首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiamine pyrophosphate (TPP)-sensitive mRNA domains are the most prevalent riboswitches known. Despite intensive investigation, the complex ligand recognition and concomitant folding processes in the TPP riboswitch that culminate in the regulation of gene expression remain elusive. Here, we used single-molecule fluorescence resonance energy transfer imaging to probe the folding landscape of the TPP aptamer domain in the absence and presence of magnesium and TPP. To do so, distinct labeling patterns were used to sense the dynamics of the switch helix (P1) and the two sensor arms (P2/P3 and P4/P5) of the aptamer domain. The latter structural elements make interdomain tertiary contacts (L5/P3) that span a region immediately adjacent to the ligand-binding site. In each instance, conformational dynamics of the TPP riboswitch were influenced by ligand binding. The P1 switch helix, formed by the 5′ and 3′ ends of the aptamer domain, adopts a predominantly folded structure in the presence of Mg2+ alone. However, even at saturating concentrations of Mg2+ and TPP, the P1 helix, as well as distal regions surrounding the TPP-binding site, exhibit an unexpected degree of residual dynamics and disperse kinetic behaviors. Such plasticity results in a persistent exchange of the P3/P5 forearms between open and closed configurations that is likely to facilitate entry and exit of the TPP ligand. Correspondingly, we posit that such features of the TPP aptamer domain contribute directly to the mechanism of riboswitch-mediated translational regulation.  相似文献   

2.
3.
Structural and dynamic features of RNA folding landscapes represent critical aspects of RNA function in the cell and are particularly central to riboswitch-mediated control of gene expression. Here, using single-molecule fluorescence energy transfer imaging, we explore the folding dynamics of the preQ1 class II riboswitch, an upstream mRNA element that regulates downstream encoded modification enzymes of queuosine biosynthesis. For reasons that are not presently understood, the classical pseudoknot fold of this system harbors an extra stem–loop structure within its 3′-terminal region immediately upstream of the Shine–Dalgarno sequence that contributes to formation of the ligand-bound state. By imaging ligand-dependent preQ1 riboswitch folding from multiple structural perspectives, we reveal that the extra stem–loop strongly influences pseudoknot dynamics in a manner that decreases its propensity to spontaneously fold and increases its responsiveness to ligand binding. We conclude that the extra stem–loop sensitizes this RNA to broaden the dynamic range of the ON/OFF regulatory switch.A variety of small metabolites have been found to regulate gene expression in bacteria, fungi, and plants via direct interactions with distinct mRNA folds (14). In this form of regulation, the target mRNA typically undergoes a structural change in response to metabolite binding (59). These mRNA elements have thus been termed “riboswitches” and generally include both a metabolite-sensitive aptamer subdomain and an expression platform. For riboswitches that regulate the process of translation, the expression platform minimally consists of a ribosomal recognition site [Shine–Dalgarno (SD)]. In the simplest form, the SD sequence overlaps with the metabolite-sensitive aptamer domain at its downstream end. Representative examples include the S-adenosylmethionine class II (SAM-II) (10) and the S-adenosylhomocysteine (SAH) riboswitches (11, 12), as well as prequeuosine class I (preQ1-I) and II (preQ1-II) riboswitches (13, 14). The secondary structures of these four short RNA families contain a pseudoknot fold that is central to their gene regulation capacity. Although the SAM-II and preQ1-I riboswitches fold into classical pseudoknots (15, 16), the conformations of the SAH (17) and preQ1-II counterparts are more complex and include a structural extension that contributes to the pseudoknot architecture (14). Importantly, the impact and evolutionary significance of these “extra” stem–loop elements on the function of the SAH and preQ1-II riboswitches remain unclear.PreQ1 riboswitches interact with the bacterial metabolite 7-aminomethyl-7-deazaguanine (preQ1), a precursor molecule in the biosynthetic pathway of queuosine, a modified base encountered at the wobble position of some transfer RNAs (14). The general biological significance of studying the preQ1-II system stems from the fact that this gene-regulatory element is found almost exclusively in the Streptococcaceae bacterial family. Moreover, the preQ1 metabolite is not generated in humans and has to be acquired from the environment (14). Correspondingly, the preQ1-II riboswitch represents a putative target for antibiotic intervention. Although preQ1 class I (preQ1-I) riboswitches have been extensively investigated (1828), preQ1 class II (preQ1-II) riboswitches have been largely overlooked despite the fact that a different mode of ligand binding has been postulated (14).The consensus sequence and the secondary structure model for the preQ1-II motif (COG4708 RNA) (Fig. 1A) comprise ∼80–100 nt (14). The minimal Streptococcus pneumoniae R6 aptamer domain sequence binds preQ1 with submicromolar affinity and consists of an RNA segment forming two stem–loops, P2 and P4, and a pseudoknot P3 (Fig. 1B). In-line probing studies suggest that the putative SD box (AGGAGA; Fig. 1) is sequestered by pseudoknot formation, which results in translational-dependent gene regulation of the downstream gene (14).Open in a separate windowFig. 1.PreQ1 class II riboswitch. (A) Chemical structure of 7-aminomethyl-7-deazaguanosine (preQ1); consensus sequence and secondary structure model for the COG4708 RNA motif (adapted from reference 14). Nucleoside presence and identity as indicated. (B) S. pneumoniae R6 preQ1-II RNA aptamer investigated in this study. (C) Schematics of an H-type pseudoknot with generally used nomenclature for comparison.Here, we investigated folding and ligand recognition of the S. pneumoniae R6 preQ1-II riboswitch, using complementary chemical, biochemical, and biophysical methods including selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE), mutational analysis experiments, 2-aminopurine fluorescence, and single-molecule fluorescence resonance energy transfer (smFRET) imaging. In so doing, we explored the structural and functional impact of the additional stem–loop element in the context of its otherwise “classical” H-type pseudoknot fold (2932) (Fig. 1C). Our results reveal that the unique 3′-stem–loop element in the preQ1-II riboswitch contributes to the process of SD sequestration, and thus the regulation of gene expression, by modulating both its intrinsic dynamics and its responsiveness to ligand binding.  相似文献   

4.
5.
6.
The structural transitions RNAs undergo during trafficking are not well understood. Here, we used the well-developed yeast Ty1 retrotransposon to provide the first structural model of genome (g) RNA in the nucleus from a retrovirus-like transposon. Through a detailed comparison of nuclear Ty1 gRNA structure with those established in the cytoplasm, virus-like particles (VLPs), and those synthesized in vitro, we detected Ty1 gRNA structural alterations that occur during retrotransposition. Full-length Ty1 gRNA serves as the mRNA for Gag and Gag-Pol proteins and as the genome that is reverse transcribed within VLPs. We show that about 60% of base pairs predicted for the nuclear Ty1 gRNA appear in the cytoplasm, and active translation does not account for such structural differences. Most of the shared base pairs are represented by short-range interactions, whereas the long-distance pairings seem unique for each compartment. Highly structured motifs tend to be preserved after nuclear export of Ty1 gRNA. In addition, our study highlights the important role of Ty1 Gag in mediating critical RNA–RNA interactions required for retrotransposition.  相似文献   

7.
8.
Although much is known about protein folding in buffers, it remains unclear how the cellular protein homeostasis network functions as a system to partition client proteins between folded and functional, soluble and misfolded, and aggregated conformations. Herein, we develop small molecule folding probes that specifically react with the folded and functional fraction of the protein of interest, enabling fluorescence-based quantification of this fraction in cell lysate at a time point of interest. Importantly, these probes minimally perturb a protein’s folding equilibria within cells during and after cell lysis, because sufficient cellular chaperone/chaperonin holdase activity is created by rapid ATP depletion during cell lysis. The folding probe strategy and the faithful quantification of a particular protein’s functional fraction are exemplified with retroaldolase, a de novo designed enzyme, and transthyretin, a nonenzyme protein. Our findings challenge the often invoked assumption that the soluble fraction of a client protein is fully folded in the cell. Moreover, our results reveal that the partitioning of destabilized retroaldolase and transthyretin mutants between the aforementioned conformational states is strongly influenced by cytosolic proteostasis network perturbations. Overall, our results suggest that applying a chemical folding probe strategy to other client proteins offers opportunities to reveal how the proteostasis network functions as a system to regulate the folding and function of individual client proteins in vivo.All proteins are biosynthesized as linear chains, and most need to fold into 3D structures to function. Studies on protein folding in buffers have revealed that a kinetic competition typically exists between protein folding, misfolding, and aggregation. It is the role of the protein homeostasis or proteostasis network in each subcellular compartment to regulate this competition and keep the folded and functional proteome within the physiological concentration range, while minimizing misfolding and aggregation in the face of stresses (14). It remains a challenge to discern how the proteostasis network affects the folding of proteins into biologically active conformations required for function in vivo (5).Current methodologies allow for quantification of the partitioning of a protein of interest (POI) between soluble and aggregated states but cannot determine the proportion of the soluble population that is properly folded and functional. Published folding probes have the potential to report on the folded fraction in cells or cell lysate (69); however, the extent to which they shift folding equilibria and quantify the folded and functional fraction faithfully has not been studied. Herein, we create POI folding probes by adapting the principle of activity-based protein profiling (10) to quantify the soluble folded and functional fraction of a particular protein in a cell lysate. We seek folding probes that bind to and selectively react with only the folded and functional state of a POI in a cell, leaving the nonfunctional states and other cellular proteins unmodified (Fig. 1A).Open in a separate windowFig. 1.A small molecule folding probe strategy to quantify the soluble folded and functional fraction of a POI in a cell lysate. (A) Overview of the general strategy to selectively covalently label a folded and functional POI without labeling its nonfunctional conformations and other cellular proteins. (B) The experimental scheme to quantify the ratio of the soluble POI that is functional (Rf).Fluorescent folding probes for the de novo-designed enzyme, retroaldolase (RA) (11), and fluorogenic folding probes (12) for the nonenzyme protein, transthyretin (TTR), were developed and scrutinized. We show that destabilized mutant RA and TTR proteins partition into folded and functional as well as misfolded soluble conformations and that this partitioning is sensitive to proteostasis network perturbations. Experiments show that a snapshot of the distribution between folded and functional vs. soluble and misfolded conformational states can be preserved during the small molecule folding probe labeling period, provided that the cellular chaperone holdase activity is sufficient, achieved by rapid ATP depletion in parallel with cell lysis. Sufficient chaperone/chaperonin holdase activity minimizes changes in the folded and functional concentration associated with probe binding and reaction with the POI and renders the relative folding and conjugation rates much less influential.  相似文献   

9.
The mucin MUC1 is typically aberrantly glycosylated by epithelial cancer cells manifested by truncated O-linked saccharides. The resultant glycopeptide epitopes can bind cell surface major histocompatibility complex (MHC) molecules and are susceptible to recognition by cytotoxic T lymphocytes (CTLs), whereas aberrantly glycosylated MUC1 protein on the tumor cell surface can be bound by antibodies to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Efforts to elicit CTLs and IgG antibodies against cancer-expressed MUC1 have not been successful when nonglycosylated MUC1 sequences were used for vaccination, probably due to conformational dissimilarities. Immunizations with densely glycosylated MUC1 peptides have also been ineffective due to impaired susceptibility to antigen processing. Given the challenges to immuno-target tumor-associated MUC1, we have identified the minimum requirements to consistently induce CTLs and ADCC-mediating antibodies specific for the tumor form of MUC1 resulting in a therapeutic response in a mouse model of mammary cancer. The vaccine is composed of the immunoadjuvant Pam(3)CysSK(4), a peptide T(helper) epitope and an aberrantly glycosylated MUC1 peptide. Covalent linkage of the three components was essential for maximum efficacy. The vaccine produced CTLs, which recognized both glycosylated and nonglycosylated peptides, whereas a similar nonglycosylated vaccine gave CTLs which recognized only nonglycosylated peptide. Antibodies elicited by the glycosylated tripartite vaccine were significantly more lytic compared with the unglycosylated control. As a result, immunization with the glycosylated tripartite vaccine was superior in tumor prevention. Besides its own aptness as a clinical target, these studies of MUC1 are likely predictive of a covalent linking strategy applicable to many additional tumor-associated antigens.  相似文献   

10.
11.
RNase E isolated from Escherichia coli is contained in a multicomponent "degradosome" complex with other proteins implicated in RNA decay. Earlier work has shown that the C-terminal region of RNase E is a scaffold for the binding of degradosome components and has identified specific RNase E segments necessary for its interaction with polynucleotide phosphorylase (PNPase), RhlB RNA helicase, and enolase. Here, we report electron microscopy studies that use immunogold labeling and freeze-fracture methods to show that degradosomes exist in vivo in E. coli as multicomponent structures that associate with the cytoplasmic membrane via the N-terminal region of RNase E. Whereas PNPase and enolase are present in E. coli in large excess relative to RNase E and therefore are detected in cells largely as molecules unlinked to the RNase E scaffold, immunogold labeling and biochemical analyses show that helicase is present in approximately equimolar amounts to RNase E at all cell growth stages. Our findings, which establish the existence and cellular location of RNase E-based degradosomes in vivo in E. coli, also suggest that RNA processing and decay may occur at specific sites within cells.  相似文献   

12.
13.
Vesicular stomatitis virus (VSV), the founding member of the mononegavirus order (Mononegavirales), was found to be a negative strand RNA virus in the 1960s, and since then the number of such viruses has continually increased with no end in sight. Sendai virus (SeV) was noted soon afterwards due to an outbreak of newborn pneumonitis in Japan whose putative agent was passed in mice, and nowadays this mouse virus is mainly the bane of animal houses and immunologists. However, SeV was important in the study of this class of viruses because, like flu, it grows to high titers in embryonated chicken eggs, facilitating the biochemical characterization of its infection and that of its nucleocapsid, which is very close to that of measles virus (MeV). This review and opinion piece follow SeV as more is known about how various mononegaviruses express their genetic information and carry out their RNA synthesis, and proposes a unified model based on what all MNV have in common.  相似文献   

14.
Nuclear export of certain HIV-1 mRNAs requires an interaction between the viral Rev protein and the Rev response element (RRE), a structured element located in the Env region of its RNA genome. This interaction is an attractive target for both drug design and gene therapy, exemplified by RevM10, a transdominant negative protein that, when introduced into host cells, disrupts viral mRNA export. However, two silent G->A mutations in the RRE (RRE61) confer RevM10 resistance, which prompted us to examine RRE structure using a novel chemical probing strategy. Variations in region III/IV/V of mutant RNAs suggest a stepwise rearrangement to RevM10 resistance. Mass spectrometry was used to directly assess Rev “loading” onto RRE and its variants, indicating that this is unaffected by RNA structural changes. Similarity in chemical footprints with mutant protein implicates additional host factors in RevM10 resistance.  相似文献   

15.
In the last decade, dramatic progress has been made in elucidating the molecular defects underlying a number of neuromuscular diseases. With the characterization of mutations responsible for muscle and nerve dysfunction in several inherited pathologies, and the identification of novel signaling pathways, in which subtle alterations can lead to significant defects in tissue metabolism, the field is poised to devise successful strategies for treatment of this debilitating and often fatal group of human ailments. Yet progress in therapeutic application has been slow despite our newly gained knowledge of basic biology. Hence, where direct therapeutic approaches to address the primary diseases are still sub-optimal, it may be more effective to focus on strategies for improving neuromuscular function. Among potential candidates, insulin-like growth factor (IGF-1) has been involved in several anabolic pathways in both skeletal muscle and the nervous system and it is a promising candidate to attenuate neuromuscular diseases. In this review, we will discuss the role of IGF-1 isoforms in neuromuscular diseases and the contribution of muscle-produced IGF-1 (mIGF-1) to motor neuron survival and activity.  相似文献   

16.
The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs.Terrestrial plant biomass is primarily degraded in nature by fungi and bacteria, which secrete synergistic mixtures of enzymes that work in concert to degrade polysaccharides and sometimes, lignin (14). In many cases, the enzymes used by these organisms are multimodular, consisting of one or more catalytic domains of various function (28) linked to a carbohydrate-binding module (CBM) that targets plant cell wall polysaccharides through specific recognition mechanisms (9). To date, 67 families of CBMs have been discovered (10), and many of these families contain members important in biomass depolymerization. Nearly all known CBM-bearing lignocellulose-degrading enzymes from fungi are Family 1 CBMs (10), which are small proteins that consist of less than 40 aa. Kraulis et al. (11) solved the first Family 1 CBM structure from the well-characterized glycoside hydrolase Family 7 cellobiohydrolase from the fungus Trichoderma reesei (Hypocrea jecorina) (TrCel7A). The structure of the TrCel7A CBM revealed a β-sheet–rich structure with two disulfide bridges and a flat face decorated with aromatic and polar residues that form the putative binding face for adsorption to the hydrophobic face of crystalline cellulose microfibrils (Fig. 1) (1115).Open in a separate windowFig. 1.The NMR structure of the Family 1 CBM and the top layer of cellulose (11). The tyrosine residues are shown in purple. The O-linked mannoses are shown in cyan and blue (22, 24).Glycosylation is an important heterogeneous posttranslational modification (PTM) in fungal enzymes that degrade biomass (16, 17). To date, few studies have been conducted to examine glycosylation in secreted fungal enzymes to determine the extent and factors that control it, including growth conditions and extracellular glycan-trimming enzymes. Catalytic domains can exhibit both N- and O-linked glycans (18, 19), whereas the linkers connecting enzymatic domains to CBMs are decorated with O-linked glycosylation, which has long been attributed to protease protection (20) and more recently implicated in substrate binding (21). For TrCel7A, Harrison et al. (22) published the original characterization of the glycosylation pattern on the TrCel7A linker. Notably, the last five residues analyzed in their study (TQSHY) form the N terminus of the CBM, and the threonine and serine residues (Thr1 and Ser3, respectively) were shown to both natively exhibit mannosylation (22). Given that these residues are highly conserved, this PTM is likely a common feature of all Family 1 CBMs (23). It is also possible that mannosylation may be natively found on the highly conserved Ser14 residue, but this PTM has not been experimentally characterized to our knowledge. We recently used free energy calculations to predict that the mannosylation will improve the CBM binding affinity to crystalline cellulose (24). Our results suggested that the glycan structure, their locations, and the number of occupied glycosylation sites will impact the affinity of CBMs for crystalline cellulose (24).To quantitatively assess the impact of glycosylation on Family 1 CBMs, here, we present a systematic experimental study of proteolytic stability, thermostability, and cellulose binding affinity of a library of Family 1 CBM glycoforms. Because glycosylation depends on host and culture conditions, multiple glycoforms of the same protein are often observed in biological production systems, which are often difficult to separate. Thus, a method for the routine production of specific Family 1 CBM glycoforms was developed using emerging tools in chemical glycoprotein synthesis (2527). Recent advances in this field have made it possible to generate a variety of homogeneous glycoforms for structure–function studies (28). Because chemical glycosylation is not dictated by the amino acid sequences of proteins, it allows the generation of homogeneous glycoforms, thus enabling us to assess if the effects on the stability and function of the TrCel7A CBM are general effects of glycosylation or specific to certain sites and sugar moieties.  相似文献   

17.
ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent “tethering” reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel.  相似文献   

18.
Carbon nanoparticles with large surface areas were produced by the reduction of carbon disulfide with metallic lithium at 500 °C. The carbon nanoparticles account for about 80% of the carbon product. The carbon nanoparticles were characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy and N2 physisorption. The results showed that carbon nanoparticles predominate in the product. The influence of experimental conditions was investigated, which indicated that temperature plays a crucial role in the formation of carbon nanoparticles. The possible formation mechanism of the carbon nanoparticles was discussed. This method provides a simple and efficient route to the synthesis of carbon nanoparticles.  相似文献   

19.
Computational studies of biological networks can help to identify components and wirings responsible for observed phenotypes. However, studying stochastic networks controlling many biological processes is challenging. Similar to Schrödinger’s equation in quantum mechanics, the chemical master equation (CME) provides a basic framework for understanding stochastic networks. However, except for simple problems, the CME cannot be solved analytically. Here we use a method called discrete chemical master equation (dCME) to compute directly the full steady-state probability landscape of the lysogeny maintenance network in phage lambda from its CME. Results show that wild-type phage lambda can maintain a constant level of repressor over a wide range of repressor degradation rate and is stable against UV irradiation, ensuring heritability of the lysogenic state. Furthermore, it can switch efficiently to the lytic state once repressor degradation increases past a high threshold by a small amount. We find that beyond bistability and nonlinear dimerization, cooperativity between repressors bound to OR1 and OR2 is required for stable and heritable epigenetic state of lysogeny that can switch efficiently. Mutants of phage lambda lack stability and do not possess a high threshold. Instead, they are leaky and respond to gradual changes in degradation rate. Our computation faithfully reproduces the hair triggers for UV-induced lysis observed in mutants and the limitation in robustness against mutations. The landscape approach computed from dCME is general and can be applied to study broad issues in systems biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号