首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 34 cats, the changes in extracellular potassium ion activity (aK) and extracellular spike activity within the pool of respiratory neurones in the dorsormedial and ventrolateral medulla were recorded using microelectrodes filled with a liquid potassium ion exchange resin. Cyclic changes in aK which parallel central respiratory activity were restricted to those regions where respiratory neurones are known to be localized. The largest changes in aK (0.1–0.3 mmol · l–1) were found within the ventral pool of inspiratory neurones. The aK increased during inspiration in parallel with the pattern of phrenic nerve activity. The smallest changes in aK (0.02–0.06 mmol · l–1) were observed within the ventral pool of expiratory neurones. Here, aK showed a transient increase during both inspiration and expiration. Within the dorsal pool of inspiratory neurones, small fluctuations of aK were observed paralleling phrenic nerve activity and the afferent discharge of the intact vagal nerves. After the vagal nerves were cut, the changes in aK then paralleled phrenic nerve activity. The variations in aK within the ventral pool of respiratory neurones did not change after bilateral section of vagal nerves.Repetitive stimulation of the vagal nerves (0.1–0.5V, 0.05 ms) produced an increase in aK only within the dorsal pool of inspiratory neurones, whereas repetitive spinal cord stimulation (5–10V, 0.05 ms) resulted in an increase of aK within the ventral pool of respiratory neurones.The amplitude of the cyclic changes in aK increased significantly whenever the electrode approached individual respiratory neurones as verified by the amplitude and shape of the spikes recorded by the reference barrel. The maximal changes in aK then reached a peak amplitude of 1.3–1.5 mmol · l–1, the pattern of aK changes resembling that measured within the pools of neurones.The aK started to rise prior to the discharge of action potentials, indicating that the efflux of K+-ions was produced as a consequence of synaptic transmission. The functional importance of these changes in extracellular potassium is discussed.  相似文献   

2.
INTRODUCTION: Mild to moderate elevation of muscle creatine kinase (CK) is commonly observed in amyotrophic lateral sclerosis (ALS). Although the determinants of increased the CK in ALS remain uncertain, we hypothesize that fasciculations and muscle denervation can be involved by damaging the muscle fibre. PATIENTS AND METHODS: We studied 87 ALS patients in whom CK determination was performed. In 47, a standardized EMG investigation was performed. In 22 patients a second CK determination was performed a mean of 5 months later. CK values were compared between different patients arranged in groups as determined by the number of regions with fasciculation as detected on the clinical examination, and the number of muscles with fasciculation or with fibrillation potentials as observed on EMG. RESULTS: 43% of our population had an increased CK value. Four out of 5 patients with suspected ALS had an increased CK value. The number of patients with increased CK value was not different between sexes, or between bulbar and spinal-onset patients. CK value was not related with disease duration, and did not change at the second measurement. CK value was not different between the groups studied. CONCLUSION: The fasciculations,and the signs of denervation on EMG, are not determinants for high CK values in ALS patients, which are still unknown. Increased CK can be useful in the differential diagnosis of patients with lower motor neuron disorders.  相似文献   

3.
Membrane potential changes and discharges from 28 laryngeal motoneurons were recorded intracellularly in the caudal nucleus ambiguus of decerebrate, paralyzed and ventilated cats. Electrical activities were recorded from 17 expiratory laryngeal motoneurons (ELMs) with maximal depolarizing membrane potential in early expiration, and from 11 inspiratory laryngeal motoneurons (ILMs) with maximal depolarizing membrane potential in inspiration. Activities during breathing were compared with those observed during fictive coughing and swallowing evoked by electrical stimulation of the superior laryngeal nerves. These non-respiratory behaviors were evidenced in paralyzed animals by characteristic discharge patterns of the phrenic, abdominal nerves and pharyngeal branch of the vagus nerve. We recorded the activity of 11 ELMs and 5 ILMs during coughing in which ELMs, but not ILMs, exhibited increased membrane depolarization and discharge frequencies. Membrane depolarization and discharge frequencies of all ELMs were also significantly increased during swallowing. In addition, membrane depolarization of most ELMs (15/17) was preceded by a short-lasting hyperpolarization due to chloride-dependent inhibitory mechanisms occurring at the onset of swallowing. Out of 10 ILMs tested during swallowing, 7 exhibited membrane depolarization, preceded in 5 cases by a short-lasting hyperpolarization. Discharge frequencies of ILMs were significantly reduced during swallowing. The same pattern of phasic activities of ILMs and ELMs was observed during coughing and breathing, suggesting the involvement of similar excitatory pathways in both behaviors. These results imply that the duration of activation and the discharge frequency of neurons of the central generator for breathing that drive laryngeal motoneurons are enhanced during coughing. During swallowing, in addition to central excitatory mechanisms, laryngeal motoneurons are subjected to an initial inhibition of unknown origin. This inhibition probably contributes to the temporal organization of the swallowing motor sequence. Received: 3 December 1998 / Accepted: 26 June 1999  相似文献   

4.
Summary The discharge frequencies of 35 single phrenic and 13 inspiratory intercostal motoneurons were recorded in anaesthetised paralysed cats. Chemical stimulation by asphyxia or hypercapnia increased the discharge frequency and number of motoneurons active within each inspiratory discharge without altering the general pattern of respiratory activity, but mechanical stimulation of the epipharynx and electrical stimulation of the pharyngeal branch of the glossopharyngeal nerve caused repetitive bursts of very high frequency (up to 400 impulses/ sec) in inspiratory motoneurons, with disruption of their normal phasic activity. The latency of the motoneuron response to electrical stimulation of the glossopharyngeal nerve ranged from 15–30 msec and varied with respiratory phase, being shorter during spontaneous inspiratory activity.Phrenic motoneurons were divided according to their order of recruitment during inspiratory activity, and the later recruited (high-threshold) units had significantly larger spike amplitudes than motoneurons which discharged throughout inspiration. High-threshold motoneurons also achieved higher maximum discharge frequencies in response to electrical stimulation of the glossopharyngeal nerve, and it is suggested that these properties are important in increasing the tension developed by respiratory muscles near the end of inspiration when there is greater elastic resistance to lung inflation.  相似文献   

5.
Speech motor coordination most likely involves synaptic coupling among neural systems that innervate orofacial, laryngeal, and respiratory muscles. The nature and strength of coupling of the orofacial with the respiratory and laryngeal systems was studied indirectly by correlating orofacial speeds with fundamental frequency, vocal intensity, and inspiratory volume during speech. Fourteen adult subjects repeated a simple test utterance at varying rates and vocal intensities while recordings were obtained of the acoustic signal and movements of the upper lip, lower lip, tongue, jaw, rib cage, and abdomen. Across subjects and orofacial speed measures (14 subjects x 4 structures), significant correlations were obtained for fundamental frequency in 42 of 56 cases, for intensity in 35 of 56 cases, and for inspiratory volume in 14 of 56 cases. These results suggest that during speech production there is significant neural coupling of orofacial muscle systems with the laryngeal and respiratory systems as they are involved in vocalization. Comparisons across the four orofacial structures revealed higher correlations for the jaw relative to other orofacial structures. This suggests stronger connectivity between neural systems linking the jaw with the laryngeal and respiratory systems. This finding may be relevant to the frame/content theory of speech production, which suggests that the neural circuitry involved in jaw motor control for speech has evolved to form relatively strong linkages with systems involved in vocalization.  相似文献   

6.
目的:对人的喉外肌(甲状舌骨肌、胸骨甲状肌、胸骨舌骨肌和肩胛舌骨肌)与喉内肌(甲杓肌)进行同步肌电图的研究。方法:检测8例患者完全单侧声带麻痹的同步肌电图。结果:①发音时,各喉外肌均呈与甲杓肌基本同步的密集型放电,音量大,放电强。发音条件一致时,诸喉外肌的放电不同,发不同的元音也不同;②吞咽及咳嗽时诸喉外肌均呈密集型强放电;但较甲杓肌提前约300~500 ms,屏气时诸喉外肌均呈与甲杓肌基本同步的密集型放电;③深吸气时诸喉外肌也放电,但放电强度低于发音及各种括约肌活动时的电位。结论:用支配肩胛舌骨肌的神经再支配麻痹的甲杓肌,恢复声带内收功能更符合生理特征。  相似文献   

7.
8.
This study addresses the following question: does the ventilatory control system adjust total ventilation in accord with the regulatory demands of the physiological dead space ventilation (VD) when the breathing frequency changes, and if so, how? A simple proportionality between the amplitude of the respiratory motor output (VT) and the respiratory period (TTOT) during such changes will not provide for regulation of arterial (PaCO2); the relationship requires a positive intercept of magnitude VD, i.e. VT=VATTOT+VD. We therefore determined the relationship between VT and TTOT when breathing frequency was changed in a ramp-like manner (from 6 to 20 cycles/min), in an imperceptible manner, during a paced-breathing protocol in which the subjects voluntarily triggered the breath onset, thereby imposing a rhythm different from the one spontaneously generated by the automatic central pattern generators (CPGs). While the resulting breath magnitude was strongly correlated to the breath duration (slope: 6.50+/-2.91 l/min) there was, in all cases, a statistically significant positive intercept on the VT axis (238+/-112 ml) leading to a relationship of the form: VT=VATTOT+VD. Consequently, the ventilatory output changed as a function of the breathing frequency-induced dead space ventilation changes, maintaining end-tidal PCO2 (PETCO2) constant. These results are consistent with a centrally set program for generating regulatory combinations of respiratory cycle durations and magnitudes that "take into account" the f-induced variation of dead space ventilation. This appears not to be dependent on the structures producing the respiratory rhythm (cortex versus central pattern generators). It is suggested that, during volitional control of breathing rhythm, the signal used for adjusting the magnitude to the timing of the ventilatory output is derived from information contained in the duration of preceding expiration.  相似文献   

9.
10.
The rhythmic activity observed in locomotion is generated by local neuronal networks in the spinal cord. The alternating patterns are produced by reciprocal connections between these networks. Synchronous rhythmic activity, but not alternation, can be reproduced in disinhibited networks of dissociated spinal neurons of rats. This suggests that a specific network architecture is required for pattern generation but not for rhythm generation. Here we were interested in the recruitment of neurons to produce population bursts in unstructured and minimally structured cultures of rat spinal cord grown on multielectrode arrays. We tested whether two networks, connected by a small number of axons, could be functionally separated into two units and generate more complex patterns such as alternation. In the unstructured cultures, we found that the recruitment of the neurons into bursting populations is divided into two steps: the fast recruitment of a trigger network, consisting of intrinsically firing cells connected in networks with short delays, and slow recruitment of the rest of the network. One or several trigger networks were observed in a single culture and could account for variable patterns of propagation. In the minimally structured cultures, a functional separation between loosely connected networks was achieved. Such separation led either to an independent bursting between the networks or to synchronized bursting with long and variable delays. However, no qualitatively novel pattern such as alternation could be generated. In addition, we found that the strength of reciprocal inhibitory connections was modulated by spontaneous activity.  相似文献   

11.
We report on the optical imaging of spontaneous respiratory neuron bursts in the ventrolateral medulla (VLM) of medullary slices or brain stem-spinal cord preparations. A medullary slice with a thickness of 1.0-1.4 mm or brain stem-spinal cord from 0- to 4-d-old rats was stained with fluorescent voltage-sensitive dye, RH795. Optical signals were recorded as a fluorescence change by using an optical recording apparatus with a 128 x 128 photodiode array and a maximum time resolution of 0.6 ms. Motoneuronal activity was simultaneously recorded at the hypoglossal nerve roots or fourth cervical ventral roots. Fluorescence changes corresponding to the spontaneous inspiratory burst activity were detected in the hypoglossal nucleus and VLM in slice preparations, and in a limited area extending rostrocaudally in the VLM of the brain stem-spinal cord preparation. These measurements did not require signal averaging by multiple trials. Results suggest that inspiratory neurons are localized in more compact form at the level of the nucleus ambiguous than at the more rostral VLM, and that peak activity during the inspiratory phase propagates from the caudal to the rostral VLM. In 60% of brain stem-spinal cord preparations, weak and scattered fluorescence changes preceding the inspiratory burst activity were detected more predominantly in the rostral part of the VLM. The present findings show the feasibility of optical recordings for the in vitro analysis of spontaneous respiratory neuron activity in the medulla.  相似文献   

12.
13.
14.
It has become increasingly recognized and more widely acknowledged during the past several decades, that a complex relationship exists between behavior associated with emotion and the human cardiovascular (CV) system. Early studies focused on the interplay between negative emotions and elevated CV risk, an effect that has in large part been attributed to increased adrenergic activity. Thus, a variety of adverse CV effects ranging from sudden cardiac death triggered by natural disasters such as earthquakes to transient myocardial stunning resulting from heightened sympathetic overload have been identified in response to acute emotional distress. In fact, the biologic interplay between emotion and CV health has been greatly enhanced through studies of the vascular endothelium. As the largest organ in humans, the inner blood vessel lining serves as a conduit for the transfer of blood cells, lipids and various nutrients across the lumen to neighboring tissues. Healthy endothelial cells secrete vasoactive chemicals, most notably endothelial-derived relaxing factor or nitric oxide (NO), that effects smooth muscle relaxation and vessel dilation via a cyclic guanosine monophosphate (cGMP) dependent protein kinase signaling pathway. In addition, endothelial derived NO may reduce vascular inflammation by attenuating or inhibiting leukocyte adhesion and subendothelial transmigration as well as decreasing platelet activation via cGMP mediated pathways. Taken together, studying the endothelium provides an exceptional opportunity to advance our understanding of the potentially important interrelationship between emotions and the vasculature. Premised on the identification of physiological and biochemical correlates, the former was demonstrated after intracoronary administration of acetylcholine yielded paradoxical endothelial vasoconstriction in response to mental stress exercises. More recently, the brachial artery reactivity test (BART) has permitted endothelial function to be assessed in a non-invasive manner. In addition to traditional CV risk factors, exposure to negative emotions including mental stress and depression have been associated with reduced endothelial vasoreactivity as measured by BART. Whether mirthful laughter has the opposite effect garnered consideration following the discovery that μ3 opiate receptors were expressed in the vascular endothelium. Because mirthful laughter induces the release of β-endorphins which in turn have high affinity for μ3 opiate receptors, we hypothesize that such positive emotions lead to the direct release of NO and associated biological consequences. Indeed, our studies have demonstrated opposing effects on endothelial vasoreactivity between those previously established (e.g., mental stress induced by negative visual and/or auditory stimuli) and those induced after mirthful laughter, thereby providing a potential mechanistic link between positive emotions and beneficial effects on the vasculature. This article reviews the relevant physiology and comments on the potentially wider clinical implications in the integration of this process to improve vascular health.  相似文献   

15.
Summary Influences of the wake-sleep states on spontaneous activity of thalamic ventro-basal neurons have been studied in the chronic cat using the following analyses for cell discharges: mean firing rate, interspike histogram and joint interval histogram (J.I.H.). While slow wave sleep is accompagnied by a characteristic firing pattern it is more difficult to compare spontaneous unit activity during wakefulness (W) and desynchronised sleep (D).A detailed analysis (especially of the J.I.H.) of the same neuron during the three states indicates marked differences between W and D; on the contrary, the intraburst pattern shows definite similarities between D and S. The greatest stability in the firing pattern of a given neuron is found during S on long recording. During D the variability in the firing pattern is mainly due to phasic activity but may also be related to tonic changes.  相似文献   

16.
Our goal was to determine whether time-dependent changes in respiratory motor output in vitro could be minimized by altering bath solution composition. Adult turtle brainstems were bathed in standard solution, nutrient-rich Dulbecco's Eagle media (100 or 25% concentration), or standard solution with phenylbiguanide (PBG, 5-HT3 agonist which increases respiratory drive). Except for a 63% frequency increase in PBG solution, hypoglossal bursts were unaltered within 100 min of observation. Respiratory activity was abolished within 7 h in 100% Dulbecco's compared with a mean of 24-31 h in other test solutions. At 12 h, burst frequency decreased faster in standard solution and 25% Dulbecco's (-0.28+/-0.07 and -0.13+/-0.05 bursts/h, respectively) compared with PBG solution (-0.09+/-0.04 bursts/h); amplitude declined at approximately 2%/h in all solutions. The tendency for episodic discharge decreased gradually in standard solution, but was eliminated in 25% Dulbecco's and PBG solution. Certain bath solutions may minimize time-dependent frequency reductions but may also cause breathing pattern changes.  相似文献   

17.
The aim of this study was to assess the relative torque (a percentage of the maximal capacity of torque production) at the ankle joint in young and elderly adults during different postural tasks of increasing difficulty. Seven young (~22 years old) and seven older (~80 years old) men took part in this investigation. Maximal agonist torque was estimated from resultant and antagonist torques in both populations in plantar-flexion (PF) and dorsi-flexion (DF). The sum of PF and DF maximal agonist torques was considered as the maximal capacity of torque production. The centre of pressure (CoP) displacement was analysed during Normal Quiet Stance, Romberg and One Leg Balance. During maximal contractions and postural tasks, the electromyographic (EMG) activity was simultaneously recorded on the triceps surae and tibialis anterior muscles. We observed that the maximal capacity of torque production was negatively correlated with the CoP displacement, whatever the population and the postural tasks. The relative torque during all postural tasks was positively correlated with the CoP displacement in both populations. Moreover, older adults needed more EMG activity than young adults to produce the same torque. From this knowledge, one can assume that increasing strength in the muscles of the ankle joint may improve postural stability in older adults; this might have implications in the prevention of falls in elderly persons and in rehabilitation programs for elderly people who have already fallen.  相似文献   

18.
1. The relation between thalamic and cortical spontaneous spindles was investigated in cats anaesthetized with barbiturates.2. Simultaneous recordings with multiple electrodes in the thalamus and cortex revealed a high correlation between thalamic and cortical spindle activity, both with regard to the occurrence of the spindles as well as to their individual waves, provided a critical location of the electrodes was secured. The results indicate a point-to-point relation between a group of thalamic cells and a small cortical area to which these cells project. In the spontaneous rhythm, the cortical columns are probably individually controlled by a thalamic rhythmic entity. This point-to-point relation was found in all the major sensory projection systems and in one thalamic ;association' nucleus and its corresponding ;association' cortex.3. Cortical barbiturate spindles appeared either as local spindles in a restricted cortical area or as compound spindles in several areas. Spindles recorded from electrodes separated by 2 mm or more were clearly different with regard to intraspindle wave frequency, duration, and the time of start and stop of the spindle. These differences increased with increasing distance between the electrodes, and were most pronounced when the corticograms of the two hemispheres were compared.4. Spontaneous spindle activity interfered with orthodromic transmission through n. ventralis posterolateralis (VPL) and medial geniculate nucleus (MG), judged by depression of the thalamic and cortical responses to peripheral nerve volleys or clicks. Such inhibition required the afferent volley to be delivered at a particular time of the spontaneous oscillations. Further, orthodromic volleys reset the rhythmic spindle waves in the appropriate thalamic and cortical areas.5. These findings lead to a new concept of the thalamic pace-maker function. During barbiturate anaesthesia, small assemblages of thalamic neurones seem to have the ability to generate independent rhythmic discharges, and thereby control the rhythm of the particular cortical column to which this thalamic group projects.6. During barbiturate anaesthesia, many facultative pace-makers seem to be present in the thalamus. The total number may be as large as 25,000-35,000. Usually, many of these rhythmic thalamic units beat in synchrony or near synchrony.  相似文献   

19.
20.
O Klostermann  P Wahle 《Neuroscience》1999,92(4):1243-1259
The physiological and morphological properties of interneurons in infragranular layers of rat visual cortex have been studied in organotypic cortex monocultures and thalamus-cortex co-cultures using intracellular recordings and biocytin injections. Cultures were prepared at the day of birth and maintained for up to 20 weeks. Twenty-nine interneurons of different types were characterized, in addition to 170 pyramidal neurons. The cultures developed a considerable degree of synaptically driven "spontaneous" bioelectric activity without epileptiform activity. Interneurons in cortex monocultures and thalamus-cortex co-cultures had the same physiological and morphological properties, and also pyramidal cell properties were not different in the two culture conditions. All interneurons and the majority of pyramidal cells displayed synaptically driven action potentials. The physiological group of fast-spiking interneurons included large basket cells, columnar basket cells (two cells with an arcade axon) and horizontally bitufted cells. The physiological group of slow-spiking interneurons included Martinotti cells and a "long-axon" cell. Analyses of the temporal patterns of activity revealed that fast-spiking interneurons have higher rates of spontaneous activity than slow-spiking interneurons and pyramidal cells. Furthermore, fast-spiking interneurons fired spontaneous bursts of action potentials in the gamma frequency range. We conclude from these findings that physiological and morphological properties of interneurons in organotypic mono- and co-cultures match those of interneurons characterized in vivo or in acute slice preparations, and they maintain in long-term cultures a well-balanced state of excitation and inhibition. This suggests that cortex-intrinsic or cell-autonomous mechanisms are sufficient for the expression of cell type-specific electrophysiological properties in the absence of afferents or sensory input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号