首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Warm cells were identified by Fura-PE3-based microfluorimetry of Ca2+ in cultured dorsal root ganglion (DRG) neurons. In response to a physiologically relevant stimulus temperature (43°C), a subpopulation of small DRG neurons from new born rats increased the intracellular Ca2+ concentration ([Ca2+]i). Seven percent of the cells responded to the warm stimulus. The stimulus evoked elevation in [Ca2+]i from 52.5±9.5 nM (mean±S.D., n=18) to 171.0±15.6 nM in cells between 15 and 25 μm in diameter. The depletion of extracellular Ca2+ diminished the Ca2+ elevation. The Na+-free condition also diminished the response. We concluded that the heat stimulation opens nonselective cation channels in putative warm cells from DRG neurons.  相似文献   

2.
Dynorphin A is an endogenous opioid peptide that preferentially activates κ-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1–13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both κ-opioid and N-methyl- -aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through κ-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing κ-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both κ-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1–13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1–13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 μM), 2-amino-5-phosphopentanoic acid (100 μM), or 7-chlorokynurenic acid (100 μM)—suggesting that dynorphin A (1–13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (−)-naloxone (3 μM), or the more selective κ-opioid receptor antagonist nor-binaltorphimine (3 μM), exacerbated dynorphin A (1–13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 μM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 μM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates κ-opioid receptors and suggests that κ receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1–13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through complex interactions involving multiple receptors and signaling pathways.  相似文献   

3.
Intracellular magnesium concentration ([Mg2+]i) of cultured dorsal root ganglion (DRG) neurons was measured using the magnesium indicator Mag-Fura-2/AM. [Mg2+]i was 0.48±0.08 mM (mean±SEM, n=23) at rest, and it increased 3-fold by depolarization with a 60-mM K+ solution. The [Mg2+]i increase was observed in the absence of extracellular Mg2+, but the increase disappeared in the absence of extracellular Ca2+. 50 μM cadmium or 100 μM verapamil, a Ca2+ channel blocker, also diminished the rise of [Mg2+]i. The additional measurement of an intracellular Ca2+ concentration ([Ca2+]i) indicated that the [Mg2+]i rise requires a threshold concentration of [Ca2+]i to be reached; above 60 nM. The present results indicate that depolarization induces a Ca2+-influx through voltage dependent Ca channels and this causes the release of Mg2+ from intracellular stores into the cytoplasm.  相似文献   

4.
The aminosteroid U73122 inhibited phospholipase C (PLC)-mediated intracellular Ca2+ release in differentiated and undifferentiated NG108-15 cells, as well as rat dorsal root ganglion (DRG) neurons grown in primary culture. 1 μM U73122 blocked bradykinin (BK)-induced increases in the intracellular free Ca2+ concentration ([Ca2+]i) measured in single cells with indo-1-based dual emission microfluorimetry. A close structural analog, U73343, was without effect. The effects of U73122 were time and concentration-dependent. 1 μM drug produced half maximal inhibition in approximately 3 min. The IC50 for a 20-min exposure was approximately 200 nM. The effects of the compound were irreversible for the duration of experiments as long as 1 h. Treatment with 1 μM U73122, but not U73343 produced a small but significant increase in [Ca2+]i which resulted from Ca2+ release from an intracellular store. It is not clear whether this [Ca2+]i increase resulted from inhibition of PLC or an action on the store directly. In differentiated NG108-15 cells U73122 blocked completely depolarization-induced Ca2+ influx. In contrast, in DRG neurons U73122 inhibited only slightly voltage-sensitive Ca2+ channels. Thus, we caution that U73122 may not be selective at concentrations required for maximal block of PLC and that the selectivity of U73122 is dependent on cell type. Overall, our results are consistent with U73122 inhibiting PLC in neuronal cells and indicate that under the appropriate conditions, this compound is a useful tool for studying inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ mobilization.  相似文献   

5.
ATP receptor-mediated Ca2+ concentration changes were recorded from neocortical neurones in brain slices from 2 week-old rats. To measure the cytoplasmic concentration of Ca2+ ([Ca2+]i) slices were incubated with fura-2/AM, and the microfluorimetry system was focused on an individual cell. During transients the intracellular level of [Ca2+]i in the majority of neocortical neurones (98 of 102) varied in the concentration range of ATP 5–2000 μM between 41.3±5 and 163±7 nM. The rank order of efficacy for purinoreceptor agonists in concentration 100 μM was: ATPγS>ATP>ADPAMP≈Adenosine≈α,β-methylene ATP>UTP. 10 μM PPADS, a P2-purinoreceptor antagonist, reduced the ATP-induced [Ca2+]i response by 26%±4%. After elimination of calcium from extracellular solution the first ATP-induced [Ca2+]i transient decreased to 65±8%, suggesting the participation of metabotropic P2y triggered Ca-release in the generation of the transient. Elevation of cytosolic Ca2+ by activation of plasmalemmal Ca2+ channels failed to potentiate such release indicating the absence of effective reloading of the corresponding stores. No Ca2+-induced Ca2+-release has been observed in the investigated neurons.  相似文献   

6.
The intracellular free calcium ion concentration ([Ca2+]i) of the neuroblastoma × glioma hybrid cell line, NG108-15, was measured using the 19F-nuclear magnetic resonance divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (5F-BAPTA). The basal [Ca2+]i was measured to be 106 ± 14 nM. Treatment with 5 μM lead (Pb) for 2 h produced a 2-fold increase in [Ca2+]i to 200 ± 24 nM and a measurable intracellular free Pb2+ concentration ([Pb2+]i) of 30 ± 10 pM. Intracellular free Zn2+ concentrations ([Zn2+]i) were also observed in the presence of Pb. This represents the first direct demonstration that Pb elevates the [Ca2+]i in neurons, thus providing evidence for a role of [Ca2+]i in mediating the neurotoxicity of Pb.  相似文献   

7.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca(2+)](i)) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by kappa-opioids. [Ca(2+)](i) responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca(2+)](i) increases which were abolished in Ca(2+)-free solution, but unaffected by lanthanum (25 microM) or tetrodotoxin (10(-6) M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd(3+); 250 microM) and amiloride (100 microM) abolished the [Ca(2+)](i) transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca(2+)](i) transients. The kappa-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca(2+)](i) transients but had little effect on capsaicin-induced [Ca(2+)](i) transients. The inhibitory effect of U50,488 was abolished by the kappa-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30-100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca(2+)](i) transients in small diameter DRG somas are mediated by influx of Ca(2+) through a Gd(3+)- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca(2+) transients are sensitive to kappa-opioid agonists.  相似文献   

8.
A preparation of acutely dissociated brain cells derived from adult (3-month-old) rat has been developed under conditions preserving the metabolic integrity of the cells and the function of N-methyl-d-aspartate (NMDA) receptors. The effects of glutamate and NMDA on [Ca2+]i measured with fluo3 and45Ca2+ uptake have been studied on preparations derived from hippocampus and cerebral cortex. Glutamate (100 μM) and N-methyl-dl-aspartate (200 μM) increased [Ca2+]i by 26-12 nM and 23-9 nM after 90 s in cerebral cortex and hippocampus, and stimulated45Ca2+ uptake about 16–10% in the same regions. The increases in [Ca2+]i and45Ca2+ uptake were inhibited by 40% in the presence of 1 mM MgCl2 and by 90–50% in the presence of MK-801. The results indicate (a) that a large fraction of the [Ca2+]i response to glutamate in freshly dissociated brain cells from the adult rat involves NMDA receptors, (b) when compared with results in newborn rats, there is a substantial blunting of the [Ca2+]i increase in adult age.  相似文献   

9.
Neurotransmitter- or neuromodulator-like actions ofl-DOPA were investigated with intracellular recordings from submucous plexus neurons of the guinea-pig caecum.l-DOPA at 30 nM augmented the amplitude of fast EPSPs, but did not affect depolarizations elicited by puff application of acetylcholine (ACh). The augmenting effect ofl-DOPA on the fast EPSPs was counteracted byl-DOPA methyl ester. The fast EPSPs were depressed by 10 μMl-DOPA, but transiently augmented after rinsing the drug.l-DOPA methyl ester did not affect the inhibitory action ofl-DOPA on the fast EPSPs, but antagonized the potentiation following the inhibition. The depolarization elicited by exogenously applied. ACh was inhibited by 10 μMl-DOPA. Intracellular Ca2+ concentrations ([Ca2+]i) of the neuronal soma were measured with fura-2 microfluorophotometry. The transient increase in the [Ca2+]i evoked by the somatic action potential (Δ[Ca2+]AP) was facilitated by 30 nMl-DOPA, but decreased by the drug at 10 μM. It is concluded thatl-DOPA at low concentrations enhances the Δ[Ca2+]AP, increasing the neurotransmitter release, but at high dose diminishes the Δ[Ca2+]AP, inhibiting the neurotransmission.  相似文献   

10.
We examined several factors related to the increase in susceptibility to excitotoxicity that occurs in embryonic forebrain neurons over time in culture. Neuronal cultures were resistant to a 5-min exposure to 100 μM glutamate/10 μM glycine at 5 days in vitro (DIV), but became vulnerable to the same stimulus by 14 DIV. We used the fluorescent indicators, fura-2 and magfura-2, which have high and low affinity for Ca2+, respectively, to measure changes in [Ca2+]i. Glutamate-stimulated increases in the fura-2 and magfura-2 ratio reached maximum values by 10 DIV. Fura-2 reported similar [Ca2+]i changes with exposure to 3 or 100 μM glutamate for 5 min, whereas magfura-2 reported larger [Ca2+]i increases with 5-min exposure to 100 μM glutamate than with exposure to 3 μM glutamate, 100 μM kainate or 50 mM K+ from 10 DIV onward. This suggests that the magnitude of the [Ca2+]i changes correlated with the excitotoxicity potential of a stimulus when magfura-2, but not fura-2, was used to measure Ca2+. We also used RNase protection assays to measure NMDA receptor subunit mRNA levels. NR1 and NR2A mRNA increased continuously over time in culture, whereas NR2B mRNA increased dramatically during the first 10 days and subsequently remained stable. The time course of the increase in NR2B mRNA most closely followed the increase in glutamate-stimulated changes in the magfura-2 signal and neuronal injury. Therefore, the increases in the glutamate-stimulated [Ca2+]i responses and NMDA receptor subunit mRNA levels (especially NR2B) are likely involved in the development of susceptibility to excitotoxicity in cultured rat forebrain neurons.  相似文献   

11.
Chronic treatment of mouse astrocytes in primary cultures with 1 mM lithium chloride for 7–14 days decreased the basal level of free cytosolic calcium concentration ([Ca2+]i) from 50–70 nM to 70% of this value and reduced the increase in [Ca2+]i caused by exposure to 1 μM noradrenaline (normally to 500–700 nM) by almost one half. A similar, but much smaller, response to serotonin was unaffected by chronic treatment with lithium. Acute exposure to lithium (30 min) had no effect on either basal or noradrenaline stimulated [Ca2+]i The dependence on chronic, versus acute treatment suggests that this effect may be related to the therapeutic effect of lithium as a mood-stabilizing drug, which likewise requires chronic treatment. Since good evidence is found that noradrenaline increases [Ca2+]i by activation of the phosphoinositol second messenger system the present findings are also consistent with literature data that lithium acts by interfering with this system.  相似文献   

12.
Secretion of pituitary gonadotropins is regulated centrally by the hypothalamic decapeptide gonadotropin releasing hormone (GnRH). Using the immortalized hypothalamic GT1-7 neuron, we characterized pharmacologically the dynamics of cytosolic Ca2+ and GnRH release in response to K+-induced depolarization of GT1-7 neurons. Our results showed that K+ concentrations from 7.5 to 60 mM increased [Ca2+]cyt in a concentration-dependent manner. Resting [Ca2+]cyt in GT1-7 cells was determined to be 69.7 ± 4.0 nM (mean ± S.E.M.; N = 69). K+-induced increases in [Ca2+]cyt ranged from 58.2 nM at 7.5 mM [K+] to 347 nM at 60 mM [K+]. K+-induced GnRH release ranged from about 10 pg/ml at 7.5 mM [K+] to about 60 pg/ml at 45 mM [K+]. K+-induced increases in [Ca2+]cyt and GnRH release were enhanced by 1 μM BayK 8644, an L-type Ca2+ channel agonist. The BayK enhancement was completely inhibited by 1 μM nimodipine, an L-type Ca2+ channel antagonist. Nimodipine (1 μM) alone partially inhibited K+-induced increases in [Ca2+]cyt and GnRH release. Conotoxin (1 μM) alone had no effect on K+-induced GnRH release or [Ca2+]cyt, but the combination of conotoxin (1 μM) and nimodipine (1 μM) inhibited K+-induced increase in [Ca2+]cyt significantly more (p < 0.02) than nimodipine alone, suggesting that N-type Ca2+ channels exist in GT1-7 neurons and may be part of the response to K+. The response of [Ca2+]cyt to K+ was linear with increasing [K+] whereas the response of GnRH release to increasing [K+] appeared to be saturable. K+-induced increase in [Ca2+]cyt and GnRH release required extracellular [Ca2+]. These experiments suggest that voltage dependent N- and L-type Ca2+ channels are present in immortalized GT1-7 neurons and that GnRH release is, at least in part, dependent on these channels for release of GnRH.  相似文献   

13.
Prolonged exposure to inorganic lead (Pb2+) during development has been shown to influence activity-dependent synaptic plasticity in the mammalian brain, possibly by altering the regulation of intracellular Ca2+ concentration ([Ca2+]i). To explore this possibility, we studied the effect of Pb2+ exposure on [Ca2+]i regulation and synaptic facilitation at the neuromuscular junction of larval Drosophila. Wild-type Drosophila (CS) were raised from egg stages through the third larval instar in media containing either 0 μM, 100 μM or 250 μM Pb2+ and identified motor terminals were examined in late third-instar larvae. To compare resting [Ca2+]i and the changes in [Ca2+]i produced by impulse activity, the motor terminals were loaded with a Ca2+ indicator, either Oregon Green 488 BAPTA-1 (OGB-1) or fura-2 conjugated to a dextran. We found that rearing in Pb2+ did not significantly change the resting [Ca2+]i nor the Ca2+ transient produced in synaptic boutons by single action potentials (APs); however, the Ca2+ transients produced by 10 Hz and 20 Hz AP trains were larger in Pb2+-exposed boutons and decayed more slowly. For larvae raised in 250 μM Pb2+, the increase in [Ca2+]i during an AP train (20 Hz) was 29% greater than in control larvae and the [Ca2+]i decay τ was 69% greater. These differences appear to result from reduced activity of the plasma membrane Ca2+ ATPase (PMCA), which extrudes Ca2+ from these synaptic terminals. These findings are consistent with studies in mammals showing a Pb2+-dependent reduction in PMCA activity. We also observed a Pb2+-dependent enhancement of synaptic facilitation at these larval neuromuscular synapses. Facilitation of EPSP amplitude during AP trains (20 Hz) was 55% greater in Pb2+-reared larvae than in controls. These results showed that Pb2+ exposure produced changes in the regulation of [Ca2+]i during impulse activity, which could affect various aspects of nervous system development. At the mature synapse, this altered [Ca2+]i regulation produced changes in synaptic facilitation that are likely to influence the function of neural networks.  相似文献   

14.
The effect of dibutyryl cGMP (dbcGMP), a membrane permeant cGMP analogue, on cytosolic concentrations of Ca2+ ([Ca2+]i) was studied in cultured nodose ganglion neurons of the rabbit using fura-2AM and microfluorometry. Application of dbcGMP (10–1000 μM) increased [Ca2+]i in 42% of neurons (n=67). The effect was observed in a dose-dependent fashion. The threshold dose was 100 μM and the increase at 500 μM averaged 117±8%. Removal of extracellular Ca2+ abolished the dbcGMP effect. Application of Ni2+ (1 mM) or neomycin (50 μM), a non-L-type voltage-gated Ca2+ channel (VGCC) antagonist, eliminated the dbcGMP effect. ω-conotoxin GVIA (2 μM), the N-type Ca2+ channel antagonist, or L-type Ca2+ channel antagonists (D600, 50 μM, or nifedipine, 10 μM) did not alter the dbcGMP effect. Ryanodine (10 μM) did not alter the effect of dbcGMP. Therefore, cGMP could play a part of role of an intracellular messenger in primary sensory neurons of the autonomic nervous system.  相似文献   

15.
By means of the fura-2 technique and image analysis the intracellular concentration of free calcium ions [Ca2+]i was examined in isolated rainbow trout pinealocytes identified by S-antigen immunocytochemistry. Approximately 30% of the pinealocytes exhibited spontaneous [Ca2+]i oscillations whose frequency differed from cell to cell. Neither illumination with bright light nor dark adaptation of the cells had an apparent effect on the oscillations. Removal of extracellular Ca2+ or application of 10 μM nifedipine caused a reversible breakdown of the [Ca2+]i oscillations. Application of 60 mM KCl elevated [Ca2+]i in 90% of the oscillating and 50% of the non-oscillating pinealocytes. The effect of KCl was blocked by 50 μM nifedipine. These results suggest that voltage-gated L-type calcium channels play a major role in the regulation of [Ca2+]i in trout pinealocytes. Experiments with thapsigargin (2 μM) revealed the presence of intracellular calcium stores in 80% of the trout pinealocytes, but their role for regulation of [Ca2+]i remains elusive. Treatment with norepinephrine (100 pM–50 μM), previously shown to induce calcium release from intracellular calcium stores in rat pinealocytes, had no apparent effect on [Ca2+]i in any trout pinealocyte. This finding conforms to the concept that noradrenergic mechanisms are not involved in signal transduction in the directly light-sensitive pineal organ of anamniotic vertebrates.  相似文献   

16.
To investigate the possible mechanisms of the alterations in morphine-induced analgesia observed in diabetic mice, we examined the influence of streptozotocin-induced (STZ-induced) diabetes on analgesia mediated by the different opioid receptors. The antinociceptive potency of morphine (10 mg/kg), administered s.c., as determined by both the tail-pinch and the tail-flick test, was significantly reduced in diabetic mice as compared to that in controls. Mice with STZ-induced diabetes had significantly decreased sensitivity to intracerebroventricularly (i.c.v.) administered μ-opioid agonists, such as morphine (10 μg) and [d-Ala2, N-Me Phe4,Gly-ol5]enkephalin (DAMGO, 0.5 μg). However, i.c.v. administration of [d-Pen2,5]enkephalin (DPDPE, 5 μg), a δ-opioid agonist, and U-50,488H (50 μg), a κ-opioid agonist, produced pronounced antinociception in both control and diabetic mice. Furthermore, there were no significant differences in antinociceptive potency between diabetic and control mice when morphine (1 μg), DAMGO (10 μg), DPDPE (0.5 μg) or U-50,488H (50 μg) was administered intrathecally. In conclusion, mice with STZ-induced diabetes are selectively hyporesponsive to supraspinal μ-opioid receptor-mediated antinociception, but they are normally responsive to activation of δ- and κ-opioid receptors.  相似文献   

17.
Astrocytes exhibit three transmembrane Ca2+ influx pathways: voltage-gated Ca2+ channels (VGCCs), the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na+/Ca2+ exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca2+ concentration ([Ca2+]i); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca2+]i is not known. We demonstrate here that 100 μM AMPA in the presence of 100 μM cyclothiazide (CTZ) causes an increase in [Ca2+]i in cultured cerebral astrocytes that requires transmembrane Ca2+ influx. This increase of [Ca2+]i is blocked by 100 μM benzamil or 0.5 μM U-73122, which inhibit reverse-mode operation of the Na+/Ca2+ exchanger by independent mechanisms. This response does not require Ca2+ influx through VGCCs, nor does it depend upon a significant Ca2+ influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca2+ stores, although depletion of these Ca2+ stores does not decrease the peak [Ca2+]i response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca2+]i to increase through the reverse mode operation of the Na+/Ca2+ exchanger with an associated release of Ca2+ from intracellular stores. This proposed mechanism requires neither Ca2+-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

18.
Ethanol exposure affects cellular mechanisms involved in the regulation of calcium (Ca2+) homeostasis. Neurotrophins, such as nerve growth factor (NGF), stabilize intracellular Ca2+([Ca2+]i) during a variety of neurotoxic insults. In this study, changes in [Ca2+]i during treatment with ethanol and NGF were measured at the cell body of neurons using the Ca2+ indicator indo-1. Cultured postnatal day-of-birth (P0) septohippocampal (SH) neurons that were labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate (DiI), increased [Ca2+]i in response to ethanol. This response was dose-related. P0 SH neurons treated with NGF had lower [Ca2+]i than neurons withdrawn from NGF, implying that NGF may modulate Ca2+ homeostasis in these neurons. NGF also prevented the dose-related increase in [Ca2+]i in ethanol-treated SH neurons. The SH neurons increased [Ca2+]i when they were stimulated with 30 mM potassium chloride (KCl). Ethanol inhibited the potassium-stimulated change in [Ca2+]i but the combination of ethanol and NGF caused [Ca2+]i to increase with 100 mg% and 400 mg% ethanol and to decrease to a lower level with 200 mg% ethanol. These data were compared to data from previously published similar aged medial septal (MS) neurons (B. Webb, S.S. Suarez, M.B. Heaton, D.W. Walker, Clin. Exp. Res. 20 (1996) 1385–1394) and with embryonic gestational day 21 (E21) SH neurons (B. Webb, S.S. Suarez, M.B. Heaton, D.W. Walker, Brain Res. 729 (1996) 176–189). Differences in [Ca2+]i responses were observed in ethanol and NGF-treated postnatal SH neurons compared with P0 MS neurons and E21 SH neurons. Of these differences, most occurred during the combined treatment with ethanol and NGF compared with either treatment alone.  相似文献   

19.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

20.
Isolated and cultured glomus cells, obtained from mouse carotid bodies, were superfused with Ham's F-12 equilibrated with air (mean PO2, 119 Torr; altitude 1350 m). [Ca2+]o was 3.0 mM. In one experimental series, dual cell penetrations with microelectrodes measured intracellular calcium ([Ca2+]i) and the resting potential (Em). In another series, [Ca2+]i was measured with Indo-1/AM, dissolved in DMSO. Normoxic cells had a mean Em of −42.4 mV and [Ca2+]i was about 80 nM (measured with both methods). The calculated calcium equilibrium potential (ECa) was 137±0.74 mV. Hypoxia, induced by Na2S2O4 1 mM, reduced pO2 to 10–14 Torr. This effect was accompanied by cell depolarization to −19.1 mV. Hypoxia increased [Ca2+]i to 231 nM when detected with Ca-sensitive microelectrodes, but only to 130.2 nM when measured with Indo-1/AM. Calcium increases were preceded by decreases in [Ca2+]i, which also were more pronounced with microelectrode measurements. CoCl2 1 mM blocked the hypoxic [Ca2+]i increase and exaggerated the decreases in [Ca2+]i. Correlations between ΔEm and Δ[Ca2+]i during hypoxia were significant (p<0.05) in 19% of the cells. But, in 29% of them significance was at the p<0.1 level. In the rest (52%), there was no correlation between these parameters. Thus, voltage-gated calcium channels are rare in mouse glomus cells. Their activation by depolarization cannot explain the two to threefold increase in [Ca2+]i seen during hypoxia. More likely, [Ca2+]i increase may be due to hypoxic inactivation of a Ca–Mg ATPase transport system across the cell membrane. The blunting of hypoxic [Ca2+]i increase, seen in Indo-1/AM experiments, is probably due to its solvent (DMSO), which also depresses hypoxic cell depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号