首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrashort echo time (UTE) imaging with soft-tissue suppression reveals short-T(2) components (typically hundreds of microseconds to milliseconds) ordinarily not captured or obscured by long-T(2) tissue signals on the order of tens of milliseconds or longer. Therefore, the technique enables visualization and quantification of short-T(2) proton signals such as those in highly collagenated connective tissues. This work compares the performance of the three most commonly used long-T(2) suppression UTE sequences, i.e., echo subtraction (dual-echo UTE), saturation via dual-band saturation pulses (dual-band UTE), and inversion by adiabatic inversion pulses (IR-UTE) at 3 T, via Bloch simulations and experimentally in vivo in the lower extremities of test subjects. For unbiased performance comparison, the acquisition parameters are optimized individually for each sequence to maximize short-T(2) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between short- and long-T(2) components. Results show excellent short-T(2) contrast which is achieved with these optimized sequences. A combination of dual-band UTE with dual-echo UTE provides good short-T(2) SNR and CNR with less sensitivity to B(1) homogeneity. IR-UTE has the lowest short-T(2) SNR efficiency but provides highly uniform short-T(2) contrast and is well suited for imaging short-T(2) species with relatively short T(1) such as bone water.  相似文献   

2.
Ultrashort echo time (UTE) imaging is a technique that can visualize tissues with sub-millisecond T(2) values that have little or no signal in conventional MRI techniques. The short-T(2) tissues, which include tendons, menisci, calcifications, and cortical bone, are often obscured by long-T(2) tissues. This paper introduces a new method of long-T(2) component suppression based on adiabatic inversion pulses that significantly improves the contrast of short-T(2) tissues. Narrow bandwidth inversion pulses are used to selectively invert only long-T(2) components. These components are then suppressed by combining images prepared with and without inversion pulses. Fat suppression can be incorporated by combining images with the pulses applied on the fat and water resonances. Scaling factors must be used in the combination to compensate for relaxation during the preparation pulses. The suppression is insensitive to RF inhomogeneities because it uses adiabatic inversion pulses. Simulations and phantom experiments demonstrate the adiabatic pulse contrast and how the scaling factors are chosen. In vivo 2D UTE images in the ankle and lower leg show excellent, robust long-T(2) suppression for visualization of cortical bone and tendons.  相似文献   

3.
As well as the long-T2 relaxation components normally detected with conventional imaging techniques, the brain has short-T2 components. We wished to use ultra-short (0.08 ms) echo time (UTE) pulse sequences to assess the feasibility of imaging these in normal subjects and patients. UTE sequences were employed, with or without fat suppression, 90 degree long-T2 suppression pulses, and selective nulling of long-T2 components using an inversion pulse. Subtraction of later echoes from the first was also used to reduce the signal from long-T2 components. We studied dive normal subjects and 15 patients with various diseases. Short-T2 components were demonstrated in grey and white matter. Increased signal from these components was seen in meningeal disease, probable calcification, presumed cavernomas, melanoma metastases and probable gliosis. Reduced signal was seen in some tumours, infarcts, mild multifocal vascular disease and vasogenic oedema. Further development and evaluation of these pulse sequences is warranted.  相似文献   

4.
The application of 3D radial sampling of the free-induction decay to proton ultrashort echo-time (UTE) imaging is reported. The effects of T2 decay during signal acquisition on the 3D radial point-spread function are analyzed and compared to 2D radial and 1D sampling. It is found that in addition to the use of ultrashort TE, the proper choice of the acquisition-window duration TAQ is essential for imaging short-T2 components. For 3D radial sampling, a maximal signal-to-noise ratio (SNR) with negligible decay-induced loss in spatial resolution is obtained for an acquisition-window duration of TAQ approximately 0.69 T2. For 2D and 1D sampling, corresponding values are derived as well. Phantom measurements confirm the theoretical findings and demonstrate the impact of different acquisition-window durations on SNR and spatial resolution for a given T2 component. In vivo scans show the potential of 3D UTE imaging with T2-adapted sampling for musculoskeletal imaging using standard MR equipment. The visualization of complex anatomy is demonstrated by extracting curved slices from the isotropically resolved 3D UTE image data.  相似文献   

5.
PURPOSE: To implement a short-duration magnetization preparation sequence, which consists of a saturation followed by multiple inversion pulses, for imaging of short-T1 species and suppression of long-T1 species. MATERIALS AND METHODS: Computer optimizations were performed to derive preparation schemes that 1) suppress long-T1 background species with T1>or=250 msec, 2) maximize the MZ of contrast-enhanced (CE) structures with T1250 msec, and about a 30% reduction for 20 msec相似文献   

6.

Purpose:

To demonstrate the feasibility of combining a chemical shift‐based water‐fat separation method (IDEAL) with a 2D ultrashort echo time (UTE) sequence for imaging and quantification of the short T2 tissues with robust fat suppression.

Materials and Methods:

A 2D multislice UTE data acquisition scheme was combined with IDEAL processing, including T2* estimation, chemical shift artifacts correction, and multifrequency modeling of the fat spectrum to image short T2 tissues such as the Achilles tendon and meniscus both in vitro and in vivo. The integration of an advanced field map estimation technique into this combined method, such as region growing (RG), is also investigated.

Results:

The combination of IDEAL with UTE imaging is feasible and excellent water‐fat separation can be achieved for the Achilles tendon and meniscus with simultaneous T2* estimation and chemical shift artifact correction. Multifrequency modeling of the fat spectrum yields more complete water‐fat separation with more accurate correction for chemical shift artifacts. The RG scheme helps to avoid water‐fat swapping.

Conclusion:

The combination of UTE data acquisition with IDEAL has potential applications in imaging and quantifying short T2 tissues, eliminating the necessity for fat suppression pulses that may directly suppress the short T2 signals. J. Magn. Reson. Imaging 2010;31:1027–1034. ©2010 Wiley‐Liss, Inc.  相似文献   

7.
An ECG-triggered, segmented, magnetization-prepared, 3D, trueFISP sequence was recently developed for coronary artery imaging. Fat saturation was achieved by a chemically selective fat saturation pulse, which is susceptible to field inhomogeneities. In addition, the blood-myocardial contrast was compromised because data were acquired during signal transience to steady state. The goals of this work were to investigate the potential benefits of T(1)-shortening agents in improving blood-myocardial contrast, and to develop a technique to make fat suppression robust to resonance offsets for coronary artery imaging using trueFISP. A magnetization-preparation scheme using saturation and inversion pulses was developed for simultaneous suppression of tissues over a wide range of T(1)'s, including myocardium and fat. An additional advantage of this method is that it is insensitive to heart rate variations. Computer simulations were used to design the magnetization preparation, and volunteer studies were performed to compare precontrast imaging to contrast-enhanced (CE) imaging. Results showed consistent fat suppression and a 78% increase in the blood-myocardial contrast-to-noise ratio (CNR) for postcontrast imaging over precontrast imaging. In conclusion, contrast agents are useful for trueFISP coronary artery imaging.  相似文献   

8.
Magnetic resonance: an introduction to ultrashort TE (UTE) imaging   总被引:1,自引:0,他引:1  
The background underpinning the clinical use of ultrashort echo-time (UTE) pulse sequences for imaging tissues or tissue components with short T2s is reviewed. Tissues properties are discussed, and tissues are divided into those with a majority of short T2 relaxation components and those with a minority. Features of the basic physics relevant to UTE imaging are described including the fact that when the radiofrequency pulse duration is of the order T2, rotation of tissue magnetization into the transverse plane is incomplete. Consequences of the broad line-width of short T2 components are also discussed including their partial saturation by off-resonance fat suppression pulses as well as multislice and multiecho imaging. The need for rapid data acquisition of the order T2 is explained. The basic UTE pulse sequence with its half excitation pulse and radial imaging from the center of k-space is described together with options that suppress fat and/or long T2 components. Image interpretation is discussed. Clinical features of the imaging of cortical bone, tendons, ligaments, menisci, and periosteum as well as brain, liver, and spine are illustrated. Short T2 components in all of these tissues may show high signals. Possible future developments are outlined as are technical limitations.  相似文献   

9.
Short repetition time gradient echo sequences are gaining popularity in clinical applications such as dynamic contrast enhancement imaging, cardiac imaging, and MR angiography. Performing fat suppression in these sequences is usually time consuming and often somewhat ineffective, due to the relatively short T(1) and long T(2) of fat. A novel rapid fat suppression strategy using spectrally selective pulses is introduced and compared with clinically popular sequences such as fat presaturated fast field echo (FFE) and turbo field echo (TFE) and binomial water-selective spatial-spectral excitation (SSE, or SPSP excitation) FFE. The new strategy combines fat presaturation with low-order binomial water-selective SSE pulses in a TFE sequence. This enables the use of a long echo train length to decrease exam time, but without creation of excess fat signal contamination of the resultant images. The fat nullification is also more reliable as fat signals in central k-space data are suppressed twice. An implementation of this strategy is compared with traditional methods in both phantom and human studies, confirming that the new technique provides strong fat suppression with few artifacts despite the short scan duration.  相似文献   

10.
Imaging of short‐T2 species requires not only a short echo time but also efficient suppression of long‐T2 species in order to maximize the short‐T2 contrast and dynamic range. This paper introduces a method of long‐T2 suppression using two long adiabatic inversion pulses. The first adiabatic inversion pulse inverts the magnetization of long‐T2 water and the second one inverts that of fat. Short‐T2 species experience a significant transverse relaxation during the long adiabatic inversion process and are minimally affected by the inversion pulses. Data acquisition with a short echo time of 8 μs starts following a time delay of inversion time (TI1) for the inverted water magnetization to reach a null point and a time delay of TI2 for the inverted fat magnetization to reach a null point. The suppression of long‐T2 species depends on proper combination of TI1, TI2, and pulse repetition time. It is insensitive to radiofrequency inhomogeneities because of the adiabatic inversion pulses. The feasibility of this dual inversion recovery ultrashort echo time technique was demonstrated on phantoms, cadaveric specimens, and healthy volunteers, using a clinical 3‐T scanner. High image contrast was achieved for the deep radial and calcified layers of articular cartilage, cortical bone, and the Achilles tendon. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
PURPOSE: To assess the feasibility of imaging the liver in volunteers and patients with ultrashort echo time (UTE) pulse sequences. MATERIALS AND METHODS: Seven normal controls as well as 12 patients with biopsy-proven generalized liver disease and three patients with focal disease were examined using pulse sequences with initial TEs of 0.08 msec followed by three later echoes, with or without frequency-based fat suppression. T(2)* values were calculated from regions of interest in the liver. RESULTS: Good image quality was obtained in each subject. There was a highly significant difference in the mean T(2)* values between the normal controls and patients with generalized liver disease (P = 0.001). T(2)* was significantly decreased in hemochromatosis (P = 0.002) and increased in cirrhosis (P = 0.04), compared with controls. T(2)* also correlated with functional status assessed by Child's grade (P = 0.001). A hepatocellular carcinoma showed reduced short T(2) components in the region of thermal ablation and evidence of a subcapsular hematoma which were not apparent with conventional imaging. CONCLUSIONS: Imaging of the liver with UTE sequences showed good image quality and tolerance of abdominal motion. T(2)* was specifically correlated with the presence of hemochromatosis, cirrhosis, and functional grade. Imaging of short T(2) relaxation components may provide useful information in disease.  相似文献   

12.
This work demonstrates the potential of ultrashort TE (UTE) imaging for visualizing graft material and fixation elements after surgical repair of soft tissue trauma such as ligament or meniscal injury. Three asymptomatic patients with anterior cruciate ligament (ACL) reconstruction using different graft fixation methods were imaged at 1.5T using a 3D UTE sequence. Conventional multislice turbo spin‐echo (TSE) measurements were performed for comparison. 3D UTE imaging yields high signal from tendon graft material at isotropic spatial resolution, thus facilitating direct positive contrast graft visualization. Furthermore, metal and biopolymer graft fixation elements are clearly depicted due to the high contrast between the signal‐void implants and the graft material. Thus, the ability of UTE MRI to visualize short‐T2 tissues such as tendons, ligaments, or tendon grafts can provide additional information about the status of the graft and its fixation in the situation after cruciate ligament repair. UTE MRI can therefore potentially support diagnosis when problems occur or persist after surgical procedures involving short‐T2 tissues and implants. J. Magn. Reson. Imaging 2009;29:443–448. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
骨关节系统主要由短T_2组织构成,在常规MRI检查中常表现为低信号或无信号。超短回波时间(UTE)序列是研究短T_2组织最常用的成像技术,短T_2组织在UTE影像上表现为高信号。对UTE成像技术的基本原理进行介绍,并综述其在骨皮质、骨膜、肌腱和韧带、关节软骨和半月板中的具体应用。  相似文献   

14.
Steady-state diffusion-weighted imaging of in vivo knee cartilage.   总被引:5,自引:0,他引:5  
Diffusion-weighted imaging (DWI) has strong potential as a diagnostic for early cartilage damage, with clinical impact for diseases such as osteoarthritis. However, in vivo DWI of cartilage has proven difficult with conventional methods due to the short T2. This work presents a 3D steady-state DWI sequence that is able to image short-T2 species with high SNR. When combined with 2D navigator correction of motion-induced phase artifacts, this method enables high resolution in vivo DWI of cartilage. In vivo knee images in healthy subjects are presented with high SNR (SNR = 110) and submillimeter in-plane resolution (0.5 x 0.7 x 3.0 mm(3)). A method for fitting the diffusion coefficient is presented which produces fits within 10% of literature values. This method should be applicable to other short-T2 tissues, such as muscle, which are difficult to image using traditional DWI methods.  相似文献   

15.
16.
Reliable fat suppression is especially important with fast imaging techniques such as echo-planar (EPI), spiral, and fast spin-echo (FSE) T2-weighted imaging. Spectral-spatial excitation has a number of advantages over spectrally selective presaturation techniques, including better resilience to B0 and B1, inhomogeneity. In this paper, a FSE sequence using a spectral-spatial excitation pulse for superior fat suppression is presented. Previous problems maintaining the CPMG condition are solved using simple methods to accurately program radio-frequency (RF) phase. Next an analysis shows how B0 eddy currents can reduce fat suppression effectiveness for spectral-spatial pulses designed for conventional gradient systems. Three methods to compensate for the degradation are provided. Both the causes of the degradation and the compensation techniques apply equally to gradient-recalled applications using these pulses. These problems do not apply to pulses designed for high-speed gradient systems. The spectral-spatial FSE sequence delivers clinically lower fat signal with better uniformity than spectrally selective pre-saturation techniques.  相似文献   

17.
Ultra-short echo time (UTE) MRI requires both short excitation ( approximately 0.5 ms) and short acquisition delay (<0.2 ms) to minimize T(2)-induced signal decay. These requirements currently lead to low acquisition efficiency when high resolution (<1 mm) is pursued. A novel pulse sequence, acquisition-weighted stack of spirals (AWSOS), is proposed here to acquire high-resolution three-dimensional (3D) UTE images with short scan time ( approximately 72 s). The AWSOS sequence uses variable-duration slice encoding to minimize T(2) decay, separates slice thickness from in-plane resolution to reduce the number of slice encodings, and uses spiral trajectories to accelerate in-plane data collections. T(2)- and off-resonance induced slice widening and image blurring were calculated from 1.5 to 7 Tesla (T) through point spread function. Computer simulations were performed to optimize spiral interleaves and readout times. Phantom scans and in vivo experiments on human heads were implemented on a clinical 1.5T scanner (G(max) = 40 mT/m, S(max) = 150 T/m/s). Accounting for the limits on B(1) maximum, specific absorption rate (SAR), and the lowered amplitude of slab-select gradient, a sinc radiofrequency (RF) pulse of 0.8ms duration and 1.5 cycles was found to produce a flat slab profile. High in-plane resolution (0.86 mm) images were obtained for the human head using echo time (TE) = 0.608 ms and total shots = 720 (30 slice-encodings x 24 spirals). Compared with long-TE (10 ms) images, the ultrashort-TE AWSOS images provided clear visualization of short-T(2) tissues such as the nose cartilage, the eye optic nerve, and the brain meninges and parenchyma.  相似文献   

18.
PURPOSE: To evaluate the diagnostic performance of a newly developed single-scan phase-contrast water-fat imaging technique for fat suppression at 0.23T open magnet, compared to the conventional chemical shift selective fat suppression method at 1.5T, in the detection of experimental articular cartilage lesions. MATERIALS AND METHODS: Sixty regions of 20 knee joint specimens of pigs with artificially created articular cartilage lesions were examined with 0.23T and 1.5T MR scanners. Sagittal fat-suppressed three-dimensional gradient-echo (3D GRE) images, obtained with the phase-contrast method at 0.23T, and fat-suppressed three-dimensional spoiled gradient recalled echo (3D SPGR) images, obtained with a chemical shift selective method at 1.5T, were evaluated. Diagnostic performance was analyzed. The conspicuity of the lesions, the amount of artifacts, and the uniformity of fat suppression were evaluated. The contrast-to-noise (CNR) values of cartilage-to-bone marrow, and cartilage-to-infrapatellar fat were calculated. RESULTS: At 0.23T, sensitivity and specificity were 80% and 95% for partial cartilage lesions (grade 2), and 91% and 100% for full-thickness lesions (grade 3). At 1.5T, sensitivity and specificity were 85% and 95% for grade 2 lesions, and 96% and 97% for grade 3 lesions. No significant difference was detected in the conspicuity of lesions. The uniformity of fat suppression was more constant with 3D SPGR images compared to 3D GRE images. More susceptibility artifacts, derived from the procedure of creating lesions, were detected at 1.5T. The cartilage-to-fat CNRs were significantly higher with high-field images. CONCLUSION: Phase-contrast method for fat suppression at 0.23T is a useful technique in detecting articular cartilage lesions.  相似文献   

19.
Short T2 species such as the Achilles tendon and cortical bone cannot be imaged with conventional MR sequences. They have a much broader absorption lineshape than long T2 species, therefore they are more sensitive to an appropriately placed off‐resonance irradiation. In this work, a technique termed ultrashort TE (UTE) with off‐resonance saturation contrast (UTE‐OSC) is proposed to image short T2 species. A high power saturation pulse was placed +1 to +2 kHz off the water peak to preferentially saturate signals from short T2 species, leaving long T2 water and fat signals largely unaffected. The subtraction of UTE images with and without an off‐resonance saturation pulse effectively suppresses long T2 water and fat signals, creating high contrast for short T2 species. The UTE‐OSC technique was validated on a phantom, and applied to bone samples and healthy volunteers on a clinical 3T scanner. High‐contrast images of the Achilles tendon and cortical bone were generated with a high contrast‐to‐noise ratio (CNR) of the order of 12 to 20 between short T2 and long T2 species within a total scan time of 4 to 10 min. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.

Purpose

To evaluate a new dynamic contrast‐enhanced (DCE) imaging technique called multiecho time‐resolved acquisition (META) for abdominal/pelvic imaging. META combines an elliptical centric time‐resolved three‐dimensional (3D) spoiled gradient‐recalled echo (SPGR) imaging scheme with a Dixon‐based fat‐water separation algorithm to generate high spatiotemporal resolution volumes.

Materials and Methods

Twenty‐three patients referred for hepatic metastases or renal masses were imaged using the new META sequence and a conventional fat‐suppressed 3D SPGR sequence on a 3T scanner. In 12 patients, equilibrium‐phase 3D SPGR images acquired immediately after META were used for comparing the degree and homogeneity of fat suppression, artifacts, and overall image quality. In the remaining 11 of 23 patients, DCE 3D SPGR images acquired in a previous or subsequent examination were used for comparing the efficiency of arterial phase capture in addition to the qualitative analysis for the degree and homogeneity of fat suppression, artifacts, and overall image quality.

Results

META images were determined to be significantly better than conventional 3D SPGR images for degree and uniformity of fat suppression and ability to visualize the arterial phase. There were no significant differences in artifact levels or overall image quality.

Conclusion

META is a promising high spatiotemporal resolution imaging sequence for capturing the fast dynamics of hyperenhancing hepatic lesions and provides robust fat suppression even at 3T. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号