首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allogeneic mouse islets or xenogeneic rat islets, or fetal porcine islets were implanted under the renal capsule of C57BL/6 mice either alone or carefully mixed with syngeneic islets. With this experimental model the syngeneic islets, although not rejected themselves, are exposed to cytokines and inflammatory mediators released during either allograft or xenograft rejection. No differences in insulin content could be observed between mixed islet grafts and pure syngeneic islet grafts 6 wk after transplantation. Neither was there any morphological evidence of a non-specific destruction of syngeneic islets. These findings suggest that the mechanisms of both allograft and xenograft rejections are highly specific. The hormone release from the mixed syngeneic-allogeneic grafts was similar to that from pure syngeneic islet grafts. In contrast, a pronounced impairment of both the first and second phases of insulin release was observed 2 wk after implantation in mixed syngeneic-xenogeneic islet grafts. When perfusing the mixed islet graft after completed rejection of the concordant xenogeneic rat islets (6 wk after implantation), the insulin release from the remaining syngeneic mouse islets was identical to that of control grafts. However, syngeneic mouse islets exposed to the rejection mechanism of the discordant xenogenic pig islet-like cell clusters did not attain a complete functional recovery.  相似文献   

2.
There has been an explosion of interest in developing transplantation strategies to replace the islets lost during the normal progression of diabetes. In large part, the renewed interest is due to the unprecedented success of the ‘Edmonton protocol’ for Type I diabetics following islet allografting and a modified immunosuppressive regimen. While these data provide a clear and unequivocal demonstration that islet transplantation is a viable treatment strategy, the shortage of suitable donor tissue, together with the debilitating consequences of life long immunosuppression necessitate a concerted effort to develop novel means to enable islet transplantation on a widespread basis. This review outlines several of these possibilities including the development of novel, less toxic immunosuppressants, tolerising the host immune system to accept islet transplants, developing alternative sources of islet cells via gene therapy, stem cell technologies and xenotransplantation, immunoisolation of islets and providing local immunosuppression to islet grafts using Sertoli cells. These possibilities are highlighted in the context of islet cell transplantation as a success, but with need for further refinements before it is a panacea for most patients.  相似文献   

3.
There has been an explosion of interest in developing transplantation strategies to replace the islets lost during the normal progression of diabetes. In large part, the renewed interest is due to the unprecedented success of the 'Edmonton protocol' for Type I diabetics following islet allografting and a modified immunosuppressive regimen. While these data provide a clear and unequivocal demonstration that islet transplantation is a viable treatment strategy, the shortage of suitable donor tissue, together with the debilitating consequences of life long immunosuppression necessitate a concerted effort to develop novel means to enable islet transplantation on a widespread basis. This review outlines several of these possibilities including the development of novel, less toxic immunosuppressants, tolerising the host immune system to accept islet transplants, developing alternative sources of islet cells via gene therapy, stem cell technologies and xenotransplantation, immunoisolation of islets and providing local immunosuppression to islet grafts using Sertoli cells. These possibilities are highlighted in the context of islet cell transplantation as a success, but with need for further refinements before it is a panacea for most patients.  相似文献   

4.
In this report we investigated local regulatory mechanisms in graft rejection and their response to local immunosuppressive therapy. For this purpose local immunosuppression was induced in rat kidney allografts by intrarenal infusion of prednisolone. Intrarenal drug delivery resulted in high drug levels within the graft and low systemic drug levels. Systemic drug levels were by themselves not sufficiently immunosuppressive to induce graft survival, and local prednisolone levels within the graft proved to be responsible for prolongation of graft survival. During intrarenal drug delivery, systemic responsiveness to the renal allograft proved normal, since intrarenally treated grafts were infiltrated by MHC class II-positive host cells and, except for a somewhat lower percentage of macrophages, cellular infiltration in intrarenal treated grafts was comparable to untreated grafts. However, T cells and macrophages present in intrarenally treated grafts were not able to destroy the grafted tissue. Local immunosuppressive therapy resulted in inhibition of IL-2-R expression, absence of IFN-gamma, and prevention of MHC class II induction on grafted tissue. These observations strongly indicate the presence of local regulatory mechanisms in graft rejection. The experimental model described can be used for further analysis of these intragraft events. Moreover, the results demonstrate that local immunosuppressive therapy can contribute to effective inhibition of cellular immune response in graft rejection.  相似文献   

5.
Belying the spectacular success of solid organ transplantation and improvements in immunosuppressive therapy is the reality that long-term graft survival rates remain relatively unchanged, in large part due to chronic and insidious alloantibody-mediated graft injury. Half of heart transplant recipients develop chronic rejection within 10 years — a daunting statistic, particularly for young patients expecting to achieve longevity by enduring the rigors of a transplant. The current immunosuppressive pharmacopeia is relatively ineffective in preventing late alloantibody-associated chronic rejection. In this issue of the JCI, Kelishadi et al. report that preemptive deletion of B cells prior to heart transplantation in cynomolgus monkeys, in addition to conventional posttransplant immunosuppressive therapy with cyclosporine, markedly attenuated not only acute graft rejection but also alloantibody elaboration and chronic graft rejection. The success of this preemptive strike implies a central role for B cells in graft rejection, and this approach may help to delay or prevent chronic rejection after solid organ transplantation.  相似文献   

6.
The role of pancreatic B cell dysfunction in the phase preceding clinical onset of insulin-dependent and non-insulin-dependent diabetes mellitus has been much debated. In this investigation, the impact of a prolonged diabetic environment on pancreatic islet B cells transplanted syngeneically under the kidney capsule of C57BL/6 (B6) and C57BL/Ks (BKs) mice was studied. Alloxan-diabetic mice bearing a subcapsular islet graft insufficient to normalize the blood glucose level were rendered normoglycemic by a second intrasplenic islet graft after various period of hyperglycemia to examine the reversibility of hyperglycemia-induced B cell dysfunction. Using a perfusion technique of the graft-bearing, it was found that both strains of mice exhibited a diminished glucose-induced insulin secretion after 6 wk of hyperglycemia, when compared with normoglycemic mice carrying islet grafts. When normoglycemia was restituted by the splenic graft after 4 or 12 wk, there was a normalization of glucose-stimulated insulin secretion in the renal islet grafts in B6 mice, whereas insulin secretion from the grafted BKs islets remained impaired. Morphometric measurements of the islet grafts demonstrated a 50% reduction in the graft volume in diabetic BKs mice after 12 wk, compared with normoglycemic animals, whereas no such decrease was observed in B6 mice. Islet grafts removed from hyperglycemic mice of both strains exhibited diminished insulin mRNA contents, and in the BKs mice there was also a reduced glucose oxidation rate in the islet grafts in vitro. This metabolic dysfunction can only partly be explained by a reduced graft size. The present findings emphasize the genetic constitution as a decisive factor for the survival and function during a period of sustained stress on a limited B cell mass.  相似文献   

7.
Genetic engineering using recombinant adenoviruses offers an opportunity to modify islet grafts in order to prevent allograft rejection. We have used an adenovirus coding for CTLA4Ig to compare its efficacy in preventing islet rejection depending on local or systemic production after gene transfer either into the islets or intramuscularly, respectively. Islet allograft survival was also evaluated using recombinant CTLA4Ig administered intraperitoneally or incubated ex vivo with islets prior to transplantation. Transduction of islets with 10(3) or 10(4) plaque-forming units (pfu) per islets of AdCTLA4Ig prolonged islet survival (mean +/- standard deviation [SD] days = 19.5 +/- 5.8 and 19.5 +/- 5.6, respectively, vs. 10.6 +/- 2.4 in control islets, p < 0.001), with low levels of circulating CTLA4Ig. In contrast, long-term survival (>60 days) was obtained after intramuscular injection of AdCTLA4Ig that resulted in sustained high levels of circulating CTLA4Ig. Islets incubated in vitro with CTLA4Ig did not show prolonged survival (10.3 +/- 2.5 days). Graft rejection was delayed after one injection of CTLA4Ig (23 +/- 7.6 days, p < 0.003 vs. control). Recipients of long-term surviving grafts after intramuscular AdCTLA4Ig gene transfer were not tolerant because second islet grafts of donor origin were rejected. These recipients also had a strong inhibition of humoral responses against nominal antigens, whereas animals receiving transduced islets showed normal responses. These data demonstrate that local production of CTLA4Ig after gene transfer was as efficient as a single injection of CTLA4Ig in preventing graft rejection. Furthermore, intramuscular gene transfer of CTLA4Ig was the most efficient way to induce long-term islet graft survival but no donor-specific tolerance was induced.  相似文献   

8.
Viral IL-10-mediated immune regulation in pancreatic islet transplantation.   总被引:5,自引:0,他引:5  
Protection of transplanted pancreatic islet grafts in recipients with autoimmune diabetes depends on the suppression of autoimmune recurrence and allogeneic rejection. The aim of this study was to investigate the efficiency of viral IL-10 gene delivery in the prevention of autoimmune recurrence following islet transplantation. We evaluated the effectiveness of a systemically delivered adeno-associated viral vector (AAV vIL-10) carrying viral IL-10 in protecting islet engraftment. We observed significant prolongation of graft survival after treatment with AAV vIL-10 when using islets from donors lacking autoimmunity. We found that the mechanism of vIL-10-mediated protection was associated with suppression of T cell activation and that donor immune cells that were simultaneously transferred with the islet grafts could induce autoimmune recurrence. AAV vIL-10 gene transfer suppressed previously activated T cells and protected grafted islets from autoimmune-mediated destruction. We conclude that vIL-10 can regulate autoimmune activity and that transfer of its gene may have potential for therapeutic islet transplantation.  相似文献   

9.
背景:宿主与移植物间的免疫排斥反应是器官移植失败的主要原因之一,传统的免疫抑制剂已无法满足临床治疗的需求,抗体药物偶联物作为一类新型药物,可能为免疫排斥反应的治疗带来希望。 目的:综合分析抗体药物偶联物的构成、作用机制、临床研究进展以及未来的发展趋势。方法:以“抗体药物偶联物、免疫抑制剂、免疫毒素、器官移植、移植物排斥”,“ADCs,immunosuppressive agents,immunotoxins,organ transplantation,graft rejection”为检索词,应用计算机检索CNKI 和 PubMed数据库。同一领域文献选择近期发表或发表在权威杂志文章,排除与研究目的无关和内容重复者,保留43篇文献做进一步分析。 结果与结论:抗体药物偶联物以其高效低毒的特性在靶向治疗肿瘤方面已取得突破性进展,而在抗免疫排斥反应中仍处于摸索阶段。以同种胰岛移植为研究对象,寻找一种更有效阻断 CD8效应 T 细胞CD103/E-Cadherin通路的抗体药物偶联物,将可能成为同种器官移植抗排斥反应的新颖研究药物。  相似文献   

10.
The local delivery of immunosuppressive agents could significantly promote the success of islet transplantation for the treatment of Type 1 diabetes. Fingolimod, a clinically‐approved sphingosine‐1‐phosphate receptor agonist, has been found to dampen allograft islet rejection in rodent models when delivered systemically. Herein, we engineered a platform for the local delivery of fingolimod by incorporating it within a macroporous polydimethylsiloxane (PDMS) scaffold specifically designed for islet transplantation. In vitro drug release studies quantifying kinetics confirmed sustained release within targeted dose levels for >7 days. Fingolimod‐PDMS scaffolds containing syngeneic islets were subsequently transplanted into diabetic mice for examination of the effect of local fingolimod release on engraftment. Surprisingly, either delayed or abrogated efficacy was observed when scaffolds contained a dosage of fingolimod >0.5% w/w; despite drug release rates estimated at ~80‐fold less than published systemic delivery reports where no detrimental effects were noted. Histological analysis of explants indicated a dose‐dependent modulation of cellular migration and phenotype at the graft site, with high doses impairing host infiltration and engraftment while lower doses promoted leucocyte migration. Mechanistic in vivo and in vitro studies observed unique host and islet responses to local fingolimod delivery, with impairment of murine islet viability and function. Overall, this study confirmed the ability to modulate local delivery of fingolimod in a sustained‐release manner using a three‐dimensional PDMS scaffold; however, the observed detrimental impacts at the site of islet transplantation do not support further investigation of local delivery at the graft site in murine models.  相似文献   

11.
The present study was designed to determine whether .N = O produced in vivo during the rejection of histoincompatible tissues might permit serum NO2-/NO3- levels to serve as markers of a rejection reaction. Rat syngeneic and allogeneic liver, heart, bone marrow/spleen cell, small bowel, skin, and sponge matrix grafts were performed and the stable end-products of .N = O, NO2-/NO3-, were serially assayed in the serum of the grafted animals. A significant rise of serum NO2-/NO3- levels in the allografted animals preceded the onset of clinical signs of rejection or graft-versus-host disease, with the exception of the skin and sponge matrix graft models, where elevated serum NO2-/NO3- levels were never observed. In all transplant models, normal serum NO2-/NO3- levels were observed at all times in animals that received syngeneic grafts. Furthermore, treatment of allograft recipients with the immunosuppressive agents FK 506 or cyclosporine A inhibited .N = O production. Determination of serum creatinine levels demonstrated that the elevated serum NO2-/NO3- levels were not caused by kidney dysfunction. Serum NO2-/NO3- levels might be useful early serum markers of the initiation of a rejection reaction or graft-versus-host disease when functional markers of graft dysfunction are not apparent.  相似文献   

12.
Outcomes in transplantation have been limited by suboptimal long-term graft survival and toxicities associated with current immunosuppressive approaches. T cell costimulation blockade has shown promise as an alternative strategy to avoid the side effects of conventional immunosuppressive therapies, but targeting CD28-mediated costimulation alone has proven insufficient to prevent graft rejection in primates. Donor-specific memory T (TM) cells have been implicated in costimulation blockade-resistant transplant rejection, due to their enhanced effector function and decreased reliance on costimulatory signaling. Thus, we have tested a potential strategy to overcome TM cell-driven rejection by targeting molecules preferentially expressed on these cells, such as the adhesion molecule lymphocyte function-associated antigen 1 (LFA-1). Here, we show that short-term treatment (i.e., induction therapy) with the LFA-1-specific antibody TS-1/22 in combination with either basiliximab (an IL-2Rα-specific mAb) and sirolimus (a mammalian target of rapamycin inhibitor) or belatacept (a high-affinity variant of the CD28 costimulation-blocker CTLA4Ig) prolonged islet allograft survival in nonhuman primates relative to control treatments. Moreover, TS-1/22 masked LFA-1 on TM cells in vivo and inhibited the generation of alloproliferative and cytokine-producing effector T cells that expressed high levels of LFA-1 in vitro. These results support the use of LFA-1-specific induction therapy to neutralize costimulation blockade-resistant populations of T cells and further evaluation of LFA-1-specific therapeutics for use in transplantation.  相似文献   

13.
Chronic rejection accounts for the greatest loss of renal allografts. HLA mismatching has been minimised by organ allocation and new immunosuppressive drugs have been employed, but the average cadaveric graft survival still does not exceed 12 years. Though the aetiology is multifactorial, one contributory factor for this condition is cytomegalovirus (CMV). Detection of CMV in kidney biopsies and sera can diagnose and monitor this inflammatory event and define its role in chronic nephropathy. Twenty five biopsies taken at the time of transplantation, 10 biopsies for graft dysfunction and tissue blocks from 20 explanted kidney grafts were collected and investigated for CMV antigens by immunohistochemistry. Tissue samples were snap frozen and cryostat sections were incubated with monoclonal antibodies for CMV antigens followed by immunoperoxidase staining. In 12 out of 20 transplant nephrectomies CMV antigens were found. Only two of these patients had clinical CMV disease. Time 0 biopsies from CMV seronegative donors (n = 11) and CMV seropositive donors (n = 14) were negative for CMV antigens. The prevalence of CMV antigens in grafts lost due to chronic rejection was 60%. These antigens were not found within the time 0 biopsies, but were detected in 30% of biopsies taken at the time of clinical graft dysfunction. CMV appears to contribute to chronic rejection even without clinical disease.  相似文献   

14.
Human islet transplantation can be a permanent treatment of type 1 diabetes if the immune rejection and primary nonfunction (PNF) of transplanted islet grafts were properly addressed. In this study, we determined whether cotransplantation of human bone marrow-derived mesenchymal stem cells (hBMSCs) could prevent immune rejection and improve human islet transplantation in a humanized NOD scid gamma (NSG) mouse model. Human immunity was rebuilt and maintained in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice up to 13 weeks after intraperitoneal injection of mature human peripheral blood mononuclear cells (PBMCs). The blood glucose control and the levels of serum insulin and c-peptide clearly indicated a better outcome of islet transplantation when islets were cotransplanted with hBMSCs. hBMSCs actively interacted with interleukin-10 (IL-10)-producing CD14+ monocytes to suppress the proliferation and activation of T cells in the PBMC/hBMSC coculture and prevent the T cell recruitment into the transplantation site. hBMSCs also increased the percentage of immunosuppressive regulatory T cells (Tregs) and prevented the cytokine-induced loss-of-function of human islets. Taken together, our studies demonstrated that transplantation of islets with hBMSCs is a promising strategy to improve the outcome of human islet transplantation.  相似文献   

15.
Graft failure is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) defined as either lack of initial engraftment of donor cells (primary graft failure) or loss of donor cells after initial engraftment (secondary graft failure). Successful transplantation depends on the formation of engrafment, in which donor cells are integrated into the recipient’s cell population.In this paper, we distinguish two different entities, graft failure (GF) and poor graft function (PGF), and review the current comprehensions of the interactions between the immune and hematopoietic compartments in these conditions. Factors associated with graft failure include histocompatibility locus antigen (HLA)-mismatched grafts, underlying disease, type of conditioning regimen and stem cell source employed, low stem cell dose, ex vivo T-cell depletion, major ABO incompatibility, female donor grafts for male recipients, disease status at transplantation.Although several approaches have been developed which aimed to prevent graft rejection, establish successful engraftment and treat graft failure, GF remains a major obstacle to the success of allo-HSCT.Allogeneic hematopoietic stem cell transplantation (allo-HSCT) still remains to be the curative treatment option for various non-malignant and malignant hematopoietic diseases. The outcome of allo-HSCT primarily depends on the engraftment of the graft. Graft failure (GF), is a life-threatening complication which needs the preferential therapeutic manipulation. In this paper, we focused on the definitions of graft failure / poor graft function and also we reviewed the current understanding of the pathophysiology, risk factors and treatment approaches for these entities.  相似文献   

16.
Diabetes remains a devastating disease, with tremendous cost in terms of human suffering and healthcare expenditures. The burden of diabetes is primarily related to the multiple complications, including retinopathy, nephropathy, neuropathy and cardiovascular disease that can develop as the disease progresses. It has been shown that these complications can be prevented, and in some cases, reversed by islet cell transplantation, which, until recently, had remained elusive as a viable routine treatment modality. In recent studies, islet cell transplantation has shown great promise as a viable alternative to solid pancreas transplantation. However, severe shortage of human pancreases and the need to use immunosuppressive drugs to prevent transplant rejection, remain major obstacles to routine use of islet cell transplants for the treatment of patients with Type 1 diabetes. In the attempt to overcome these barriers, many procedures have been designed to immunoisolate islet cells for transplantation. The ultimate goal in islet cell transplantation is the availability of unlimited supply of cells to be transplanted in a simple procedure performed with little or no use of immunosuppressive drugs. The development of reliable procedures to immunoisolate islets by microencapsulation prior to transplantation has a great deal of potential to accomplish this objective.  相似文献   

17.
Treatment of C57BL/6 mice with one transfusion of BALB/c spleen cells and anti-CD154 (anti-CD40-ligand) antibody permits BALB/c islet grafts to survive indefinitely and BALB/c skin grafts to survive for approximately 50 d without further intervention. The protocol induces long-term allograft survival, but the mechanism is unknown. We now report: (a) addition of thymectomy to the protocol permitted skin allografts to survive for > 100 d, suggesting that graft rejection in euthymic mice results from thymic export of alloreactive T cells. (b) Clonal deletion is not the mechanism of underlying long-term graft survival, as recipient thymectomized mice were immunocompetent and harbor alloreactive T cells. (c) Induction of skin allograft acceptance initially depended on the presence of IFN-gamma, CTLA4, and CD4(+) T cells. Addition of anti-CTLA4 or anti-IFN-gamma mAb to the protocol was associated with prompt graft rejection, whereas anti-IL-4 mAb had no effect. The role of IFN-gamma was confirmed using knockout mice. (d) Graft survival was associated with the absence of IFN-gamma in the graft. (e) Long-term graft maintenance required the continued presence of CD4(+) T cells. The results suggest that, with modification, our short-term protocol may yield a procedure for the induction of long-term graft survival without prolonged immunosuppression.  相似文献   

18.
Diabetes remains a devastating disease, with tremendous cost in terms of human suffering and healthcare expenditures. The burden of diabetes is primarily related to the multiple complications, including retinopathy, nephropathy, neuropathy and cardiovascular disease that can develop as the disease progresses. It has been shown that these complications can be prevented, and in some cases, reversed by islet cell transplantation, which, until recently, had remained elusive as a viable routine treatment modality. In recent studies, islet cell transplantation has shown great promise as a viable alternative to solid pancreas transplantation. However, severe shortage of human pancreases and the need to use immunosuppressive drugs to prevent transplant rejection, remain major obstacles to routine use of islet cell transplants for the treatment of patients with Type 1 diabetes. In the attempt to overcome these barriers, many procedures have been designed to immunoisolate islet cells for transplantation. The ultimate goal in islet cell transplantation is the availability of unlimited supply of cells to be transplanted in a simple procedure performed with little or no use of immunosuppressive drugs. The development of reliable procedures to immunoisolate islets by microencapsulation prior to transplantation has a great deal of potential to accomplish this objective.  相似文献   

19.
Based upon existing methods of isolating fetal porcine islet tissue, a simple, reliable procedure was developed for the preparation of porcine neonatal islet cell aggregates with a reproducible and defined cellular composition. After 9 d of in vitro culture, tissue from one neonatal pig pancreas yielded approximately 50,000 islet cell aggregates, consisting of primarily epithelial cells (57%) and pancreatic endocrine cells (35%). During the culture period, the total beta cell mass decreased initially, but subsequently increased 1.5-fold between days 3 and 9. Transplantation of grafts consisting of 3 x 10(5) beta cells (1,000 aggregated) under the kidney capsule of alloxan-diabetic nude mice corrected hyperglycemia in 75% (10/13) of the animals, whereas, 100% (20/20) of recipients implanted with 6 x 10(5) beta cells (2,000 aggregates) achieved euglycemia within 8 wk posttransplantation. Nephrectomy of the graft bearing kidney at 14 wk posttransplantation resulted in hyperglycemia in all recipients, and examination of the grafts revealed the presence of numerous well-granulated insulin- and glucagon-containing cells. The cellular insulin content of these grafts was 20 to 30-fold higher than at the time of transplantation. These results indicate that the neonatal porcine pancrease can be used as a source of large numbers of viable islet cells, which have the potential for growth both in vitro and in vivo, and exhibit the metabolic capacity to correct diabetes in nude mice.  相似文献   

20.
There is evidence that intraislet cellular communication and hormone delivery within the islets of Langerhans is controlled via capillary perfusion directed from the B cell core to the A/D cell mantle (intraislet portal system). To determine whether vascularization of freely transplanted islets repeats this "core-to-mantle" capillary perfusion, hamster islets were isolated by collagenase digestion and transplanted into a skinfold chamber of syngeneic animals (n = 12). 14 d after transplantation, the microvasculature of the islet grafts was analyzed by in vivo fluorescence microscopy. The capillary glomerulum-like network of the islet grafts (n = 109) was found supplied by individual arterioles, which regularly pierced the islet and broke into capillaries within the graft (96/109 [88.1%]), resulting in capillary flow directed from the core to the islet's periphery. Only in 13 of 109 islets (11.9%) arterioles broke into capillaries at the outside margin of the islet and capillary flow was directed simultaneously to vessels located within the core, as well as the periphery of the graft. The islet's capillary network was drained by individual venules and intercapillary anastomoses between the newly formed islet capillaries and the preexisting capillaries of the host muscle tissue. Immunohistochemical staining revealed B cells located within the core, and A and D cells scattered in the periphery of the islets, indicating reestablishment of sequential B-->A/D cellular perfusion of the grafts. Thus, freely transplanted islets develop an intra-islet portal system, similarly to that of pancreatic islets in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号