首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“Weight of Evidence” (WoE) approaches are often used to critically examine, prioritize, and integrate results from different types of studies to reach general conclusions. For assessing hormonally active agents, WoE evaluations are necessary to assess screening assays that identify potential interactions with components of the endocrine system, long-term reproductive and developmental toxicity tests that define adverse effects, mode of action studies aimed at identifying toxicological pathways underlying adverse effects, and toxicity, exposure and pharmacokinetic data to characterize potential risks. We describe a hypothesis-driven WoE approach for hormonally active agents and illustrate the approach by constructing hypotheses for testing the premise that a substance interacts as an agonist or antagonist with components of estrogen, androgen, or thyroid pathways or with components of the aromatase or steroidogenic enzyme systems for evaluating data within the US EPA’s Endocrine Disruptor Screening Program. Published recommendations are used to evaluate data validity for testing each hypothesis and quantitative weightings are proposed to reflect two data parameters. Relevance weightings should be derived for each endpoint to reflect the degree to which it probes each specific hypothesis. Response weightings should be derived based on assay results from the test substance compared to the range of responses produced in the assay by the appropriate prototype hormone and positive and negative controls. Overall WoE scores should be derived based on response and relevance weightings and a WoE narrative developed to clearly describe the final determinations.  相似文献   

2.
Chlorpyrifos was selected for EPA’s Endocrine Disruptor Screening Program (EDSP) based on widespread use and potential for human and environmental exposures. The purpose of the program is to screen chemicals for their potential to interact with the estrogen, androgen, or thyroid pathways. A battery of 11 assays was completed for chlorpyrifos in accordance with test guidelines developed for EDSP Tier 1 screening. To determine potential endocrine activity, a weight-of-evidence (WoE) evaluation was completed for chlorpyrifos, which included the integration of EDSP assay results with data from regulatory guideline studies and the published literature. This WoE approach was based on the OECD conceptual framework for testing and assessment of potential endocrine-disrupting chemicals and consisted of a systematic evaluation of data, progressing from simple to complex across multiple levels of biological organization. The conclusion of the WoE evaluation is that chlorpyrifos demonstrates no potential to interact with the estrogen, androgen, or thyroid pathways at doses below the dose levels that inhibit cholinesterase. Therefore, regulatory exposure limits for chlorpyrifos, which are based on cholinesterase inhibition, are sufficient to protect against potential endocrine alterations. Based on the results of this WoE evaluation, there is no scientific justification for pursuing additional endocrine testing for chlorpyrifos.  相似文献   

3.
A comprehensive weight-of-the-evidence evaluation of 2,4-dichlorophenoxyacetic acid (2,4-D) was conducted for potential interactions with the estrogen, androgen and thyroid pathways and with steroidogenesis. This assessment was based on an extensive database of high quality in vitro, in vivo ecotoxicological and in vivo mammalian toxicological studies. Epidemiological studies were also considered. Toxicokinetic data provided the basis for determining rational cutoffs above which exposures were considered irrelevant to humans based on exceeding thresholds for saturation of renal clearance (TSRC); extensive human exposure and biomonitoring data support that these boundaries far exceed human exposures and provide ample margins of exposure. 2,4-D showed no evidence of interacting with the estrogen or androgen pathways. 2,4-D interacts with the thyroid axis in rats through displacement of thyroxine from plasma binding sites only at high doses exceeding the TSRC in mammals. 2,4-D effects on steroidogenesis parameters are likely related to high-dose specific systemic toxicity at doses exceeding the TSRC and are not likely to be endocrine mediated. No studies, including high quality studies in the published literature, predict significant endocrine-related toxicity or functional decrements in any species at environmentally relevant concentrations, or, in mammals, at doses below the TSRC that are relevant for human hazard and risk assessment. Overall, there is no basis for concern regarding potential interactions of 2,4-D with endocrine pathways or axes (estrogen, androgen, steroidogenesis or thyroid), and thus 2,4-D is unlikely to pose a threat from endocrine disruption to wildlife or humans under conditions of real-world exposures.  相似文献   

4.
Oestrogenic and androgenic activity of triclosan in breast cancer cells   总被引:1,自引:0,他引:1  
As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [(3)H]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) m completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) m 17beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) m 17beta-oestradiol. On its own, 1 microm triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [(3)H]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) m testosterone and in T47D human breast cancer cells by 10(-8) m testosterone at concentrations of 10(-7) m and 10(-6) m, respectively. Triclosan at 2 x 10(-5) m antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) m testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health.  相似文献   

5.
Current in life toxicity testing paradigms are being challenged as the future of risk assessment moves towards more comprehensive mode of action/adverse outcome pathway based approaches. In particular, endocrine disruption screening is now a global activity and key initiatives in the United States focus on the use of high throughput in vitro assays to prioritize compounds for further testing of estrogen, androgen or thyroid disruption. Of these pathways, much of the emphasis to date has been on high-throughput methods for estrogenic activity primarily using ligand binding and trans-activation assays. However, as the knowledge regarding estrogen receptor signaling pathways continues to evolve, it is clear that the assumption of a simple one-receptor pathway underlying current in vitro screening assays is out of date. To develop more accurate models for estrogen-initiated pathways useful for quantitative safety assessments, we must design assays that account for the key signaling processes driving cellular dose response based on up-to-date understanding of the biological network. In this review, we summarize the state of the science for the estrogen receptor signaling network, particularly with regard to proliferative effects, and highlight gaps in current high throughput approaches. From the sum of this literature, we propose a model for the estrogen-signaling pathway that should serve as a starting point for development of new in vitro methods fit for the purpose of predicting dose response for estrogenic chemicals in the human.  相似文献   

6.
Endocrine disruption continues to be a matter of high concern, and a subject of intensive activities at the public, political, regulatory and academic levels. Currently, available regulatory test guidelines (TGs) relevant to the identification of endocrine disrupters are largely limited to estrogen, androgen, thyroid and steroidogenesis (EATS) pathways. Thus, there is an increasing interest and need to develop test methods, biomarkers, and Adverse Outcome Pathways (AOPs), for identification and evaluation of endocrine disrupters in addition to the EATS pathways. An activity focusing on the retinoid system has been jointly initiated by the Swedish Chemicals Agency and the European Commission. The retinoid system is involved in fundamental life processes and has been described, in previous work at the OECD, as a system susceptible to environmental endocrine disruption, the disruption of which could contribute to the increasing incidence of certain disorders in humans and wildlife populations.  相似文献   

7.
Research indicates a correlative relationship between asthma and use of consumer cleaning products. We conduct a systematic review of epidemiological literature on persons who use or are exposed to cleaning products, both in occupational and domestic settings, and risk of asthma or asthma-like symptoms to improve understanding of the causal relationship between exposure and asthma. A scoring method for assessing study reliability is presented. Although research indicates an association between asthma and the use of cleaning products, no study robustly investigates exposure to cleaning products or ingredients along with asthma risk. This limits determination of causal relationships between asthma and specific products or ingredients in chemical safety assessment. These limitations, and a lack of robust animal models for toxicological assessment of asthma, create the need for a weight-of-evidence (WoE) approach to examine an ingredient or product's asthmatic potential. This proposed WoE method organizes diverse lines of data (i.e., asthma, sensitization, and irritation information) through a systematic, hierarchical framework that provides qualitatively categorized conclusions using hazard bands to predict a specific product or ingredient's potential for asthma induction. This work provides a method for prioritizing chemicals as a first step for quantitative and scenario-specific safety assessments based on their potential for inducing asthmatic effects. Acetic acid is used as a case study to test this framework.  相似文献   

8.
Despite extensive study, definitive conclusions regarding the relationship between asthma and consumer products remain elusive. Uncertainties reflect the multi-faceted nature of asthma (i.e., contributions of immunologic and non-immunologic mechanisms). Many substances used in consumer products are associated with occupational asthma or asthma-like syndromes. However, risk assessment methods do not adequately predict the potential for consumer product exposures to trigger asthma and related syndromes under lower-level end-user conditions. A decision tree system is required to characterize asthma and respiratory-related hazards associated with consumer products. A system can be built to incorporate the best features of existing guidance, frameworks, and models using a weight-of-evidence (WoE) approach. With this goal in mind, we have evaluated chemical hazard characterization methods for asthma and asthma-like responses. Despite the wealth of information available, current hazard characterization methods do not definitively identify whether a particular ingredient will cause or exacerbate asthma, asthma-like responses, or sensitization of the respiratory tract at lower levels associated with consumer product use. Effective use of hierarchical lines of evidence relies on consideration of the relevance and potency of assays, organization of assays by mode of action, and better assay validation. It is anticipated that the analysis of existing methods will support the development of a refined WoE approach.  相似文献   

9.
This article reviews laboratory and epidemiological research into the endocrine disruptive effects of components of personal care products, namely, phthalate esters, parabens, ultraviolet (UV) filters, polycyclic musks, and antimicrobials. High doses of phthalates in utero can produce “phthalate syndrome,” demasculinizing effects in male rat offspring due to impaired testosterone production by fetal testes. However, evidence linking phthalate exposure to similar effects in humans appears inconclusive. Furthermore, phthalate exposure derived from personal care products is within safe limits and its principal bioavailable phthalate, diethyl phthalate (DEP), does not produce “phthalate syndrome.” Parabens exhibit very weak estrogen activity in vitro and in vivo, but evidence of paraben-induced developmental and reproductive toxicity in vivo lacks consistency and physiological coherence. Evidence attempting to link paraben exposure with human breast cancer is nonexistent. Select UV filters at high doses produce estrogenic, antithyroid, and other effects in rats in vivo. Again, no evidence links UV filter exposure to endocrine disruptive effects in humans. Some polycyclic musks weakly bind to estrogen, androgen, or progestin receptors and exhibit primarily antagonistic activity in vitro, which for the most part, has yet to be confirmed in vivo in mammals. The antimicrobials triclocarban and triclosan evoke weak responses mediated by aryl hydrocarbon, estrogen, and androgen receptors in vitro, which require confirmation in vivo. Preliminary observations suggest a novel interaction between triclocarban and testosterone. In conclusion, although select constituents exhibit interactions with the endocrine system in the laboratory, the evidence linking personal care products to endocrine disruptive effects in humans is for the most part lacking.  相似文献   

10.
This review examines the mammalian and human literature pertaining to the potential endocrine disruptive effects of triclosan (TCS). Dietary exposure to TCS consistently produces a dose-dependent decrease in serum thyroxine (T4) in rats without any consistent change in TSH or triiodothyronine (T3). Human studies reveal no evidence that the TCS exposure through personal care product use affects the thyroid system. TCS binds to both androgen and estrogen receptors in vitro with low affinity and evokes diverse responses (e.g., agonist, antagonist, or none) in steroid receptor transfected cell-based reporter assays. Two of three studies in rats have failed to show that TCS exposure suppresses male reproductive function in vivo. Three of four studies have failed to show that TCS possesses estrogenic (or uterotrophic) activity in rats. However, two studies reported that, while TCS lacks estrogenic activity, it can amplify the action of estrogen in vivo. The in vitro, in vivo, and epidemiologic studies reviewed herein show little evidence that TCS adversely affects gestation or postpartum development of offspring. Furthermore, previously reported toxicity testing in a variety of mammalian species shows little evidence that TCS adversely affects thyroid function, male and female reproductive function, gestation, or postpartum development of offspring. Finally, doses of TCS reported to produce hypothyroxinemia, and occasional effects on male and female reproduction, gestation, and offspring in animal studies are several orders of magnitude greater than the estimated exposure levels of TCS in humans. Overall, little evidence exists that TCS exposure through personal care product use presents a risk of endocrine disruptive adverse health effects in humans.  相似文献   

11.
《Environmental toxicology》2018,33(5):569-578
Bisphenols, anthropogenic pollutants, leach from consumer products and have potential to be ingested and are excreted in waste. The endocrine disrupting effects of highly manufactured bisphenols (BPA, BPS, and BPF) are known, however the activities of others are not. Here, the estrogenic and androgenic activities of a series of 4,4'‐bisphenols that vary at the inter‐connecting bisphenol bridge were determined (BPA, BPB, BPBP, BPC2, BPE, BPF, BPS, and BPZ) and compared to in silico binding to estrogen receptor‐alpha and the androgen receptor. Bioassay results showed the order of estrogenicity (BPC2 (strongest) > BPBP > BPB > BPZ > BPE > BPF > BPA > BPS, r2 = 0.995) and anti‐androgenicity (BPC2 (strongest) > BPE, BPB, BPA, BPF, and BPS, r2 = 0.996) correlated to nuclear receptor binding affinities. Like testosterone and the anti‐androgen hydroxyflutamide, bisphenol fit in the ligand‐binding domain through hydrogen‐bonding at residues Thr877 and Asn705, but also interacted at either Cys784/Ser778 or Gln711 through the other phenol ring. This suggests the 4,4'‐bisphenols, like hydroxyflutamide, are androgen receptor antagonists. Hydrogen‐bond trends between ERα and the 4,4'‐bisphenols were limited to residue Glu353, which interacted with the –OH of one phenol and the –OH of the A ring of 17β‐estradiol; hydrogen‐bonding varied at the –OH of ring D of 17β‐estradiol and the second phenol –OH group. While both estrogen and androgen bioassays correlated to in silico results, conservation of hydrogen‐bonding residues in the androgen receptor provides a convincing picture of direct antagonist binding by 4,4'‐bisphenols.  相似文献   

12.
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound found as an active ingredient in many personal care and household products. The structural similarity of triclosan to thyroid hormones and recent studies demonstrating activation of the human pregnane X receptor (PXR) and inhibition of diiodothyronine (T(2)) sulfotransferases, have raised concerns about adverse effects on thyroid homeostasis. The current research tested the hypothesis that triclosan alters circulating concentrations of thyroxine. The hypothesis was tested using a 4-day oral triclosan exposure (0-1000mg/kg/day) in weanling female Long-Evans rats, followed by measurement of circulating levels of serum total thyroxine (T(4)). Dose-dependent decreases in total T(4) were observed. The benchmark dose (BMD) and lower bound on the BMD (BMDL) for the effects on T(4) were 69.7 and 35.6mg/kg/day, respectively. These data demonstrate that triclosan disrupts thyroid hormone homeostasis in rats.  相似文献   

13.
Triclosan (2,4,4′-trichloro-2′-hydroxy-diphenyl ether) is an antibacterial compound that has been used in consumer products for about 40 years. The tolerability and safety of triclosan has been evaluated in human volunteers with little indication of toxicity or sensitization. Although information in humans from chronic usage of personal care products is not available, triclosan has been extensively studied in laboratory animals. When evaluated in chronic oncogenicity studies in mice, rats, and hamsters, treatment-related tumors were found only in the liver of male and female mice. Application of the Human Relevance Framework suggested that these tumors arose by way of peroxisome proliferator-activated receptor α (PPARα) activation, a mode of action not considered to be relevant to humans. Consequently, a Benchmark Dose (BMDL10) of 47?mg/kg/day was developed based on kidney toxicity in the hamster. Estimates of the amount of intake from in the use of representative personal care products for men, women, and children were derived in two ways: (1) using known or assumed triclosan levels in various consumer products and assumed usage patterns (product-based estimates); and (2) using upper bound measured urinary triclosan levels from human volunteers (biomonitoring-based estimates) using data from the Centers for Disease Control and Prevention. For the product-based estimates, the margin of safety (MOS) for the combined exposure estimates of intake from the use of all triclosan-containing products considered were approximately 1000, 730, and 630 for men, women, and children, respectively. The MOS calculated from the biomonitoring-based estimated intakes were 5200, 6700, and 11,750 for men, women, and children, respectively. Based on these results, exposure to triclosan in consumer products is not expected to cause adverse health effects in children or adults who use these products as intended.  相似文献   

14.
15.
Triclosan has been shown to have endocrine‐disrupting effects in aquatic organisms. In 2016, the US Food and Drug Administration banned the use of triclosan in consumer soaps. Before the ban, triclosan was reported at low concentrations in the aquatic environment, although the effect of triclosan on reproduction in teleost fish species is yet to be clarified. Here we investigated the effects of triclosan on embryo development and reproduction, and during the early life stage, in Japanese medaka (Oryzias latipes) by using Organisation for Economic Co‐operation and Development tests 229, 212 and 210, with minor modifications. In adult medaka, exposure to 345.7 μg l–1 suppressed fecundity and increased mortality but had no effect on fertility. Exposure to 174.1 or 345.7 μg l–1 increased liver vitellogenin concentration in females but decreased liver vitellogenin concentration in males. With triclosan exposure, mortality was increased dose dependently during the embryonic and early larval stages, and a particularly steep increase in mortality was observed soon after hatching. The lowest observed effect concentrations of triclosan in Japanese medaka obtained in the present study (mortality [embryonic and larval stages, 276.3 μg l–1; early life stage, 134.4 μg l–1; adult stage, 174.1 μg l–1], growth [134.4 μg l–1], vitellogenin [174.1 μg l–1], fecundity [345.7 μg l–1] and fertility [>345.7 μg l–1]) were at least 55 times (compared with the USA) and up to 13 400 times (compared with Germany) greater than the detected triclosan levels in the aquatic environment. These results suggest that triclosan may not be affecting fish populations in the aquatic environment.  相似文献   

16.
17.
18.
This review examines the evidence for endocrine disruption in birds. It reviews in vitro and in vivo laboratory based evidence for endocrine disruption by (1) agonism or antagonism of gonadal steroid hormones, (2) altering the activity of cytochrome P450 enzymes, (3) altering thyroid hormone function, (4) affecting intrinsic neuroendocrine control mechanisms and (5) activation of the stress response. It also discusses the evidence for the existence of such effects in free-living birds. In vitro studies demonstrate that mechanisms for potential endocrine disruption exist, but in vivo studies suggest that such mechanisms are insufficient to overwhelm endogenous homeostatic control. There are only two phenomena in wild birds where endocrine disruption has been cited as a possible cause: eggshell thinning and supernormal clutches. Evidence suggests that neither of these is caused by endocrine disruption. Despite three decades of concern, there is no evidence that avian wildlife has suffered endocrine disruption.  相似文献   

19.
Endocrine-disrupting chemicals (EDC) are molecules that interfere with endocrine signaling pathways and produce adverse consequences on animal and human physiology, such as infertility or behavioral alterations. Some EDC act through binding to androgen or/and estrogen receptors primarily operating through a genomic mechanism regulating gene expression. This mechanism of action may induce profound developmental adverse effects, and the major targets of the EDC action are the gene products, i.e., mRNAs inducing the synthesis of various peptidic molecules, which include neuropeptides and enzymes related to neurotransmitters syntheses. Available immunohistochemical data on some of the systems that are affected by EDC in lower and higher vertebrates are detailed in this review.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号