首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wound healing disorders may often present in patients with head and neck cancer after surgical interventions, particularly in preirradiated tissue. Inflammatory changes and the expression of cytokines can lead to induction of fibrosis. The isoforms of the transforming growth factor beta (TGFbeta1-3) play a key role for this process. It has been shown that radiation treatment associated fibrosis is induced by TGFbeta1 and TGFbeta2, although the influence of radiation on the expression of the TGFbeta receptor-II (TGFbetaR-II) involved in the signal transduction of TGFbeta remains elusive. The objective of this in vivo study was to analyze the expression profile of TGFbetaR-II in the graft bed and in the transition area between graft and graft bed after surgery with and without prior radiation treatment to compare with the expression profiles of activated TGFbeta1 and latency-associated peptide. A total of 48 Wistar rats (male, weight 300-500 g) were used in the study. Eighteen rats were irradiated in the neck region (3 x 10 Gy) without transplantation. A free myocutaneous gracilis flap was transplanted in 30 rats, of which 16 animals were preirradiated in the neck region (3 x 10 Gy) and 14 animals were not irradiated at all. Tissue samples were taken postoperatively from the transition area between the graft and the graft bed and from the graft bed itself after 3, 7, 14, and 28 days. Tissue samples were taken from the irradiated neck region and the non-irradiated groin region 0, 4, 7, 11, 14, and 28 days after the end of the exposure. The expression of TGFbetaR-II, activated TGFbeta1 and latency-associated peptide was analyzed immunohistochemically both qualitatively and quantitatively (labeling index). The success rate for graft healing was 75% in the previously irradiated group with 30 Gy, and 86% in the non-irradiated group. Following radiation alone a significantly (p = 0.04) increased TGFbetaR-II expression in the neck was revealed 2-4 weeks following irradiation compared to non-irradiated skin. Whereas only minor differences in TGFbetaR-II expression were observed following surgery between the groups with and without prior radiation in the transition area between the graft and the graft bed, the group undergoing prior radiation and subsequent grafting showed significantly increased expression in the bed compared to the non-preirradiated group with a maximum on postoperative day 7 (week 1, p = 0.003; week 2-4, p < 0.001). In irradiated tissues the up-regulation of TGFbetaR-II expression correlated with an increase of activated TGFbeta1 and latency-associated peptide expression compared to non-irradiated tissues. After irradiation, a significantly increased TGFbetaR-II expression was identified in the irradiated graft bed, which may be the reason for delayed reepithelialization and fibrosis. Exogenous blocking or TGFbetaR-II inhibitors could therefore represent a new therapeutic approach for improving wound healing after preoperative radiotherapy.  相似文献   

2.
Incisional wound healing in transforming growth factor-β1 null mice   总被引:1,自引:0,他引:1  
Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.  相似文献   

3.
In the dynamic and complex process of wound healing, locally produced growth factors are important mediators, although their actual roles have not been fully established. In the present study, the presence of transforming growth factor-beta1 and -alpha during the re-epithelialization of full-thickness wounds was investigated in an in vitro model of wound healing in human skin. The amounts of transforming growth factor-beta1 and -alpha secreted from the wound area were measured with enzyme immunoassays, and immunohistochemistry was used to study the localization of these two growth factors in the healing wound. The wounds were followed until they were completely re-epithelialized. The results showed a continuous increase in secreted transforming growth factor-beta1 throughout the re-epithelialization phase of healing followed by a decrease after its completion. The keratinocytes migrating out from the wound edges showed intense staining for transforming growth factor-beta1 which declined to the level of the surrounding epidermis after the wound was covered by a new epidermis. After the skin was wounded, a decrease both in secreted transforming growth factor-alpha and in immunostaining for this growth factor was apparent. Even though a minor increase in the immunoreactivity for transforming growth factor-alpha occurred after the completion of re-epithelialization, no increase in secreted transforming growth factor-alpha could be detected by enzyme immunoassay. These data suggest that keratinocytes modulate their expression of transforming growth factor-beta1 and -alpha during the wound healing process in human skin and that these changes may be controlled in part by autocrine pathways.  相似文献   

4.
The growth factor, transforming growth factor-beta1, which under normal circumstances promotes wound healing by stimulating local fibroblasts to produce collagen and other extracellular matrix proteins, has also been implicated as the primary causative agent of fibrosis. Because transforming growth factor-beta1 is capable of stimulating its own production by fibroblasts, its normally beneficial effects may become amplified to the point where excess extracellular matrix accumulation occurs, thereby causing abnormal scarring. Therefore, strategies that block or counter the effects of transforming growth factor-beta1 may be useful in preventing or decreasing fibrosis. One such strategy is the use of glucocorticoid steroids such as dexamethasone, which normally have the opposite effect of transforming growth factor-beta1, namely the impairment of wound healing. When used in conjunction with transforming growth factor-beta1, glucocorticoid steroids may normalize the effect of transforming growth factor-beta1 on collagen synthesis, thereby reducing excessive collagen deposition and fibrosis.  相似文献   

5.
Wound healing in horses is often complicated by wound infection, exuberant granulation tissue, and hypertrophic scars, especially when wounds are located on the limbs. Wound healing in ponies is less problematic, characterized by a greater degree of wound contraction and a more intense initial inflammatory response. Because both processes are influenced by transforming growth factor-beta (TGF-beta), it was hypothesized that the better wound healing in ponies was associated with different TGF-beta profiles. A series of small wounds was created on the distal limbs and hindquarters of ponies and horses. Tissue samples were harvested on alternate days until day 13 postwounding, and levels of total and active TGF-beta were determined. Levels of TGF-beta were significantly higher in pony wounds than in those of horses. The TGF-beta profile differed between limb and body wounds, with levels in body wounds decreasing at the end of the experiment and persisting in limb wounds. In ponies, the higher TGF-beta levels can, to a large extent, explain the more intense inflammatory response and may explain the greater degree of wound contraction. Apparently adequate levels in the limbs fail to result in greater wound contraction, probably because of a stronger fixation of the skin. The persistence of elevated levels of TGF-beta may result in the production of exuberant granulation tissue. Further research on the temporal patterns of the different TGF-beta isoforms seems indicated, because manipulation of TGF-beta levels appears to be a promising option for intervention in problematic wound healing in horses.  相似文献   

6.
7.
8.
Tensile strength of 2-cm, full-thickness, surgically incised porcine skin wounds sealed with fibrin sealant was enhanced compared to conventionally sutured wounds at 6 hours postwounding, but was significantly reduced after 3 days. Supplementation of fibrin sealant with transforming growth factor-beta2 (TGF-beta2) reversed the inhibitory effects of fibrin sealant on tensile strength at 3 days, and enhanced tensile strength at 7 days compared to suture or fibrin sealant alone. By 14 days, the tensile strengths of all wounds were similar, although wounds treated with fibrin sealant supplemented with TGF-beta2 showed a small, but statistically significant, improvement in wound strength compared to wounds treated with fibrin sealant alone. Histological assessment at day 7 revealed significant remnants of fibrin sealant at the wound site following fibrin sealant treatment alone, while wounds treated with fibrin sealant supplemented with TGF-beta2 or suture exhibited fibroblast infiltration and extracellular matrix deposition. At day 7, TGF-beta was immunolocalized in the base and margins of only wounds treated with fibrin sealant supplemented with TGF-beta2. A significant increase in matrix metalloproteinase-9 activity was found in fibrin sealant-treated wounds at day 7 as compared to sutured wounds. Addition of TGF-beta to the fibrin sealant suppressed the up-regulation of matrix metalloproteinase-9 in these wounds. These results suggest that fibrin sealant supplemented with TGF-beta may provide superior wound healing as compared to fibrin sealant alone.  相似文献   

9.
Wound healing is impaired in the diabetic state because of, at least in part, low expression of growth factors. Individual growth factors can partially activate healing, yet the actual wound environment presents a dynamic continuum of multiple cellular signals. Complex interactions among growth factors and target cells can have synergistic effects, and several examples of combinatorial, in vivo activity are evident in the literature. In this study, the implantation of a combination of basic fibroblast growth factor and transforming growth factor-beta in rats induced fivefold to sevenfold increases in granulation tissue formation in comparison with implantation of each growth factor alone. Diabetes was induced in adult, male Sprague-Dawley rats with streptozotocin. Incisional wounds and sponge granulation tissue were produced in separate groups and then treated with an injection of 2 microg transforming growth factor-beta1 combined with 10 microg basic fibroblast growth factor on day 3. DNA, collagen, and protein were analyzed in granulation tissue on days 7 and 9, and biomechanical properties of incisions were tested on days 7, 14, and 21. The combination of transforming growth factor-beta1 and basic fibroblast growth factor had marked, positive effects on biochemical parameters of wound healing and reversed the tensile strength deficit of diabetic wounds. Nonradioactive in situ hybridization showed increased expression of messenger RNA for type I and III procollagen and transforming growth factor-beta1 in normal and diabetic wounds, whereas ultrastructural examination showed a marked reorganization of collagen fibrils. These findings reinforce the concept that appropriate mixtures of cytokines rather than individual cytokines may more adequately stimulate tissues in cases of impaired wound healing.  相似文献   

10.
Open wounds in the fetal rabbit do not heal by contraction and actually expand between 60% and 90% over a period of 5 days. Experiments were carried out to determine whether transforming growth factor-beta1 can reduce expansion of open wounds in the fetal rabbit. This study was based on the concept that transforming growth factor-beta1 causes differentiation of fibroblasts into contractile fibroblasts or "myofibroblasts." To test this hypothesis, pregnant New Zealand White rabbits underwent laparotomy and hysterotomy on day 24 of gestation. A circular full-thickness cutaneous wound was made on the back of each fetus. After wounding, either vehicle alone or vehicle with transforming growth factor-beta1 was applied topically to the wound site, and each fetus was then returned to the uterus. The hysterotomy and laparotomy were closed in standard fashion. On postoperative day 5, fetuses were harvested by repeat Cesarean section. Wound areas were determined from photographs, calculated as percentage of original wound size, and expressed in square millimeters. In addition, a portion of each wound was fixed and processed for histologic and immunohistochemical analysis. At harvest, the control wounds had expanded by an average of 87% of the original area. In marked contrast, the transforming growth factor-beta1-treated wounds had only expanded an average of 16%. Thus, transforming growth factor-beta1 significantly decreased the area of the open fetal wounds compared with control (p < 0.001). By histologic examination, no significant difference was found between the test group and the control group with regards to inflammation, neovascularization, collagen deposition, elastin content, glycosaminoglycan content, or hyaluronic acid content. Most notably, however, there was an increased density of fibroblasts in the transforming growth factor-beta1-treated group. In addition, immunohistochemical staining with an anti-alpha-smooth muscle actin antibody showed the presence of contractile fibroblasts in the wound margins in the transforming growth factor-beta1-treated group but failed to show any positive-staining fibroblasts in the matrices of the control group. These results indicate that open wounds in the fetal rabbit treated in vivo with transforming growth factor-beta1 were significantly smaller than control wounds. This process appears to result from the recruitment and differentiation of normal dermal fibroblasts into contractile fibroblasts containing alpha-smooth muscle actin.  相似文献   

11.
Fibrosis is a consequence of injury which is characterized by accumulation of excess collagen and other extracellular matrix components, resulting in the destruction of normal tissue architecture and function. Transforming growth factor-beta, a potent wound healing agent, has also been shown to be an agent that can produce fibrosis because it is a potent stimulator of collagen synthesis. Both glucocorticoids and bleomycin have recently been shown to affect collagen synthesis in opposite directions, by utilizing a common pathway of involving transforming growth factor-beta activator protein binding to the transforming growth factor-beta element. This article presents a mechanistic overview of collagen synthesis regulation by glucocorticoids and bleomycin through the transforming growth factor-beta pathway.  相似文献   

12.
创伤愈合动物模型的研究进展   总被引:1,自引:0,他引:1  
创伤愈合,一直是医学研究中最重要的课题之一.然而,其相关的研究进展却长期受限于以下两方面因素的影响:①缺乏合适的异常瘢痕形成的动物模型;②缺乏敏感的能定量反映创伤和创伤修复的方法[1].动物模型对于创伤愈合研究来说,其重要性不容置疑.就如同发生在人类的其他各系统疾病一样,要深刻认识它们的本质,了解其相应病理改变或测试某一种药物或治疗方法对其是否有效和安全,都应该先在相应的动物实验模型上进行研究和验证,然后才能在临床上应用和推广.……  相似文献   

13.
Transforming growth factor-β (TGF-β) has been considered the principal cytokine involved in the pathogenesis of renal fibrosis. In the present study, we evaluated TGF-β activity in occasional samples from 22 normal individuals and 29 patients (11 with focal glomerulosclerosis, 11 with membranous nephropathy, five with Berger disease, one with type I membranoproliferative glomerulonephritis and one with postinfectious glomerulonephritis) using a CCL-64 mink lung cell growth inhibition assay.
A significantly increased urinary TGF-β activity (reported in relation to urine creatinine, Ucreat. and median) was observed in patients with glomerulonephritis compared with normal individuals ( P <0.01). The patients with Berger disease [median (Md)=9.96/10 μg Ucreat.], membranous glomerulonephritis (Md=7.23/10 μg Ucreat.) and focal glomerulosclerosis (Md=16.6/10 μg Ucreat.) showed higher urinary TGF-β than normal individuals (Md=1.09/10 μg Ucreat.) ( P <0.01). We found a positive correlation between the TGF-β activity in the urine of these patients and the incidence of segmental glomerulosclerosis ( r =0.45, P <0.05) and their plasma creatinine levels ( r =0.87, P <0.01). A negative correlation was observed between the TGF-β activity in the urine of these patients and their creatinine clearance ( r =−0.75, P <0.01).
Our data suggest that measurement of urinary TGF-β activity could be a useful non-invasive procedure for the evaluation of renal TGF-β production, permitting the assessment of prognosis and the evaluation of therapeutic efficacy in patients with renal disease.  相似文献   

14.
SUMMARY: Transforming growth factor-β (TGF-β) has been considered the principal cytokine involved in the pathogenesis of renal fibrosis. In the present study, we evaluated TGF-β activity in occasional samples from 22 normal individuals and 29 patients (11 with focal glomerulosclerosis, 11 with membranous nephropathy, five with Berger disease, one with type I membranoproliferative glomerulonephritis and one with postinfectious glomerulonephritis) using a CCL-64 mink lung cell growth inhibition assay.
A significantly increased urinary TGF-β activity (reported in relation to urine creatinine, Ucreat, and median) was observed in patients with glomerulonephritis compared with normal individuals ( P <0.01). the patients with Berger disease [median (Md) = 9.96/10 μg Ucreat.], membranous glomerulonephritis (Md = 7.23/10 μg Ucreat.) and focal glomerulosclerosis (Md = 16.6/10 μg Ucreat.) showed higher urinary TGF-β than normal individuals (Md = 1.09/10 μg Ucreat.) ( P <0.01). We found a positive correlation between the TGF-β activity in the urine of these patients and the incidence of segmental glomerulosclerosis ( r = 0.45, P <0.05) and their plasma creatinine levels ( r = 0.87, P <0.01). A negative correlation was observed between the TGF-β activity in the urine of these patients and their creatinine clearance ( r =−0.75, P <0.01).
Our data suggest that measurement of urinary TGF-β activity could be a useful non-invasive procedure for the evaluation of renal TGF-β production, permitting the assessment of prognosis and the evaluation of therapeutic efficacy in patients with renal disease.  相似文献   

15.
Inflammation and wound healing are inextricably linked and complex processes, and are deranged in the setting of chronic, nonhealing diabetic foot ulcers (DFU). An ideal therapy for DFU should both suppress excessive inflammation while enhancing healing. We reasoned that biological simulation would clarify mechanisms and help refine therapeutic approaches to DFU. We developed an agent-based model (ABM) capable of reproducing qualitatively much of the literature data on skin wound healing, including changes in relevant cell populations (macrophages, neutrophils, fibroblasts) and their key effector cytokines (tumor necrosis factor-alpha [TNF], interleukin [IL]-1beta, IL-10, and transforming growth factor [TGF]-beta1). In this simulation, a normal healing response results in tissue damage that first increases (due to wound-induced inflammation) and then decreases as the collagen levels increase. Studies by others suggest that diabetes and DFU are characterized by elevated TNF and reduced TGF-beta1, although which of these changes is a cause and which one is an effect is unclear. Accordingly, we simulated the genesis of DFU in two ways, either by (1) increasing the rate of TNF production fourfold or (2) by decreasing the rate of TGF-beta1 production 67% based on prior literature. Both manipulations resulted in increased inflammation (elevated neutrophils, TNF, and tissue damage) and delayed healing (reduced TGF-beta1 and collagen). Our ABM reproduced the therapeutic effect of platelet-derived growth factor/platelet releasate treatment as well as DFU debridement. We next simulated the expected effect of administering (1) a neutralizing anti-TNF antibody, (2) an agent that would increase the activation of endogenous latent TGF-beta1, or (3) latent TGF-beta1 (which has a longer half-life than active TGF-beta1), and found that these therapies would have similar effects regardless of the initial assumption of the derangement that underlies DFU (elevated TNF vs. reduced TGF-beta1). In silico methods may elucidate mechanisms of and suggest therapies for aberrant skin healing.  相似文献   

16.
Transforming growth factor-beta (TGF-beta) is known to affect nearly every aspect of wound repair. Many of the effects have been extensively investigated; however, the primary effect of endogenously derived TGF-beta on wound reepithelialization is still not completely understood. To examine this, two types of wounds were made on a transgenic mouse over-expressing TGF-beta1. Full-thickness back wounds were made to compare the wound healing process in the presence of compensatory healing mechanisms. Superficial partial-thickness ear wounds involving only the epidermis were made to determine the effect of TGF-beta on reepithelialization. In the partial-thickness ear wounds, at later time points, the transgenic group had smaller epithelial gaps than the wild-type mice. A greater number of actively proliferating cells, as determined by bromodeoxyuridine incorporation, was also found in the transgenic mice at post-injury day 8. These results show that TGF-beta1 stimulates the rate of reepithelialization at later time points in partial-thickness wounds. However, in the full-thickness back wounds, the transgenic animals exhibited a slower reepithelialization rate at all time points and the number of bromodeoxyuridine-positive cells was fewer. Our findings would suggest that the overexpression of TGF-beta1 speeds the rate of wound closure in partial-thickness wounds by promoting keratinocyte migration. In full-thickness wounds, however, the overexpression of TGF-beta1 slows the rate of wound reepithelialization.  相似文献   

17.
HYPOTHESIS: Transforming growth factor beta(3) (TGF-beta(3)) promotes fascial wound healing in a new animal model, as measured by wound breaking strength, collagen deposition, and cellular proliferation. DESIGN/INTERVENTION: Bilateral, longitudinal incisions were made in the anterior rectus sheaths of 24 male New Zealand white rabbits. One incision was treated with 1 microg of TGF-beta(3); the contralateral incision served as a control. The wounds were harvested at 1, 2, 3, 4, 6, and 8 weeks after creation ("wounding"). MAIN OUTCOME MEASURES: Wound tissue was tested for breaking strength using a tensiometer and processed for histological examination of collagen deposition and cellular proliferation at all time points after wounding. Collagen deposition and cellular proliferation were measured in histological cross sections of wounds with Masson trichrome staining and proliferating cell nuclear antigen immunohistochemistry, respectively. RESULTS: At all time points after wounding, treatment with TGF-beta(3) significantly increased the wound breaking strength (up to 138%) and collagen deposition (up to 150%) over the control group. Cellular proliferation was increased during the first 3 weeks after wounding (up to 147%), but returned to baseline levels by the fourth week. CONCLUSIONS: Transforming growth factor beta(3) promotes fascial wound healing. In this new animal model of fascial wound healing, TGF-beta(3) increased fascia breaking strength, collagen deposition, and cellular proliferation. These results are similar to findings in cutaneous wound models and demonstrate, for the first time, a pharmacologic agent to accelerate fascial healing.  相似文献   

18.
We present a novel mathematical model for collagen deposition and alignment during dermal wound healing, focusing on the regulatory effects of transforming growth factor-beta (TGFbeta.) Our work extends a previously developed model which considers the interactions between fibroblasts and an extracellular matrix composed of collagen and a fibrin based blood clot, by allowing fibroblasts to orient the collagen matrix, and produce and degrade the extracellular matrix, while the matrix directs the fibroblasts and control their speed. Here we extend the model by allowing a time varying concentration of TGFbeta to alter the properties of the fibroblasts. Thus we are able to simulate experiments which alter the TGFbeta profile. Within this model framework we find that most of the known effects of TGFbeta, i.e., changes in cell motility, cell proliferation and collagen production, are of minor importance to matrix alignment and cannot explain the anti-scarring properties of TGFbeta. However, we find that by changing fibroblast reorientation rates, consistent with experimental evidence, the alignment of the regenerated tissue can be significantly altered. These data provide an explanation for the experimentally observed influence of TGFbeta on scarring.  相似文献   

19.
To elucidate the role for transforming growth factor-beta isoforms (beta(1), -beta(2), and -beta(3)) in wound repair, we used isoform-specific antibodies to detect the spatial and temporal expression of the latent and mature/active transforming growth factor-beta isoforms by immunohistochemical localization through 21 days after excisional and incisional wounding of ovine skin. Although incisional and excisional wounds showed similar patterns of transforming growth factor-beta immunoreactivity, we found a differential temporal and spatial expression of the latent and mature transforming growth factor-beta isoforms throughout wound repair. Specifically, 1 day after wounding, there was a marked increase in transforming growth factor-beta isoforms in the epithelium adjacent to the wound, epidermal appendages, and the cells and matrix of the granulation tissue. At this time, transforming growth factor-beta(3) isoform was the most abundant. Most notably, the epidermis adjacent to the wound was intensely immunoreactive for all transforming growth factor-beta isoforms 1 day after injury. However, the migrating epithelium, derived from both the hair follicles and the wound margins, was completely devoid of immunoreactive transforming growth factor-beta until reepithelialization was complete. Within the inflammatory exudate, there was a distinct band of leukocytes that was immunoreactive for transforming growth factor-beta(2) and -beta(3) 1 day after injury and 1 day later for transforming growth factor-beta(1). Although transforming growth factor-beta(1) and -beta(2), latent transforming growth factor-beta(2), transforming growth factor-beta(3), and latent transforming growth factor-beta(3) immunostaining was present in the numerous fibroblasts and other dermal cells, latent transforming growth factor-beta(1) was only associated with the extracellular matrix. In general, immunoreactivity remained high until day 7 after wounding and slowly subsided over time. However, by day 21, immunostaining had not returned to normal and the original wound was replete with immunoreactive fibroblasts and a dense, immunostained extracellular matrix. Thus, although the dynamic presence of transforming growth factor-beta isoforms exemplifies its positive role in the wound repair process, its persistence together with its known potent effects on matrix accumulation, supports its role in scar formation.  相似文献   

20.
The perforated rat mesentery model was used to study the effect of transforming growth factor-beta (TGF-beta) on connective tissue repair and influx of macrophages into the peritoneal cavity during such repair. Sprague-Dawley rats were laparotomized, and mesenteric wounds were made with a scalpel. A daily intraperitoneal injection of 0.5 microg TGF-beta was given for either 2 or 4 days. After 1 to 10 days, the animals received an intravenous injection of tritium-labeled thymidine before decapitation. Macrophages were collected by peritoneal washing, and the number of closed perforations was counted. Peritoneal cells were quantitated and a labeling index was determined by autoradiography. TGF-beta given for either 2 (p < 0.001) or 4 (p < 0.004) days accelerated closure of perforations on days 3 to 7 after injury. Laparotomy as such significantly increased leukocyte influx (p < 0.004), as well as macrophage-labeling index (p < 0.02). However, TGF-beta did not significantly influence either leukocyte influx or macrophage-labeling index. We concluded that TGF-beta significantly enhances connective tissue repair in this perforated rat mesentery model and that TGF-beta-induced stimulation of repair is not caused by an increased influx of macrophages into the peritoneal cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号