首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Objective: Intratumoral administration of adenoviral vector encoding herpes simplex virus (HSV) thymidine kinase (TK) gene (Ad-TK) followed by systemic ganciclovir (GCV) is an effective approach in treating experimental hepatocellular carcinoma (HCC). However, hepatotoxicity due to unwanted vector spread and suicide gene expression limited the application of this therapy, miR-122 is an abundant, liver-specific microRNA whose expression is decreased in human primary HCC and HCC-derived cell lines. These different expression profiles provide an opportunity to induce tumor-specific gene expression by miR-122 regulation. Methods: By inserting miR-122 target sequences (miR-122T) in the 3' untranslated region (UTR) ofTK gene, we constructed adenovirus (Ad) vectors expressing miR-122-regulated TK (Ad-TK-122T) and report genes. After intratumoral administration of Ad vectors into an orthotopic miR-122-deficient HCC mouse model, we observed the miR-122-regulated transgene expression and assessed the antitumor activity and safety of Ad-TK-122T. Results: Insertion of miR-122T specifically down-regulated transgene expression in vitro and selectively protected the miR-122-positive cells from killing by TK/GCV treatment. Insertion of miR-122T led to significant reduction of tansgene expression in the liver without inhibition of its expression in tumors in vivo, resulting in an 11-fold improvement of tumor-specific transgene expression. Intratumoral injection of Ad vectors mediated TK/GCV system led to a vector dosage-dependent regression of tumor. The insertion of miR-122T does not influence the antitumor effects of suicide gene therapy. Whereas mice administrated with Ad-TK showed severe lethal hepatotoxicity at the effective therapeutic dose, no liver damage was found in Ad-TK-122T group. Conclusions: miR-122-regulated TK expression achieved effective anti-tumor effects and increased the safety of intratumoral delivery of adenovirus-mediated TK/GCV gene therapy for miR-122-deficient HCC.  相似文献   

2.
3.

Background

Treatment of blast phase chronic myeloid leukemia (BP-CML) remains a challenge, and the median survival is less than 6 months. Because effective treatments are lacking, we studied tight targeting of blast crisis CML cells using adenoviral (Ad) vectors expressing a HSV-TK system under dual control of a specific SUZ12 promoter and an antioxidant response element (ARE).

Methods

A potential SUZ12 promoter fragment was designed with bioinformatics databases and identified with a luciferase assay. Next, we cloned the ARE element of the NQO1 gene and developed Ad vectors expressing TK kinase or luciferase under the dual control of a specific SUZ12 promoter and an ARE element. An in vitro transfection assay with Ad-ARE/SUZ12-Luc was used to determine promoter activity of ARE/SUZ12 regulatory element in blast crisis CML cells. After incubating human BP-CML-derived cells with Ad-ARE/SUZ12-TK and ganciclovir, Western blot, CCK8, Immunofluorescent assays and Annexin V assays were conducted to assess the efficacy of an ARE/SUZ12 dual-specific TK/GCV system for BP-CML cell lines.

Results

Here, luciferase data confirmed significantly higher and specificer promoter activity of the ARE/SUZ12 composite component in CML blast crisis-derived cell lines (K562, KCL22, and K562/G01) compared to HepG2 cells, and Ad-AS-TK/GCV system could exhibit enhanced apoptotic effects and decreased cell viability for BP-CML cell lines. Additionally, Ad-AS-TK/GCV system altered expression of cycle-related and apoptosis-related proteins in BP-CML cell lines.

Conclusions

Thus, ARE/SUZ12 dual targeting TK/GCV system was effective in killing BP-CML cells. Moreover, efficacy and specificity of CML cell eradication were enhanced by synergistic effects of ARE/SUZ12 dual-specific regulation. We conclude that suicide gene-targeted therapy might hold promise for BP-CML treatment.

Electronic supplementary material

The online version of this article (doi:10.1186/s13046-015-0139-4) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Lung cancer represents the most frequent cause of death for cancer. In non-small cell lung cancer (NSCLC), which accounts for the vast majority of this disease, only early detection and treatment, when possible, may significantly affect patient''s prognosis. An important role in NSCLC malignancy is attributed to the signal transduction pathways involving PI3Kinase, with consequent activation of the AKT family factors. The serum and glucocorticoid kinase (SGK) factors, which share high structural and functional homologies with the AKT factors, are a family of ubiquitously expressed serine/threonine kinases under the control of cellular stress and hormones. SGK1 is the most represented SGK member.

Methods

By means of immunohistochemistry and quantitative real-time PCR, we determined SGK1 protein and mRNA expression in a cohort of 66 formalin-fixed, paraffin-embedded NSCLC surgical samples. All samples belonged to patients with a well-documented clinical history.

Results

mRNA expression was significantly higher in squamous cell carcinomas, and correlated with several clinical prognostic indicators, being elevated in high-grade tumors and in tumors with bigger size and worse clinical stage. No correlation was found between SGK1 protein expression and these clinical parameters.

Conclusions

This explorative analysis of SGK1 expression in NSCLC samples highlights the potential role of this factor in NSCLC patients'' prognosis. Moreover, the higher expression in the squamous cell carcinoma subtype opens new therapeutic possibilities in this NSCLC subtype by designing specific kinase inhibitors.  相似文献   

5.

Background:

Non-small cell lung cancer (NSCLC) lacks reliable serological biomarkers for predicting patients'' survival and response to treatment. The present study examined the capability of serum LAMC2 and four known tumour markers for disease prognosis and patients'' risk stratification.

Methods:

LAMC2, CA 125, CEA, CYFRA 21-1 and SCC levels were retrospectively measured in sera obtained from 127 patients diagnosed with NSCLC by commercial immunoassays. Prognostic performance of the markers was compared with established clinical parameters and multivariate models were constructed to assess the prognostic complementarity of variables.

Results:

LAMC2 showed significant prognostic ability for overall survival (hazards ratio: 1.607, 95% confidence interval: 1.268–2.037, P<0.0001) in the full cohort. LAMC2 and CYFRA 21-1 combination enhanced prognostic models based on common clinical parameters (c-index: 0.81 vs 0.72, P=0.00018), further enabling stratification of patients into clear risk groups. A bootstrap-based cross-validation analysis was supportive of our findings. Combination of LAMC2 and CA 125 showed similar performance.

Conclusions:

Our preliminary study proposes LAMC2 as a novel NSCLC prognostic factor. LAMC2 combined with CA 125 and CYFRA 21-1 could aid in clinical prediction of NSCLC patients'' overall survival and inform clinical practice. Larger studies are necessary to unravel LAMC2''s full potential as a new NSCLC biomarker.  相似文献   

6.
M Wang  X Zhu  Z Sha  N Li  D Li  L Chen 《British journal of cancer》2015,112(5):874-882

Background:

MiR-125b has critical role in non-small-cell lung cancer (NSCLC) cell migration, and its target genes have not been elucidated. Kinesin-1 light chain (KLC)-2 was predicted as one of miR-125b''s targets by bioinformatics analysis. This study is to identify the function of KLC2 and its interaction with miR-125b in NSCLC.

Methods:

Kinesin-1 light chain-2 protein expression and its clinical relevance were analysed in 140 matched NSCLC and adjacent non-neoplastic lung tissues. Both KLC2 gain- and loss-of-function analyses were performed in NSCLC cell lines by transient transfection. The direct interaction between KLC2 and miR-125b was confirmed by a luciferase reporter assay and a transient co-transfection assay as well as an analysis of eight matched clinical samples.

Results:

KLC2 protein was upregulated in NSCLC cell lines and tissues, and was an independent predictor of poor prognosis for elderly NSCLC patients. Kinesin-1 light chain-2 remarkably enhanced the invasive and migratory ability of NSCLC cells. MiR-125b inhibited KLC2 3′-untranslated region luciferase activity and protein expression, and inversely correlated with KLC2 expression in clinical samples. Kinesin-1 light chain-2 almost completely reversed miR-125b-induced inhibition on migration and invasion.

Conclusions:

Kinesin-1 light chain-2 protein overexpression predicts poor survival in elderly NSCLC patients. Kinesin-1 light chain-2 acts as a proto-oncogene and a functional target of miR-125b in NSCLC cells.  相似文献   

7.

Background:

A fibroblast growth factor 2 (FGF2)-targeted adenoviral system can alter viral tropism and allow for improved transduction and reduced systemic toxicity. This study is to investigate if the FGF2-targeted adenoviral mutant Nijmegen breakage syndrome 1 (FGF2-Ad-NBS1) gene transfer can enhance cisplatin chemosensitisation not only by targeting DNA repair, but also through the induction of antiangiogenesis, whereas at the same time reducing toxicities in treating head and neck squamous cell carcinoma (HNSCC).

Methods:

The human HNSCC cell line was treated in vitro and in a nude mouse xenograft model. We conducted verification of binding ability of mutant NBS1 and downregulation of MRN complex, evaluation of transduction efficiency and combined antitumour activities. The antiangiogenesis mechanism was also investigated. Finally, we estimated the distribution of adenoviral vector in the liver.

Results:

The mutant NBS1 protein retains the binding ability and effectively suppresses the expression level of the MRN in infected cells. Transduction efficiency in vitro and cisplatin chemosensitisation were upregulated. The FGF2-Ad-NBS1 also showed detargeting the viral vectors away from the liver. The downregulation of NF-κB expression was supposed to correlate with increased antiangiogenesis.

Conclusions:

FGF2-targeted adenoviral system enhances the cisplatin chemosensitisation of mutant NBS1 and may avoid viral-associated liver toxicities.  相似文献   

8.

Background:

The need to unfold the underlying mechanisms of lung cancer aggressiveness, the deadliest cancer in the world, is of prime importance. Because Fas-associated death domain protein (FADD) is the key adaptor molecule transmitting the apoptotic signal delivered by death receptors, we studied the presence and correlation of intra- and extracellular FADD protein with development and aggressiveness of non-small cell lung cancer (NSCLC).

Methods:

Fifty NSCLC patients were enrolled in this prospective study. Intracellular FADD was detected in patients'' tissue by immunohistochemistry. Tumours and distant non-tumoural lung biopsies were cultured through trans-well membrane in order to analyse extracellular FADD. Correlation between different clinical/histological parameters with level/localisation of FADD protein has been investigated.

Results:

Fas-associated death domain protein could be specifically downregulated in tumoural cells and FADD loss correlated with the presence of extracellular FADD. Indeed, human NSCLC released FADD protein, and tumoural samples released significantly more FADD than non-tumoural (NT) tissue (P=0.000003). The release of FADD by both tumoural and NT tissue increased significantly with the cancer stage, and was correlated with both early and late steps of the metastasis process.

Conclusion:

The release of FADD by human NSCLC could be a new marker of poor prognosis as it correlates positively with both tumour progression and aggressiveness.  相似文献   

9.
10.

Background:

In this study, we appraised a wide assortment of biomarkers previously shown to have diagnostic or prognostic value for non-small cell lung cancer (NSCLC) with the intent of establishing a multi-analyte serum test capable of identifying patients with lung cancer.

Methods:

Circulating levels of 47 biomarkers were evaluated against patient cohorts consisting of 90 NSCLC and 43 non-cancer controls using commercial immunoassays. Multivariate statistical methods were used on all biomarkers achieving statistical relevance to define an optimised panel of diagnostic biomarkers for NSCLC. The resulting biomarkers were fashioned into a classification algorithm and validated against serum from a second patient cohort.

Results:

A total of 14 analytes achieved statistical relevance upon evaluation. Multivariate statistical methods then identified a panel of six biomarkers (tumour necrosis factor-α, CYFRA 21-1, interleukin-1ra, matrix metalloproteinase-2, monocyte chemotactic protein-1 and sE-selectin) as being the most efficacious for diagnosing early stage NSCLC. When tested against a second patient cohort, the panel successfully classified 75 of 88 patients.

Conclusions:

Here, we report the development of a serum algorithm with high specificity for classifying patients with NSCLC against cohorts of various ‘high-risk'' individuals. A high rate of false positives was observed within the cohort in which patients had non-neoplastic lung nodules, possibly as a consequence of the inflammatory nature of these conditions.  相似文献   

11.

Background

To investigate the feasibility of gene therapy in treating Epstein-Barr virus (EBV)-associated cancer by employing the suicide gene, herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV), which uses the signaling pathway through the HIV-long terminal repeat (LTR) gene which is expressed from a nuclear factor-κB (NF-κB)-binding motif-containing promoter that is regulated by EBV-latent membrane protein 1 (LMP1) via NF-κB.

Methods

First, we constructed the plasmid pVLTR-tk, which was regulated by EBV-LMP1 via NF-κB, and then investigated the cytotoxic effect of the pVLTR-tk/GCV on cancer cells, using MTT assays, clonogenic assays, flow cytometry, and animal experiments.

Results

The activation of TK was increased after transfection of the pVLTR-tk into the EBV-LMP1 positive cells. After GCV treatment, the clonogenicity and survival of the cells substantially declined, and a bystander effect was also observed. The LMP1 positive cells exhibited remarkable apoptosis following pVLTR-tk/GCV treatment, and the pVLTR-tk/GCV restrained tumor growth in vivo for EBV-LMP1 positive cancers.

Conclusion

The pVLTR-tk/GCV suicide gene system may be used as a new gene targeting strategy for EBV-associated cancer.  相似文献   

12.

Background:

Breast-cancer metastasis suppressor 1 (BRMS1) gene encodes for a predominantly nuclear protein that differentially regulates the expression of multiple genes, leading to suppression of metastasis without blocking orthotropic tumour growth. The aim of the present study was to evaluate for the first time the prognostic significance of BRMS1 promoter methylation in cell-free DNA (cfDNA) circulating in plasma of non-small cell lung cancer (NSCLC) patients. Towards this goal, we examined the methylation status of BRMS1 promoter in NSCLC tissues, matched adjacent non-cancerous tissues and corresponding cfDNA as well as in an independent cohort of patients with advanced NSCLC and healthy individuals.

Methods:

Methylation of BRMS1 promoter was examined in 57 NSCLC tumours and adjacent non-cancerous tissues, in cfDNA isolated from 48 corresponding plasma samples, in cfDNA isolated from plasma of 74 patients with advanced NSCLC and 24 healthy individuals.

Results:

The BRMS1 promoter was highly methylated both in operable NSCLC primary tissues (59.6%) and in corresponding cfDNA (47.9%) but not in cfDNA from healthy individuals (0%), while it was also highly methylated in cfDNA from advanced NSCLC patients (63.5%). In operable NSCLC, Kaplan–Meier estimates were significantly different in favour of patients with non-methylated BRMS1 promoter in cfDNA, concerning both disease-free interval (DFI) (P=0.048) and overall survival (OS) (P=0.007). In advanced NSCLC, OS was significantly different in favour of patients with non-methylated BRMS1 promoter in their cfDNA (P=0.003). Multivariate analysis confirmed that BRMS1 promoter methylation has a statistical significant influence both on operable NSCLC patients'' DFI time and OS and on advanced NSCLC patients'' PFS and OS.

Conclusions:

Methylation of BRMS1 promoter in cfDNA isolated from plasma of NSCLC patients provides important prognostic information and merits to be further evaluated as a circulating tumour biomarker.  相似文献   

13.

Background:

Nordic countries'' data offer a unique possibility to evaluate the long-term benefit of cervical cancer screening in a context of increasing risk of human papillomavirus infection.

Methods:

Ad hoc-refined age-period-cohort models were applied to the last 50-year incidence data from Denmark, Finland, Norway and Sweden to project expected cervical cancer cases in a no-screening scenario.

Results:

In the absence of screening, projected incidence rates for 2006–2010 in Nordic countries would have been between 3 and 5 times higher than observed rates. Over 60 000 cases or between 41 and 49% of the expected cases of cervical cancer may have been prevented by the introduction of screening in the late 1960 s and early 1970 s.

Conclusions:

Our study suggests that screening programmes might have prevented a HPV-driven epidemic of cervical cancer in Nordic countries. According to extrapolations from cohort effects, cervical cancer incidence rates in the Nordic countries would have been otherwise comparable to the highest incidence rates currently detected in low-income countries.  相似文献   

14.
15.

Background

The metastasis-associated gene 1 (MTA1) has been identified as one critical regulator of tumor metastasis. Previously, we identified miR-125b as a downregualted miRNA in non-small cell lung cancer (NSCLC) cell line upon MTA1 depletion. However, the role of miR-125b and MTA1 in the regulation of NSCLC metastasis remains unclear.

Methods

Stable MTA1 knockdown NSCLC cell lines 95D and SPC-A-1 were established by transfection with MTA1 shRNA. The effects of MTA1 depletion on the expression of miR-125b and cell migration and invasion were examined by real-time PCR, wound healing and matrigel invasion assay.

Results

MTA1 knockdown led to the upregulation of miR-125b level in NSCLC cells. Furthermore, MTA1 knockdown reduced while miR-125b inhibitor enhanced cell migration and invasion of NSCLC cells. Notably, miR-125b inhibitor antagonized MTA1 siRNA induced inhibition of cell migration and invasion.

Conclusion

MTA1 and miR-125b have antagonistic effects on the migration and invasion of NSCLC cells. The newly identified MTA1-miR-125b axis will help further elucidate the molecular mechanism of NSCLC progression and suggest that ectopic expression of miR-125b is a potentially new therapeutic regimen against NSCLC metastasis.  相似文献   

16.

Background

To develop a novel therapeutic strategy for human pancreatic cancer using a midkine promoter-based conditionally replicating adenovirus.

Methods

We examined midkine mRNA expression and midkine protein expression by seven human pancreatic cancer cell lines (AsPC-1, BxPC-3, CFPAC-1, HPAC, MIAPaCa-2, PANC-1, and Suit-2), as well as by non-cancerous pancreatic tissue and pancreatic cancers. Midkine promoter activity was measured in cancer cell lines by the dual luciferase reporter assay. Adenoviral transduction efficiency was assessed by fluorescent staining of cancer cell lines using adenovirus type 5 containing the green fluorescent protein gene (Ad5GFP). Replication of adenovirus type 5 containing the 0.6 kb midkne promoter (Ad5MK) was assessed by the detection of E1 protein in cancer cell lines. The cytotoxicity of Ad5MK for cancer cells was evaluated from the extent of growth inhibition after viral infection. Infection and replication were also assessed in nude mice with subcutaneous Suit-2 tumors by intratumoral injection of Ad5MK, Ad5GFP, or vehicle. E1a mRNA expression in the treated tumors and expression of the replication-specific adenoviral hexon protein were evaluated. Finally, the anti-tumor activity of Ad5MK against intraperitoneal xenografts of Suit-2 pancreatic cancer cells was examined after intraperitoneal injection of the virus.

Results

Both midkine mRNA expression and midkine protein expression were strong in AsPC-1 and CFPAC-1 cell liens, moderate in BxPC-3, HPAC, and Suit-2 cell lines, and weak in PANC-1 and MIAPaCa-2 cell lines. Expression of midkine mRNA was significantly stronger in pancreatic cancers than in non-cancerous pancreatic tissues. The relative luciferase activity mediated by the 0.6 kb midkne fragment in AsPC-1, PANC-1, and Suit-2 cell lines was approximately 6 to 20 times greater than that in midkne-negative MIAPaCa-2 cell lines. Pancreatic cancer cell lines exhibited a heterogeneous adenoviral transduction profile. E1A expression was higher in cell lines with strong midkine expression than in cell lines with weak midkine expression. Ad5MK showed much greater cytotoxicity for midkine-expressing Suit-2 and PANC-1 cell lines than for midkine-negative MIAPaCa-2 cell lines. In the Suit-2 subcutaneous xenograft model, expression of E1A was detected in Ad5MK-treated tumors, but not in untreated and Ad5GFP-treated tumors. In the Suit-2 intraperitoneal xenograft model, the Ad5MK group survived for significantly longer than the Ad5GFP, PBS, and untreated groups.

Conclusion

Ad5MK has an anti-tumor effect against human pancreatic cancer cell lines that express midkine mRNA. Midkine promoter-based conditionally replicative adenovirus might be a promising new gene therapy for pancreatic cancer.  相似文献   

17.

Background

Ursolic acid (UA), a pentacyclic triterpenoid, is known to have anti-tumor activity in various cancers including human non small cell lung cancer (NSCLC). However, the molecular mechanisms underlying the action of UA remain largely unknown.

Methods

Cell viability was measured by MTT assays. Apoptosis was analyzed with Annexin V-FITC/PI Apoptosis Detection Kit by Flow cytometry. Western blot analysis was performed to measure the phosphorylation and protein expression of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), DNMT1 [DNA (cytosine-5)-methyltransferase 1], enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) and SP1. Exogenous expression of SP1 and DNMT1 was carried out by transient transfection assays.

Results

We showed that UA inhibited the growth and induced apoptosis of NSCLC cells in the dose- and time-dependent fashion. Furthermore, we found that UA induced phosphorylation of SAPK/JNK and suppressed the protein expression of DNMT1 and EZH2. The inhibitor of SAPK/JNK (SP600125) blocked the UA-reduced expression of DNMT1 and EZH2. In addition, UA suppressed the expression of SP1 protein. Conversely, overexpression of SP1 reversed the effect of UA on DNMT1 and EZH2 expression, and feedback attenuated UA-induced phosphorylation of SAPK/JNK. Moreover, exogenous expression of DNMT1 antagonized the effect of UA on SAPK/JNK signaling, EZH2 protein expression, and NSCLC cell growth.

Conclusion

Our results show that UA inhibits growth of NSCLC cells through SAPK/JNK-mediated inhibition of SP1; this in turn results in inhibition the expression of DNMT1 and EZH2. Overexpression of DNMT1 diminishes UA-reduced EZH2 protein expression. The negative feedback regulation of SAPK/JNK signaling by SP1 and DNMT1, and the reciprocal interaction of EZH2 and DNMT1 contribute to the overall effects of UA. This study leads to important new insights into the mechanisms by which UA controls growth of NSCLC cells.  相似文献   

18.

Background:

Evasion of apoptosis contributes to the pathogenesis of solid tumours including non-small cell lung cancer (NSCLC). Malignant cells resist apoptosis through over-expression of inhibitor of apoptosis proteins (IAPs), such as X-linked IAP (XIAP).

Methods:

A phenylurea-based small molecule inhibitor of XIAP, XIAP antagonist compound (XAC) 1396-11, was investigated preclincally to determine its ability to sensitise to clinically relevant cytotoxics, potentially allowing dose reduction while maintaining therapeutic efficacy.

Results:

XIAP protein expression was detected in six NSCLC cell lines examined. The cytotoxicity of XAC 1396-11 against cultured NSCLC cell lines in vitro was concentration- and time-dependent in both short-term and clonogenic assays. XAC 1396-11-induced apoptosis was confirmed by PARP cleavage and characteristic nuclear morphology. XAC 1396-11 synergised with vinorelbine±cisplatin in H460 and A549 NSCLC cells. The mechanism of synergy was enhanced apoptosis, shown by increased cleavage of caspase-3 and PARP and by the reversal of synergy by a pan-caspase inhibitor. Synergy between XAC 1396-11 and vinorelbine was augmented by optimising drug scheduling with superior effects when XAC 1396-11 was administered before vinorelbine.

Conclusion:

These preclinical data suggest that XIAP inhibition in combination with vinorelbine holds potential as a therapeutic strategy in NSCLC.  相似文献   

19.

Background

Ubiquitin Carboxyl-Terminal Hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed throughout the central and peripheral nervous system and in cells of the diffuse neuroendocrine system. Aberrant function of UCH-L1 has been associated with neurological disorders such as Parkinson''s disease and Alzheimer''s disease. Moreover, UCH-L1 exhibits a variable expression pattern in cancer, acting either as a tumour suppressor or promoter, depending on the type of cancer. In non-small cell lung carcinoma primary tumour samples, UCH-L1 is highly expressed and is associated with an advanced tumour stage. This suggests UCH-L1 may be involved in oncogenic transformation and tumour invasion in NSCLC. However, the functional significance of UCH-L1 in the progression of NSCLC is unclear. The aim of this study was to investigate the role of UCH-L1 using NSCLC cell line models and to determine if it is clinically relevant as a prognostic marker for advanced stage disease.

Methods

UCH-L1 expression in NSCLC cell lines H838 and H157 was modulated by siRNA-knockdown, and the phenotypic changes were assessed by flow cytometry, haematoxylin & eosin (H&E) staining and poly (ADP-ribose) polymerase (PARP) cleavage. Metastatic potential was measured by the presence of phosphorylated myosin light chain (MLC2). Tumour microarrays were examined immunohistochemically for UCH-L1 expression. Kaplan-Meier curves were generated using UCH-L1 expression levels and patient survival data extracted from Gene Expression Omnibus data files.

Results

Expression of UCH-L1 was decreased by siRNA in both cell lines, resulting in increased cell death in H838 adenocarcinoma cells but not in the H157 squamous cell line. However, metastatic potential was reduced in H157 cells. Immunohistochemical staining of UCH-L1 in patient tumours confirmed it was preferentially expressed in squamous cell carcinoma rather than adenocarcinoma. However the Kaplan-Meier curves generated showed no correlation between UCH-L1 expression levels and patient outcome.

Conclusions

Although UCH-L1 appears to be involved in carcinogenic processes in NSCLC cell lines, the absence of correlation with patient survival indicates that caution is required in the use of UCH-L1 as a potential prognostic marker for advanced stage and metastasis in lung carcinoma.  相似文献   

20.
Y Yao  X Gu  H Liu  G Wu  D Yuan  X Yang  Y Song 《British journal of cancer》2014,111(2):355-364

Background:

Metaderin (MTDH) protein is a novel component part of tight junction complex. The aim of this study was to investigate the correlation between MTDH and prognosis of patients and to explore the role of MTDH on NSCLC development and metastasis.

Methods:

Relative mRNA expression was evaluated by quantitative real-time PCR, and protein expression was detected using immunohistochemistry staining. The role of MTDH in cancer cell proliferation, migration and invasion was studied by modulation of MTDH expression in NSCLC cell lines. These functions of MTDH were further confirmed in vivo.

Results:

In NSCLC, low MTDH protein expression was correlated with lymph node metastasis, TNM stage and decreased OS (P=0.001, 0.011 and 0.013, respectively). Overexpression of MTDH reduced anchorage-independent and -dependent growth through arresting cell cycle, inhibited migration and invasion in vitro and further suppressed tumorigenesis, tumour growth and metastasis in vivo. Knockdown of MTDH expression increased cell invasiveness. MTDH overexpression reversed pro-metastatic actin cytoskeleton remodelling and inhibited EMT, supporting that MTDH has a key role on cancer proliferation and metastasis.

Conclusions:

MTDH has an important role in NSCLC proliferation and metastasis and provides potential in predicting metastasis and prognosis for patients with NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号