 97% of the glycocalicin portion of GPIb but did not affect the changes in the expression of GPIX or GMP-140 that were induced by high concentrations of alpha-thrombin (10 nmol/L). However, Serratia treatment almost completely abolished the increase in platelet surface GMP-140 induced by low concentrations of alpha-thrombin (0.5 nmol/L) and diminished the downregulation of platelet surface GPIX by 60.9% +/- 5.6% (mean +/- SEM, n = 3). When present in 20-fold molar excess, an MoAb directed against the alpha-thrombin/von Willebrand factor (vWf) binding domains of GPIb completely blocked the ristocetin-dependent binding of vWf to platelets but inhibited only to about 50% the binding of alpha-thrombin and the activation-dependent binding of vWf. In platelets treated with Serratia marcescens protease to remove GPIb, a concentration of this MoAb 16,000-fold in excess of the maximum possible remaining copies of GPIb failed to inhibit platelet activation by alpha-thrombin. These studies demonstrate that activation of intact platelets by alpha-thrombin proceeds by both GPIb-dependent and GPIb-independent mechanisms.  相似文献   

16.
Vezza  R; Roberti  R; Nenci  GG; Gresele  P 《Blood》1993,82(9):2704-2713
Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.  相似文献   

17.
F J Meloni  E J Gustafson  A H Schmaier 《Blood》1992,79(5):1233-1244
The unstimulated platelet surface contains a specific and saturable binding site for high molecular weight kininogen (HK) and low molecular weight kininogen (LK). Investigations were performed with purified heavy and light chains of HK to determine which portion(s) of the HK molecule binds to the platelet surface. Purified 64-Kd heavy chain of HK and 56-Kd light chain of HK, independently, inhibited 125I-HK binding to unstimulated platelets with a 50% inhibitory concentration (IC50) of 84 nmol/L (apparent Ki, 30 nmol/L) and 30 nmol/L (apparent Ki, 11 nM), respectively. The ability of each of the purified chains of HK to independently inhibit 125I-HK binding was not due to cleavage, reduction, and alkylation of the protein, because two-chain HK, produced by treating HK the same way as purifying the separate chains, inhibited binding similarly to intact HK. Further, purified LK alone inhibited 125I-HK binding to platelets (Ki, 17 +/- 1 nmol/L, n = 7). The 64-Kd heavy chain of HK was a competitive inhibitor on a reciprocal plot of 125I-HK-platelet binding with an apparent Ki of 28 +/- 6 nmol/L (n = 4). Independently, purified 56-Kd light chain of HK was also found to be a competitive inhibitor of 125I-HK-platelet binding, with an apparent Ki of 11 +/- 3 nmol/L (mean +/- SEM, n = 4). These indirect studies indicated that HK binds to platelets by two portions of the molecule, one on the heavy chain and another on the light chain. Studies with 125I-light chain of HK showed that it specifically bound directly to platelets in the presence of zinc, since it was blocked by HK, light chain of HK, or EDTA, but not by LK, C1s, C1 inhibitor, plasmin, factor XIII, or fibrinogen. Purified light chain of HK did not inhibit direct 125I-LK binding to platelets. HK was found to bind to platelets in an unmodified form. HK bound to platelets was cleaved by plasma or urinary kallikrein at a slower rate than the same concentration of soluble HK or HK bound and subsequently eluted from the platelet surface. Cleavage of platelet-bound HK correlated with bradykinin liberation. These studies indicate that HK has two domains on its molecule that bind to platelets. Further, platelet-bound HK is protected from kallikreins' proteolysis. This latter finding suggests that cell binding may modify the rate of bradykinin liberation from HK.  相似文献   

18.
α1-acid glycoprotein (α1-acid GP) isolated from human plasma was found to inhibit thrombin-induced aggregation of washed human platelets (final thrombin concentration 0.05 NIH U/ml), and inhibition was complete with physiological concentrations of the glycoprotein (1.0–1.5 g/l final conc.). The inhibitory effect seemed to occur immediately on thrombin addition, thus being similar to the effect of heparin previously observed. As opposed to heparin, however, α1-acid GP did not affect spontaneous platelet aggregation. Furthermore, α1-acid GP (in optimal concentrations) reduced the combined inhibitory effect of heparin and antithrombin III on thrombin-induced platelet aggregation, thus being consistent with the previous findings using heparin thrombin clotting time. Snyder & Coodley (1976) found α1-acid GP to inhibit platelet aggregation induced by epinephrine and adenosine diphosphate in platelet-rich plasma. As we also found α1-acid GP to inhibit collagen-induced platelet aggregation, this acid glycoprotein may possibly act as an inhibitor of the release reaction although fairly high concentrations (10 mg/ml final conc.) were needed for complete inhibition.  相似文献   

19.
Knupp  CL; White  GC d 《Blood》1985,65(3):578-583
To determine the relationship between equilibrium binding of thrombin to sites on the platelet surface and the cleavage of membrane glycoprotein V (GPV) by thrombin, we examined the effect of active site- modified thrombin (1-chloro-3-tosylamido-7-amino-L-2-heptanone thrombin toslysCH2-thrombin) on the binding of native thrombin to platelets and on the hydrolysis of GPV by native thrombin. ToslysCH2-thrombin inhibited binding of native thrombin to high affinity sites on the platelet surface. In contrast, hydrolysis of GPV by native thrombin, even at threshold thrombin concentrations, was not inhibited by pretreatment with toslysCH2-thrombin at concentrations up to 210 nmol/L. ToslysCH2-thrombin also had no appreciable effect on platelet aggregation or release of 14C-serotonin induced by native thrombin. Because toslysCH2-thrombin does not inhibit platelet release, aggregation, or GPV hydrolysis by native thrombin but does inhibit high affinity surface binding by native thrombin, these results indicate that thrombin binding and hydrolysis of GPV are separate and unrelated events.  相似文献   

20.
A newly synthesized 13-aza derivative of prostanoic acid (13-APA) specifically inhibited human platelet aggregation induced by arachidonic acid, prostaglandin H2, or the stable endoperoxide analog (15S)-hydroxy-9 alpha,11 alpha-)epoxymethano)-prosta-5Z,13E-dienoic acid. 13-APA also inhibited [14C]serotonin release in response to arachidonic acid, ADP, or thrombin, but did not inhibit primary aggregation induced by ADP or thrombin. 13-APA completely blocked prostaglandin H2-induced aggregation in indomethacin-treated resuspended platelets but did not inhibit thromboxane synthesis. We therefore conclude that 13-APA acts as a direct antagonist of the platelet thromboxane/endoperoxide receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号