首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
背景:在纳米羟基磷灰石中加入第二相或多相材料合成复合材料已广泛应用于口腔医学中,现已有将纳米羟基磷灰石加入到复合树脂中的报道。目的:综合分析纳米羟基磷灰石及其复合物在口腔领域的广泛应用,展望其应用于口腔材料中的潜在发展。方法:检索Pubmed 数据库、EBSCOhost 数据库和中国期刊全文数据库相关文献,纳入标准:①具有原创性,论点论据可靠的实验文章。②观点明确,分析全面的文章。③文献主体内容与此课题联系紧密的文章。排除重复的研究和与本综述无关的文献。最后按纳入标准筛选24篇文献进行综述。结果与结论:大量的临床及动物实验表明,纳米羟基磷灰石可以广泛应用于口腔颌面外科、牙体牙髓、口腔种植及口腔其他方面,并随着对其与复合树脂结合的进一步研究,有望在口腔材料中发挥更大的作用。关键词:纳米;羟基磷灰石;复合材料;口腔应用;牙科与颅颌面生物材料doi:10.3969/j.issn.1673-8225.2010.08.023  相似文献   

2.
纳米复合羟基磷灰石在口腔治疗中的应用   总被引:1,自引:0,他引:1  
学术背景:纳米羟基磷灰石的应用研究是口腔医学领域中的一个非常重要的课题,已有将纳米复合羟基磷灰石应用于根管治疗的报道。 目的:介绍羟基磷灰石在口腔领域尤其在口腔颌面外科和口腔内科中的应用进展,综合分析纳米羟基磷灰石在根管充填研究动态,展望其在口腔材料领域的潜在发展。 检索策略:由第一、二作者应用计算机检索EBSCOhost数据库和NCBI数据库1992/2007相关文献,检索词为“Hydroxyapatite,Nanometer”,限定语言种类为“English”;同时检索CNKI全文数据库、维普全文数据库、万方数字化期刊1995/2007相关文献,检索词为“羟基磷灰石,纳米”,限定语言种类为中文。纳入标准:内容与羟基磷灰石的结构、改性研究、生物学特性以及在口腔医学领域有关。排除标准:较陈旧和重复研究。 文献评价:共收集到276篇相关文献,纳入30篇完全符合要求的文献,其中9篇介绍纳米羟基磷灰石在口腔颌面外科及口腔内科的临床应用;21篇关于纳米羟基磷灰石的基础研究,包括细胞毒性、生物相容性、骨诱导性、复合材料的制备和抗菌性及其在组织工程领域中的应用。 资料综合:纳米复合羟基磷灰石由于与天然骨无机结构相似生物相容性极好,有骨诱导性,对骨缺损的修复起到了关键作用,纳米特性减少了根管充填后的微渗漏,纳米羟基磷灰石和一些抑菌/抗菌制剂复合的新型纳米复合羟基磷灰石有良好的抑菌/抗菌性,对牙髓病和根尖周病的治疗起到了良好效果。 结论:新型纳米复合羟基磷灰石符合生物材料细胞毒性要求,按毒性剂量分级属无毒级,无致热原性、对皮肤无刺激作用,具有良好的生物相容性、骨诱导性、细胞黏附性和抑菌/抗菌性,有望在口腔基础研究和临床应用中发挥更大的作用。  相似文献   

3.
羟基磷灰石是动物和人体骨骼的主要无机矿物成分,当羟基磷灰石的尺寸达到纳米级时将表现出一系列的独特性能。纳米羟基磷灰石既有纳米材料的特性,又有良好的生物相容性,在生物医学领域具有非常广阔的应用前景。文章介绍了纳米羟基磷灰石的历史发展、结构特性及制备方法。对纳米羟基磷灰石的发展前景进行了展望。指出:纳米羟基磷灰石的大批量工业化低成本制备尚存在一定困难,工业化设备的研发将是下一步研究的重点。此外,通过复合技术和涂层技术有望解决医用纳米羟基磷灰石材料的脆性问题。  相似文献   

4.
目前研究的纳米羟基磷灰石复合材料可分为3类:纳米羟基磷石灰天然复合材料、纳米羟基磷石灰半合成复合材料和纳米羟基磷石灰合成复合材料。文章按照纳米羟基磷灰石及其复合材料的分类介绍了纳米羟基磷灰石及其复合材料生物学特性,证实了纳米羟基磷灰石及其复合材料可以更好地促进人牙周膜细胞的生长,从而修复破坏的牙槽骨,建立牙周新附着。将纳米磷石灰及其复合材料应用于牙周膜细胞,将材料技术应用到牙周细胞的分化、牙骨的形成、牙齿的矫正及牙齿新附着的建立研究方面有着非常广阔的应用前景。  相似文献   

5.
羟基磷灰石烧结体是常用的人工置换材料,这种材料具有良好的生物相容性。但其结晶程度和结构稳定性要比自然骨中的羟基磷灰石晶体高,影响了骨缺损的完全修复。大量的基础和临床研究表明:含锶量低于10%的掺锶羟基磷灰石骨水泥具有很好的组织相容性、骨引导能力及生物降解率,能获得较满意的骨缺损修复效果,是一种良好的骨折内固定和骨填充修复材料。文章就近些年来国内外有关掺锶羟基磷灰石的研究,介绍了掺锶羟基磷灰石的生物学特性和其在骨科应用方面的研究进展。  相似文献   

6.
背景:纳米羟基磷灰石因其与天然骨中的盐类成分一致,与骨中羟基磷灰石的尺寸接近,因而成为骨修复材料的较好选择。 设计、时间及地点:材料学动物实验观察,2003-01/2005-06于佳木斯大学实验动物中心及北京积水潭医院完成。 目的:探讨纳米羟基磷灰石修复颌骨缺损的可行性。 材料:采用磷酸二氢钙和氢氧化钙中和反应构造体系,通过控制反应条件,适量加入形核剂,使反应物成为胶体状态,在不同反应条件下得到针状羟基磷灰石纳米晶体,再进行烧结除处理,得到羟基磷灰石纳米粒子,直径为1~56 nm。 方法:24只大耳白兔于颌下区备皮,麻醉后在下颌骨体部以GX微型钻机慢速制作一面积为1.5 cm×1.5 cm 的骨缺损。将24只大耳白兔随机分实验组和对照组,12只/组。实验组采用纳米羟基磷灰石修复,对照组采用普通羟基磷灰石修复,并应用抗生素5 d。 主要观察指标:纳米羟基磷灰石植入骨缺损后骨密度的变化。 结果:骨缺损修复后,实验组骨密度随时间的延长逐渐增大,直至与正常的骨密度接近并趋于稳定;对照组骨密度随时间的延长逐渐减小。实验组与对照组比较,差异有显著意义( P < 0.01) 。 结论:纳米羟基磷灰石修复骨缺损,骨成熟较快,是修复骨缺损的良好材料。  相似文献   

7.
背景:目前在纳米羟基磷灰石生物安全性实验中发现其引起红细胞聚集现象,是纳米羟基磷灰石血液相容性研究中亟待解决的问题。 目的:探讨体外纳米羟基磷灰石引起红细胞聚集的机制。 设计、时间及地点:体外细胞形态学观察实验,于2004-03/2006-06在武汉理工大学生物材料与工程研究中心实验室完成。 材料:两种不同粒径羟基磷灰石粒子粉体由武汉理工大学生物医学材料与工程研究中心提供。 方法:溶血实验评价材料对兔红细胞的影响,并对材料与红细胞共培养后做细胞形态学观察,Bialsche法检测纳米羟基磷灰石粒子与唾液酸的吸附量,绘制吸附等温线,纳米羟基磷灰石粒子与唾液酸共吸附作红外光谱分析。 主要观察指标:纳米羟基磷灰石粒子对红细胞形态影响和超微结构观察,不同粒径的羟基磷灰石粒子对唾液酸的吸附量,纳米羟基磷灰石与唾液酸吸附后的红外光谱分析。 结果:纳米羟基磷灰石粒子与兔红细胞共培养后可导致红细胞聚集,并且对细胞表面的唾液酸有强烈的吸附作用,红外光谱结果表明两者有明显的相互作用。 结论:纳米粒子与红细胞体外共培养后,降低了细胞的Zeta电位和表面电荷密度,引起红细胞悬浮性下降,可能是导致聚集的发生的重要因素。  相似文献   

8.
背景:羟基磷灰石具有良好的生物相容性和生物活性,被广泛应用于骨组织的修复与替代技术,但脆性大限制了其在承载部位骨替换中的应用。 目的:对纳米羟基磷灰石复合支架材料的研究现状与进展进行综述。 方法:分别以英文检索词“nano-hydroxyapatite(nano-HA),composites”;中文检索词“纳米羟基磷灰石,复合材料”,应用计算机检索中国期刊网全文检索库(CNKI)及PubMed数据库1995-01/2010-10 有关文章,纳入纳米羟基磷灰石复合材料的文献。排除与研究目的无关和内容重复者。保留33篇文献做进一步分析。 结果与结论:随着纳米技术的发展,纳米羟基磷灰石复合支架材料中复合成分得以不断优化,能比较好的模仿天然骨和细胞外基质的结构特点,证明了其优越性,但仍需要进一步优化制备方法,增强纳米羟基磷灰石和生物高分子界面的结合,使复合材料的力学、加工性能和生物性能达到最佳契合点,从而达到临床使用的要求。  相似文献   

9.
背景:纳米羟基磷灰石具有良好的生物相容性和生物活性,被广泛应用于骨组织的修复与替代技术,但脆性太大限制了其在承载部位骨替换中的应用。纳米羟基磷灰石/壳聚糖复合材料因具备优良的生物相容性和合适的力学性能,已逐渐成为骨替代材料的研究热点。 目的:对纳米羟基磷灰石/壳聚糖复合材料的制备方法及其发展趋势进行综述。 方法:应用计算机检索Medline数据库(1995-01/2009-03),以“nano-hydroxyapatite,chitosan,preparation,development trend”为检索词;应用计算机检索维普数据库(1995-01/2009-03)、清华同方数据库(1995-01/2009-03),以“纳米羟基磷灰石、壳聚糖、制备方法、发展趋势”为检索词。 结果与结论:共收集2 034篇相关文献,中文1 634篇,英文670篇。排除发表时间较早、重复及类似研究,纳入37篇符合标准的文献。纳米尺寸的羟基磷灰石与壳聚糖复合而成的新型材料,由于在结构上与天然骨更为接近,纳米羟基磷灰石复合材料比相应的微米复合材料具有更好的生物学性能;同时优化材料的组成、结构和工艺将可能得到力学性能与天然骨更为匹配的骨修复材料。文章综述了近年来国内外羟基磷灰石/壳聚糖复合材料的制备方法,随着生物材料的快速发展,羟基磷灰石复合材料被广泛应用于骨组织修复与替代手术中,但由于其具有传统陶瓷固有的力学性能差的缺点,限制了它在临床上的应用。 关键词:纳米羟基磷灰石;壳聚糖;制备方法;发展趋势;生物材料 doi:10.3969/j.issn.1673-8225.2010.03.029  相似文献   

10.
背景:羟基磷灰石与高分子复合材料作为组织工程材料的报道很多,但多为粉体材料或块状材料,用于修复治疗时均存在一定的局限性。 目的:制备纳米羟基磷灰石/壳聚糖-明胶复合缓释微球,观察其体外释药特性。 设计、时间及地点:重复测量设计,于2008-01/10 在北京工业大学材料科学与工程学院生物功能高分子实验室完成。 材料:纳米羟基磷灰石、壳聚糖、明胶、庆大霉素。 方法:利用微波辅助法,在pH=7的条件下,制备了针状羟基磷灰石。采用W/O型复乳化-交联技术制备纳米羟基磷灰石/壳聚糖-明胶载药复合微球。 主要观察指标:①纳米羟基磷灰石/壳聚糖-明胶复合微球的表面形貌、粒径分布。②载药复合微球的载药量、包封率及药物累积释放率。 结果:①纳米羟基磷灰石/壳聚糖-明胶载药复合微球形态均匀,其粒径主要集中在10~30μm,壳聚糖-明胶对羟基磷灰石形成了很好的包覆。②复合微球平均载药量32.97%,平均包封率49.20%,在3 d内对庆大霉素的释放达到88%左右。 结论:所制备的纳米羟基磷灰石/壳聚糖-明胶载药复合微球形态均匀,粒径分布窄,再分散性好,3 d内能维持有效的药物浓度。  相似文献   

11.
摘要 背景:利用纤维增强磷酸钙骨水泥的机制很早就被人们认识和利用。由于非吸收性纤维存在生物相容性低及应力遮挡等问题,近期的研究热点主要是可降解吸收的生物活性纤维对磷酸钙骨水泥性能的影响。 目的:制备聚磷酸钙/(α-磷酸三钙/纳米羟基磷灰石)骨水泥复合材料,观察聚磷酸钙对磷酸钙骨水泥力学性能的增强效果。 方法:利用固相反应法和湿法反应法分别制得α-磷酸三钙和纳米羟基磷灰石粉末,再将2种粉末按不同比例混合进行高温处理,然后将其与不同质量比、不同长度的聚磷酸钙纤维复合制成骨水泥试样。对试样进行凝固时间、力学性能测试,利用扫描电镜观察试样微观结构。 结果与结论:聚磷酸钙长度为3 mm、含量为10%时,抗压强度为66.43 MPa,抗弯强度为13.86 MPa。扫描电镜显示聚磷酸钙在磷酸钙骨水泥基体中分布均匀,结合性能好。在Ringer’s溶液中浸泡3个月,纤维仍具有一定的增强效果。提示聚磷酸钙纤维对α-磷酸三钙/纳米羟基磷灰石骨水泥有一定的增强作用,聚磷酸钙/(α-磷酸三钙/纳米羟基磷灰石)骨水泥复合材料具有良好的力学性能。  相似文献   

12.
背景:先前的研究表明,羟基磷灰石/聚乙烯醇水凝胶复合水凝胶(hydroxyapatite/ polyvinyl alcohol hydrogel,HA/PVA-H)具有较好的机械性能和耐摩擦磨损性能,这说明HA/PVA-H复合材料具有早期承载能力和较好的生物活性。那么HA/PVA-H复合材料能否通过羟基磷灰石粒子与周围骨组织较快地形成活性结合呢? 目的:制备羟基磷灰石/聚乙烯醇水凝胶,并对其进行生物学评价。 方法:将Ca(OH)2研磨过筛后,配制成一定浓度的悬浮分散液;加入质量分数15%的PVA水溶液中,添加二甲亚砜,最后按Ca/P比1.67: 1加入H3PO4的乙醇溶液,制备HA/PVA-H。对试样进行体外模拟体液培养实验,测试浸泡前后SBF浸泡液的变化,并利用扫描电镜、FTIR、XRD 对材料的结构进行了表征和分析。 结果与结论:扫描电镜观察可知羟基磷灰石/聚乙烯醇水凝胶表面有结晶体形成,经XRD分析确认为弱结晶的羟基磷灰石晶体;浸泡之后浸泡液的pH值与Ca、P离子浓度下降,同时FTIR结果显示试样中的PO43-特征峰得到增强,且有CO32-的特征峰形成。结果提示,羟基磷灰石/聚乙烯醇水凝胶复合材料具有较好的生物活性。  相似文献   

13.
背景:组织工程中,种子细胞需依赖于细胞外基质的存在才能发挥功能。因此支架材料的选择具有重大意义。 目的:制备一种新型改性壳聚糖-胶原-羟基磷灰石复合支架,优化易于细胞黏附的组织工程支架材料工艺。 方法:壳聚糖与透明质酸进行交联,红外和差示扫描量热图谱检测其结构;改性壳聚糖与胶原按1∶2,1∶1和2∶1制备3种改性壳聚糖-胶原-羟基磷灰石复合支架,将复合支架与成骨细胞MC3T3-E1联合培养,CCK-8法检测增殖,绘制生长曲线。 结果与结论:透明质酸和壳聚糖以酰胺键形成交联的新化合物,孔径在50~250 μm之间,孔隙率随着胶原水平、弹性模量的增加而增加,而密度则减少;增加胶原的含量在细胞联合培养初期有利于细胞对支架的黏附和增殖,但从第10天开始,3种样品中细胞数量相差不大,均出现平台期;苏木精-伊红染色发现成骨细胞在培养初期沿着支架材料内部空隙贴壁生长,随着培养天数的增加,贴壁细胞呈集落样生长,可明显看到细胞间连接。说明透明质酸改性壳聚糖/胶原/纳米羟基磷灰石复合材料可以作为骨支架材料供成骨细胞黏附、增殖,其中胶原与壳聚糖的体积比为1∶1为较优配比。  相似文献   

14.
摘要 背景:初期使用的胶原、聚乳酸等单组分诱导骨再生膜在诱导成骨的效率方面已逐渐暴露其缺陷,于是以胶原、聚乳酸等可吸收材料为载体,羟基磷灰石、纤维生长因子、骨形成蛋白等为填料的诱导骨再生膜成为国内外研究的重点。 目的:观察纳米羟基磷灰石复合胶原膜组织反应对诱导骨再生的适用性。 方法:将聚丙交酯乙交酯膜、胶原膜、纳米羟基磷灰石复合胶原膜光滑面和粗糙面分别植入大鼠皮下,于10,20,30, 45 d取出,采用苏木精-伊红染色法,依照纤维包膜定量、定性、界面定性和降解率等进行组织学评分,研究3种膜的组织反应和降解情况。 结果与结论:纳米羟基磷灰石复合胶原膜在各个观察时间均有散在的淋巴细胞,但未见明显的巨噬细胞。随着时间的延长,膜逐渐变小,钙化物随着植入时间的延长而增加。胶原膜组织反应轻微,45 d几乎完全降解。聚丙交酯乙交酯膜浸润增多,纤维包裹明显。结果提示纳米羟基磷灰石复合胶原膜具有良好的生物相容性和适度的降解性,适合引导骨组织再生的需要。 关键词:引导骨组织再生;纳米羟基磷灰石复合胶原膜;组织学评估;生物降解;聚丙交酯乙交酯 doi:10.3969/j.issn.1673-8225.2010.42.011  相似文献   

15.
背景:骨组织工程骨构建中如何使生长因子持续高效发挥作用是影响成骨速度和质量的关键,现多以各种材料的微球或支架作为缓释载体,但缓释作用有待提高。 目的:实验拟制备壳聚糖微球,然后复合到纳米羟基磷灰石/聚乳酸-羟基乙酸支架上,形成双重缓释作用,并测量对牛血清白蛋白的释放效果。 方法:以牛血清白蛋白为模型药物,采用乳化交联法制备壳聚糖微球。将微球与纳米羟基磷灰石、聚乳酸-羟基乙酸按一定比例混合,以冰粒子为致孔剂,采用冷冻干燥法制备壳聚糖微球/纳米羟基磷灰石/聚乳酸-羟基乙酸复合支架。利用扫描电镜、激光粒度分析仪、压泵仪和力学性能测试仪检测复合支架的形态性能,考察药物在缓释支架上的体外释放规律。 结果与结论:所制备的壳聚糖微球形态良好,呈规则圆球形,粒径集中分布在20~40 μm,微球药物包封率为86.5%,载药量为0.8%,随牛血清白蛋白初始用量的增加,载药量可升高至2.6%,但包封率下降至74.1%。壳聚糖微球能均匀分布在聚乳酸-羟基乙酸支架上,形成壳聚糖微球/纳米羟基磷灰石/聚乳酸-羟基乙酸复合支架,孔径为100~400 μm,孔隙率> 80%,压缩强度为1.1~2.3 MPa,10周降解率为26.5%。单纯纳米羟基磷灰石/聚乳酸-羟基乙酸支架其牛血清白蛋白在36 h累积释放量达85%以上,壳聚糖微球其牛血清白蛋白10 d累积释放量为33.6%,复合支架其牛血清白蛋白40 d累积释放量为81.5%。结果证实包埋壳聚糖微球的纳米羟基磷灰石/聚乳酸-羟基乙酸支架其压缩强度和降解速率合适,对蛋白类药物具有良好的缓释作用,有望作为组织工程的支架材料和生长因子的缓释载体。 关键词:聚乳酸-羟基乙酸;支架;壳聚糖;缓释载体;骨修复材料,组织工程;生物材料 doi:10.3969/j.issn.1673-8225.2010.03.017  相似文献   

16.
17.
背景:新型复合材料纳米羟基磷灰石/细菌纤维素是一种极具应用前景的骨组织工程材料,而骨组织工程材料要求其本身及其降解产物具有良好的细胞相容性,实验在传统的MTT法评价细胞相容性的基础上,进一步应用流式细胞术的方法从DAN合成周期的角度进行评价。 目的:评价新型纳米复合材料纳米羟基磷灰石/细菌纤维素及其酶降解产物的细胞相容性。 方法:应用体外细胞培养法,观察纳米羟基磷灰石/细菌纤维素复合材料及其降解物对成骨细胞形态学的影响,同时采用 MTT 比色法评价纳米羟基磷灰石/细菌纤维素及其降解物对成骨细胞生长和增殖的影响,并尝试用流式细胞仪检测材料作用于细胞后细胞周期时相的变化,从而在分子水平上评价材料对细胞增殖的影响。 结果与结论:纳米羟基磷灰石/细菌纤维素复合材料及其降解物对成骨细胞的形态无明显影响,对细胞生长和增殖无明显抑制作用。MTT 细胞毒性试验显示原材料及其降解物的细胞增殖率均在80%以上,细胞毒性均为1级,材料对培养细胞无明显细胞毒性。流式细胞仪检测结果显示材料与细胞接触后能降低G0/G1期细胞比例,增加S,G2/M期细胞比例,能增加成骨细胞DNA的合成,促进成骨细胞生长和组织修复。提示纳米羟基磷灰石/细菌纤维素复合材料细胞相容性良好,是一种安全的、很有应用前景的骨组织工程支架材料。 关键词:细菌纤维素;羟基磷灰石;纳米复合材料;细胞毒性;细胞周期;相容性;成骨细胞 doi:10.3969/j.issn.1673-8225.2010.03.007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号