首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although acidosis may be involved in neuronal death, the participation of Na+/H+ exchanger (NHE) in delayed neuronal death in the hippocampal CA1 region induced by transient forebrain ischemia has not been well established. In the present study, we investigated the chronological alterations of NHE1 in the hippocampal CA1 region using a gerbil model after ischemia/reperfusion. In the sham-operated group, NHE1 immunoreactivity was weakly detected in the CA1 region. Two and 3 days after ischemia/reperfusion, NHE1 immunoreactivity was observed in glial components, not in neurons, in the CA1 region. Four days after ischemia/reperfusion, NHE1 immunoreactivity was markedly increased in CA1 pyramidal neurons as well as glial cells. These glial cells were identified as astrocytes based on double immunofluorescence staining. Western blot analysis also showed that NHE protein level in the CA1 region began to increase 2 days after ischemia/reperfusion. The treatment of 10 mg/kg 5-(N-ethyl-N-isopropyl) amiloride, a NHE inhibitor, significantly reduced the ischemia-induced hyperactivity 1day after ischemia/reperfusion. In addition, NHE inhibitor potently protected CA1 pyramidal neurons from ischemic damage, and NHE inhibitor attenuated the activation of astrocytes and microglia in the ischemic CA1 region. In addition, NHE inhibitor treatment blocked Na+/Ca2+ exchanger 1 immunoreactivity in the CA1 region after transient forebrain ischemia. These results suggest that NHE1 may play a role in the delayed death, and the treatment with NHE inhibitor protects neurons from ischemic damage.  相似文献   

2.
It has been reported previously that the neuronal excitability persistently suppresses and the amplitude of fast afterhyperpolarization (fAHP) increases in CA1 pyramidal cells of rat hippocampus following transient forebrain ischemia. To understand the conductance mechanisms underlying these post-ischemic electrophysiological alterations, we compared differences in activities of large conductance Ca2+-activated potassium (BKCa) channels in CA1 pyramidal cells acutely dissociated from hippocampus before and after ischemia by using inside-out configuration of patch clamp techniques. (1) The unitary conductance of BKCa channels in post-ischemic neurons (295 pS) was higher than that in control neurons (245 pS) in symmetrical 140/140 mM K+ in inside-out patch; (2) the membrane depolarization for an e-fold increase in open probability (Po) showed no significant differences between two groups while the membrane potential required to produce one-half of the maximum Po was more negative after ischemia, indicating no obvious changes in channel voltage dependence; (3) the [Ca2+]i required to half activate BKCa channels was only 1 μM in post-ischemic whereas 2 μM in control neurons, indicating an increase in [Ca2+]i sensitivity after ischemia; and (4) BKCa channels had a longer open time and a shorter closed time after ischemia without significant differences in open frequency as compared to control. The present results indicate that enhanced activity of BKCa channels in CA1 pyramidal neurons after ischemia may partially contribute to the post-ischemic decrease in neuronal excitability and increase in fAHP.  相似文献   

3.
Afferent neurotransmission to hippocampal pyramidal cells can lead to long‐term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization‐activated cationic current (Ih), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently, we demonstrated that long‐term potentiation (LTP) in rat hippocampal Schaffer‐CA1 synapses is depressed by high‐intensity sound stimulation. Here, we investigated whether a long‐term high‐intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that Ih is depressed by long‐term high‐intensity sound exposure (1 min of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound‐exposed animals fired more action potentials than neurons from control animals; however, this effect was not caused by a decreased Ih. On the other hand, a single episode (1 min) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect Ih and firing in pyramidal neurons, suggesting that effects on Ih are long‐term responses to high‐intensity sound exposure. Our results show that prolonged exposure to high‐intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of Ih.  相似文献   

4.
5.
Ih tunes hippocampal CA1 pyramidal cell dendrites to optimally respond to theta inputs (4–12 Hz), and provides a negative time delay to theta inputs. Decreased Ih activity, as seen in experimental temporal lobe epilepsy (TLE), could significantly alter the response of dendrites to theta inputs. Here we report a progressive erosion of theta resonance and phase lead in pyramidal cell dendrites during epileptogenesis in a rat model of TLE. These alterations were due to decreased Ih availability, via a decline in HCN1/HCN2 subunit expression resulting in decreased h currents, and altered kinetics of the residual channels. This acquired HCN channelopathy thus compromises temporal coding and tuning to theta inputs in pyramidal cell dendrites. Decreased theta resonance in vitro also correlated with a reduction in theta frequency and power in vivo. We suggest that the neuronal/circuitry changes associated with TLE, including altered Ih-dependent inductive mechanisms, can disrupt hippocampal theta function.  相似文献   

6.
Ubiquitin binds to short-lived proteins and denatured proteins produced by various forms of injury. The loss of ubiquitin leads to an accumulation of abnormal proteins and may affect cellular structure and function. The aim of the present study is to observe the chronological changes in ubiquitin naive form and its mutant form (ubiquitin+1) in the hippocampal CA1 region (CA1) after transient cerebral ischemia in gerbils. Delayed neuronal death in the CA1 was confirmed 4 days after ischemic insult with NeuN immunohistochemistry. Ubiquitin immunoreactivity and protein level in the CA1 were lowest at 12 h after ischemia/reperfusion; thereafter, they were increased with time. Ubiquitin+1 immunoreactivity and protein levels in the CA1 were slightly decreased at 3 h after ischemia/reperfusion, and they were significantly increased 1 day after ischemia/reperfusion. In addition, ubiquitin and ubiquitin+1 immunoreaction was expressed in astrocytes after delayed neuronal death in the ischemic CA1. To elucidate the protective effect of ubiquitin on ischemic damage, the animals were treated with ubiquitin (1.5 mg/kg body weight) intravenously via the femoral vein. Ubiquitin treatment significantly reduced ischemia-induced locomotor hyperactivity, neuronal death and reactive gliosis such as astrocytes and microglia. In addition, 5 days after ubiquitin treatment in the ischemic group, ubiquitin immunoreactivity was similar to that in the ubiquitin-treated sham group, however, ubiquitin+1 immunoreactivity was higher than that in the ubiquitin-treated sham group. These findings indicate that the depletion of ubiquitin and the accumulation of ubiquitin+1 in CA1 pyramidal neurons after transient cerebral ischemia may inhibit ubiquitin proteolytic pathway and this leads to delayed neuronal death of CA1 pyramidal neurons directly or indirectly after transient cerebral ischemia.  相似文献   

7.
Following transient cerebral ischemia, pyramidal cells within area CA1 of the hippocampus exhibit delayed neuronal death. While interneurons within this sector continue to survive long-term, there is evidence that some interneurons in area CA1 are vulnerable to damage. To determine the nature of vulnerability in a neurochemically heterogeneous population of interneurons throughout area CA1, we examined the labeling of γ-aminobutyric acid (GABA)ergic interneurons with an antibody to the GABAA receptor α1-subunit 1–35 days following cerebral ischemia in the Mongolian gerbil. Unlike some other GABA interneuron markers, this antibody labels both the dendrites and soma of interneurons, allowing dendritic structure to be examined. Three to four days following ischemia, the pyramidal cells in area CA1 had degenerated, and the α1-subunit–positive interneurons in all layers of area CA1 had developed severely beaded dendrites. At longer survival times (21–35 days), the α1-subunit–immunolabeled dendrites of these interneurons had a fragmented appearance. In contrast, interneurons bordering str. oriens and alveus typically exhibited normal dendritic morphology. Despite the pathologic changes, there was no evidence of interneuron loss in area CA1 up to 35 days post-ischemia. Normal interneuron morphology was also observed in area CA3 and dentate gyrus, regions where neither pyramidal neurons nor granule cells, respectively, die following 5 min of cerebral ischemia. To determine if the ischemia-induced changes in interneuron morphology could be prevented, diazepam was administered 30 and 90 min following ischemia. Diazepam produces long-term neuroprotection of area CA1 pyramidal neurons. In gerbils sacrificed 35 days after ischemia, diazepam markedly attenuated the dendritic beading of the area CA1 interneurons. In addition, the dendrites did not display the fragmented labeling by the α1-subunit antibody. Thus, despite their long-term survival, CA1 hippocampal interneurons in the gerbil can express severe structural abnormalities after transient cerebral ischemia coincident with pyramidal cell degeneration, and the injury to the dendrites can be prevented by the neuroprotectant diazepam. Hippocampus 1997; 7:511–523. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Gong L  Gao TM  Li X  Huang H  Tong Z 《Brain research》2000,884(1--2):147-154
It has been reported previously that the neuronal excitability persistently suppresses and the amplitude of fast afterhyperpolarization (fAHP) increases in CA1 pyramidal cells of rat hippocampus following transient forebrain ischemia. To understand the conductance mechanisms underlying these post-ischemic electrophysiological alterations, we compared differences in activities of large conductance Ca(2+)-activated potassium (BK(Ca)) channels in CA1 pyramidal cells acutely dissociated from hippocampus before and after ischemia by using inside-out configuration of patch clamp techniques. (1) The unitary conductance of BK(Ca) channels in post-ischemic neurons (295 pS) was higher than that in control neurons (245 pS) in symmetrical 140/140 mM K(+) in inside-out patch; (2) the membrane depolarization for an e-fold increase in open probability (P(o)) showed no significant differences between two groups while the membrane potential required to produce one-half of the maximum P(o) was more negative after ischemia, indicating no obvious changes in channel voltage dependence; (3) the [Ca(2+)](i) required to half activate BK(Ca) channels was only 1 microM in post-ischemic whereas 2 microM in control neurons, indicating an increase in [Ca(2+)](i) sensitivity after ischemia; and (4) BK(Ca) channels had a longer open time and a shorter closed time after ischemia without significant differences in open frequency as compared to control. The present results indicate that enhanced activity of BK(Ca) channels in CA1 pyramidal neurons after ischemia may partially contribute to the post-ischemic decrease in neuronal excitability and increase in fAHP.  相似文献   

9.
The dorsal and ventral regions of the rat longitudinal hippocampal axis are functionally distinct. That is, each region is associated with different behavioral tasks and disease susceptibilities due to underlying anatomical, and physiological differences. These differences are especially pronounced in area CA1, where significant differences in morphology, synaptic physiology, intrinsic excitability, and gene expression have been reported between CA1 pyramidal neurons from the dorsal (DHC) and ventral hippocampus (VHC). However, despite a significant amount of recent attention, a cogent picture of the intrinsic electrophysiological profile of DHC and VHC neurons has remained elusive, due, in part, to experiments performed on rats at different developmental time points. Moreover, the resulting intrinsic electrophysiological profiles are sufficiently different as to warrant a thorough investigation of the spatial and temporal changes in the intrinsic excitability of CA1 pyramidal neurons across developmental time. Accordingly, in this study, I have characterized the intrinsic electrophysiological properties of CA1 pyramidal neurons from acute hippocampal slices prepared from the DHC and VHC throughout an approximately 3‐week developmental period (P14–P37). DHC and VHC neurons exhibited distinct intra‐region changes (DHC or VHC) and inter‐region differences (DHC versus VHC) in their intrinsic electrophysiological properties, which yielded two developmental timelines: (a) a common developmental timeline describing changes observed in both DHC and VHC neurons, and (b) a differential developmental timeline highlighting unique features observed in DHC neurons. Specifically, DHC neurons exhibited significant inter‐region differences in RMP, input resistance, threshold, and spike frequency adaptation relative to VHC neurons, as well as an intra‐region change in the rebound slope (a proxy for Ih). These observations both integrate and reconcile previous work performed with rats at different developmental stages and suggest a distinct developmental trajectory for DHC neurons that might shed light on the normal physiological functions and disease susceptibility of the DHC.  相似文献   

10.
Timing and temporal precision of action potential generation are thought to be important for encoding of information in the brain. The ability of single neurons to transform their input into output action potential is primarily determined by intrinsic excitability. Particularly, plastic changes in intrinsic excitability represent the cellular substrate for spatial memory formation in CA1 pyramidal neurons (CA1-PNs). Here, we report that synaptically activated mGluR5-signaling can modulate the intrinsic excitability of CA1-PNs. Specifically, high-frequency stimulation at CA3-CA1 synapses increased firing rate and advanced spike onset with an improvement of temporal precision. These changes are mediated by mGluR5 activation that induces cADPR/RyR-dependent Ca2+ release in the dendrites of CA1-PNs, which in turn causes an increase in persistent Na+ currents (INa,P) in the dendrites. When group I mGluRs in CA1-PNs are globally activated pharmacologically, afterdepolarization (ADP) generation as well as increased firing rate are observed. These effects are abolished by inhibiting mGluR5/cADPR/RyR-dependent Ca2+ release. However, the increase in firing rate, but not the generation of ADP is affected by inhibiting INa,P. The differences between local and global activation of mGluR5-signaling in CA1-PNs indicates that mGluR5-dependent modulation of intrinsic excitability is highly compartmentalized and a variety of ion channels are recruited upon their differential subcellular localizations. As mGluR5 activation is induced by physiologically plausible brief high-frequency stimulation at CA3-CA1 synapses, our results suggest that mGluR5-induced enhancement of dendritic INa,P in CA1-PNs may provide important implications for our understanding about place field formation in the hippocampus.  相似文献   

11.
12.
Zou B  Li Y  Deng P  Xu ZC 《Brain research》2005,1033(1):78-89
CA1 pyramidal neurons in the hippocampus die 2-3 days following transient forebrain ischemia, whereas CA3 pyramidal neurons and granule cells in the dentate gyrus remain viable. Excitotoxicity is the major cause of ischemic cell death, and potassium currents play important roles in regulating the neuronal excitability. The present study compared the changes of potassium currents in acutely dissociated hippocampal neurons at different intervals after ischemia. In CA1 neurons, the amplitude of rapid inactivating potassium currents (I(A)) was significantly increased at 14 h and returned to control levels at 38 h after ischemia; the rising slope and decay time constant of I(A) were accordingly increased after ischemia. The activation curve of I(A) in CA1 neurons shifted to the depolarizing direction at 38 h after ischemia. In granule cells, the amplitude and rising slope of I(A) were significantly increased at 38 h after ischemia; the inactivation curves of I(A) shifted toward the depolarizing direction accordingly at 38 h after ischemia. The I(A) remained unchanged in CA3 neurons after ischemia. The amplitudes of delayed rectifier potassium currents (I(Kd)) in CA1 neurons were progressively increased after ischemia. No significant difference in I(Kd) was detected in CA3 and granule cells at any time points after reperfusion. These results indicated that the voltage dependent potassium currents in hippocampal neurons were differentially altered after cerebral ischemia. The up-regulation of I(A) in dentate granule cells might have protective effects. The increase of I(Kd) in CA1 neurons might be associated with the neuronal damage after ischemia.  相似文献   

13.
The “Trond” protocol of nerve excitability tests has been used widely to assess axonal function in peripheral nerve. In this study, the routine Trond protocol was expanded to refine assessment of cAMP‐dependent, hyperpolarization‐activated current (Ih) activity. Ih activity is generated by hyperpolarization‐activated, cyclic nucleotide–modulated (HCN) channels in response to hyperpolarization. It limits activity‐dependent hyperpolarization, contributes to neuronal automaticity, and is implicated in chronic pain states. Published data regarding Ih activity in motor nerve are scant. We used additional strong, prolonged hyperpolarizing conditioning stimuli in the threshold electrotonus component of the Trond protocol to demonstrate the time‐course of activation of Ih in motor axons. Fifteen healthy volunteers were tested on four occasions during 1 week. Ih action was revealed in the threshold electrotonus by the limiting and often reversal, after about 100 ms, of the threshold increase caused by strong hyperpolarizing currents. Statistical analysis by repeated‐measures analysis of variance enabled confidence limits to be established for variation between subjects and within subjects. The results demonstrate that, of all the excitability parameters, those dependent on Ih were the most characteristic of an individual, because variance between subjects was more than four times the variance within subjects. This study demonstrates a reliable method for in vivo assessment of Ih, and also serves to document the normal variability in nerve excitability properties within subjects. Muscle Nerve, 2010  相似文献   

14.
The hippocampus is especially vulnerable to ischemic damage. Neurons in the CA3c region and dentate hilus demonstrate fast progressive damage while CA1 pyramidal cells demonstrate delayed neuronal damage. The delayed CA1 pyramidal cell loss could be caused by postischemic neuronal hyperactivity if hippocampal interneurons are lost after ischemia. Therefore we have counted the L-glutamic acid decarboxylase (GAD)-immunoreactive neurons in the hippocampus from control rats and rats surviving 4 or 11 days after 20 minutes of cerebral ischemia. All rats were injected intraventricularly with colchicine before they were killed. The hippocampal cell counts showed an increase in GAD-immunoreactive somata visualized on the fourth postischemic day. Eleven days after ischemia, the number of GAD-immunoreactive neurons visualized in the hippocampus CA1 and CA3c region decreased. GAD-immunoreactive baskets were visualized in the pyramidal cell layer and the granule cell layer in controls and 4 days after ischemia, but not in the CA1 and CA3c pyramidal cell layer 11 days after ischemia. We suggest the number of GAD-immunoreactive neurons visualized on the fourth postischemic day increases because somatal GAD accumulation increases and, therefore, ischemia may enhance GAD production. Our previous counts of CA1 interneurons 21 days after ischemia in toluidine-stained semithin sections demonstrated no interneuron loss. Therefore we suggest that the decreased number of CA1 and CA3c GAD-immunoreactive neurons visualized 11 days after ischemia is related to a decreased GAD production. It is possible at this stage after ischemia that the interneurons have decreased their GAD production because they have lost their input and/or target cells. We conclude that our counts of GAD-immunoreactive neurons visualized after ischemia express changes in the content of somatal GAD rather than the actual number of GAD-immunoreactive somata. Finally, we conclude that the delayed loss of CA1 pyramidal cells seen 4 days after ischemia is not preceded by loss of hippocampal GAD-immunoreactive neurons.  相似文献   

15.
Brief transient ischemia causes a delayed neuronal death of pyramidal neurons in the CA1 area of hippocampus after a period of hyperexcitability. We have previously shown that the hyperexcitability is due to an increase in an N -methyl- -aspartate (NMDA) component of the response. In the present study, we recorded intracellularly from pyramidal neurons in CA1 and find that there is little change in membrane potential or input resistance at this point in time. The dramatic increase in the NMDA component of the synaptic response is a result of a significant reduction in the ability of Mg2+ to induce a normal voltage-dependent blockade of the response. In spite of the relatively normal membrane properties, there is at this time a significant reduction in the amplitude of the population excitatory potential and a near total loss of long-term potentiation. In contrast, post-tetanic potentiation is unchanged in magnitude and character. These observations suggest more severe damage to the neuron than indicated by the membrane potential and resistance. When single neurons were injected with horseradish peroxidase and visualized after the electrophysiological recording, we found extensive beading of the dendrites in both the apical and basal regions, presumably reflecting a disproportionate damage to the dendritic areas, which are the primary sites of the excitatory amino acid synapses onto the neuron. These observations are consistent with the hypothesis that transient ischemia causes a fundamental change in the NMDA-activated ion channel such that Mg2+ is no longer able to block the response, resulting in increased entry of calcium into synaptic regions, which causes dendritic damage that progresses to neuronal cell death.  相似文献   

16.
Apamin is a neurotoxin extracted from honey bee venom and is a selective blocker of small‐conductance Ca2+‐activated K+ channels (SK). Several behavioral and electrophysiological studies indicate that SK‐blockade by apamin may enhance neuron excitability, synaptic plasticity, and long‐term potentiation in the CA1 hippocampal region, and, for that reason, apamin has been proposed as a therapeutic agent in Alzheimer's disease treatment. However, the dendritic morphological mechanisms implied in such enhancement are unknown. In the present work, Golgi–Cox stain protocol and Sholl analysis were used to study the effect of apamin on the dendritic morphology of pyramidal neurons from hippocampus and the prefrontal cortex as well as on the medium spiny neurons from the nucleus accumbens and granule cells from the dentate gyrus (DG) of the hippocampus. We found that only granule cells from the DG and pyramidal neurons from dorsal and ventral hippocampus were altered in senile rats injected with apamin. Our research suggests that apamin may increase the dendritic morphology in the hippocampus, which could be related to the neuronal excitability and synaptic plasticity enhancement induced by apamin. Synapse 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Dendritic spines form postsynaptic components of excitatory synapses in CA1 pyramidal neurons and play a key role in excitatory signal transmission. Transient global ischemia is thought to induce excitotoxicity that triggers delayed neuronal death in the CA1 region. However, the mechanism underlying structural changes of excitatory synapses after ischemia is not completely understood. Here, we demonstrate how dendritic spines change in their density and structure at an acute stage after transient global ischemia. Intracellular staining in vivo showed that the total spine density in basal, proximal, and distal apical dendrites increased at 12 hr and 24 hr after ischemia, but returned to control levels at 48 hr after ischemia. Consistent increase of spine density mainly appeared in non-late depolarizing postsynaptic potential neurons, although late depolarizing postsynaptic potential neurons also showed slight increases in spine density in these dendrites at the same intervals after ischemia. Golgi staining showed increased spine density occurred in less swollen dendrites but decreased spine density appeared in severely swollen dendrites at 12 and 24 hr after ischemia. In addition, the density and percentage of stubby spines reduced at 12 hr and 48 hr, whereas the density of thin spines increased at 12 hr after ischemia. The density and percentage of filopodia increased nearly fivefold at 24 hr after ischemia. Moreover, the density of mushroom spines doubled and its percentage increased by 150% at 48 hr after ischemia. These morphological changes of spines may be related to neuronal injury in CA1 pyramidal neurons after ischemia.  相似文献   

18.
Li B  Luo C  Tang W  Chen Z  Li Q  Hu B  Lin J  Zhu G  Zhang JH  Feng H 《The Journal of neuroscience》2012,32(9):3164-3175
Disruption of ionic homeostasis and neuronal hyperexcitability contribute to early brain injury after subarachnoid hemorrhage (SAH). The hyperpolarization-activated/cyclic nucleotide (HCN)-gated channels play critical role in the regulation of neuronal excitability in hippocampus CA1 region and neocortex, in which the abnormal neuronal activities are more readily provoked. This study was to investigate the interactions between HCN channels and hyperneuronal activity after experimental SAH. The present results from whole-cell recordings in rat brain slices indicated that (1) perfusion of hemoglobin (Hb)-containing artificial CSF produced neuronal hyperexcitability and inhibited HCN currents in CA1 pyramidal neurons, (2) nitric oxide/Spermine (NO/Sp), a controlled releaser of nitric oxide, attenuated neuronal excitability and enhanced HCN currents in CA1 pyramidal neurons, while L-nitroarginine (L-NNA), an inhibitor of nitric oxide synthase, reduced the HCN currents; and (3) the inhibitory action of Hb on HCN currents was reversed by application of NO/Sp, which also reduced neuronal hyperexcitability; conversely, L-NNA enhanced inhibitory action of Hb on HCN currents. Additionally, Hb perfusion scavenged the production of nitric oxide and decreased the expression of HCN1 subunits in CA1 region. In the rat SAH model, the expression of HCN1, both at mRNA and protein level, decreased in hippocampus CA1 region at 24 h and more pronounced at 72 h after SAH. These observations demonstrated a reduction of HCN channels expression after SAH and Hb reduced HCN currents in hippocampus CA1 pyramidal neurons. Inhibition of HCN channels by Hb may be a novel pathway for inducing the hyperneuronal excitability after SAH.  相似文献   

19.
Inhibitory neurotransmission may play an important role in neuronal degeneration following transient cerebral ischemia. We studied the effect of transient forebrain ischemia on the GABAA receptor system in the gerbil hippocampus. Gerbils were subjected to 5 minutes of bilateral carotid occlusion and were sacrificed at various times over 4 days following reperfusion. There was a substantial loss of pyramidal cells in the CA1 area of the hippocampus, granule cell layer of the dentate gyrus, and ventroposterior medial and ventroposterior lateral nuclei of the thalamus at any time following ischemia. Examination of brain slices by in situ hybridization histochemistry revealed that a change in expression of the GABAA receptor α1 and β2 subunit mRNAs occurred in two phases following onset of reperfusion. The early phase (rapid) occurred within the first 4 hours following reperfusion. The expression of mRNAs significantly decreased (up to 25%) within 1 hour after occlusion in CA1 and CA3 pyramidal cell layers of the hippocampus and in the granule cell layer of the dentate gyrus. The expression of the mRNAs in these regions continued to decrease for 4 hours (up to 43%). In the second phase, which began between 4 and 12 hours following reperfusion, mRNA expression started to return to control levels in CA3 hippocampus and in the dentate. However, expression of both mRNAs continued to decline slowly in the CA1 pyramidal cell layer (up to 85%) over the next 3 days, concomitantly with degeneration of the CA1 pyramidal cells. Expression of mRNAs in the ventroposterior medial or ventroposterior lateral nuclei of the thalamus was similar to control values. To determine if a change in GABAA receptor distribution paralleled changes in receptor subunit mRNA expression, we also measured the binding of [35S]t-butylbicylophosphorothionate to GABAA receptor chloride channels. The t-butylibicyclophosphorothionate [35S] binding decreased between 1 and 4 days after reperfusion in the dendritic fields of CA1 pyramidal cells (strata oriens, radiatum, and lacunosum-moleculare) but not in the pyramidal cell body layer. These results indicate that expression of GABAA receptor subunit mRNAs decrease well before CA1 pyramidal cell degeneration and loss of GABAA receptors. At present, it is not clear if an early loss of mRNA expression after an ischemic insult leads to a functional defect in GABAA receptors. If so, a loss of GABA neurotransmission may contribute to the development of neuronal degeneration following cerebral ischemia. The maintenance of normal GABA neurotransmission in surviving cells may explain their resistance to ischemia-induced neuronal death.  相似文献   

20.
Although cytosolic Ca2+ accumulation plays a pivotal role in delayed neuronal death, there have been no investigations on the role of the cellular Ca2+ export system in this novel phenomenon. To clarify the function of the Ca2+-pump in delayed neuronal death, the plasma membrane Ca2+-ATPase activity of CA1 pyramidal neurons was investigated ultracytochemically in normal and ischemic gerbil hippocampus. To correlate enzyme activity with delayed neuronal death, histochemical detection was performed at various recirculation times after 5 min of ischemia produced by occlusion of the bilateral carotid arteries. At 10 min after ischemia, CA1 pyramidal neurons showed weak Ca2+-ATPase activity. Although enzyme activity had almost fully recovered 2 h after ischemia, it was reduced again 6 h after ischemia. Thereafter, Ca2+-ATPase activity on the plasma membrance of CA1 pyramidal neurons decreased progressively, losing its localization on day 3. On day 4 following ischemia, reaction products were diffusely scattered throughout the whole cell body. Our results indicate that, after once having recovered from ischemic damage, severe disturbance of the membrane Ca2+ export system proceeds from the early stage of delayed neuronal death and disturbs the re-export of accumulated cytosolic Ca2+, which might contribute to delayed neuronal death. Occult disruption of Ca2+ homeostasis seems to occur from an extremely early stage of delayed neuronal death in CA1 pyramidal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号