首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platt  OS; Falcone  JF 《Blood》1995,86(5):1992-1998
The pattern of membrane abnormalities in sickle red blood cells suggests that sickle hemoglobin damages membrane proteins. We have previously shown a functional defect in sickle ankyrin, poor spectrin- binding ability. Here we examine the other major binding interactions of sickle membrane proteins including spectrin self-association, binding of ankyrin and protein 4.1 to protein 3, and the formation of the spectrin-actin-protein 4.1 complex. We found that sickle spectrin was normal in self-association and ability to participate in the spectrin-actin-protein 4.1 complex. Sickle protein 4.1 bound normally to protein 3 and formed normal complexes with actin and spectrin, even when sickle spectrin was used. The only major abnormality we found was a reduced ability of sickle protein 3 to bind ankyrin. This functional defect could not be explained experimentally on the basis of cysteine modification or enhanced tyrosine phosphorylation. We conclude that damage of sickle membrane proteins is not a diffuse scattershot process, but is largely confined to regions near membrane-associated hemoglobin, the spectrin-binding domain of ankyrin and the ankyrin- binding domain of protein 3. The mechanism and consequences of this damage continues to be investigated.  相似文献   

2.
Pleiotrophin (PTN) was found to regulate tyrosine phosphorylation of beta-adducin through the PTN/receptor protein tyrosine phosphatase (RPTP)beta/zeta signaling pathway. We now demonstrate that PTN stimulates the phosphorylation of serines 713 and 726 in the myristoylated alanine-rich protein kinase (PK) C substrate domain of beta-adducin through activation of either PKC alpha or beta. We also demonstrate that PTN stimulates translocation of phosphoserine 713 and 726 beta-adducin either to nuclei, where it associates with nuclear chromatin and with centrioles of dividing cells, or to a membrane-associated site, depending on the phase of cell growth. Furthermore, we demonstrate that PTN stimulates the degradation of beta-adducin in PTN-stimulated cells. Phosphorylation of serines 713 and 726 in beta-adducin is known to markedly reduce the affinity of beta-adducin for spectrin and actin and to uncouple actin/spectrin/beta-adducin multimeric complexes needed for cytoskeletal stability. The data thus suggest that the PTN-stimulated phosphorylation of serines 713 and 726 in beta-adducin disrupts cytoskeletal protein complexes and integrity, features demonstrated in both PTN-stimulated cells and of highly malignant cells that constitutively express the endogenous Ptn gene. The data also support the important conclusion that PTN determines the cellular location of beta-adducin phosphorylated in serines 713 and 726 and raise the possibility that beta-adducin functions in support of structure of heterochromatin and centrioles during mitosis.  相似文献   

3.
The tyrosine phosphorylated protein Crk-associated substrate (CAS) has previously been shown to participate in the cellular processes regulating dynamic changes in the actin architecture and arterial constriction. In the present study, treatment of rat mesenteric arteries with phenylephrine (PE) led to the increase in CAS tyrosine phosphorylation and the association of CAS with the adapter protein CrkII. CAS phosphorylation was catalyzed by Abl in an in vitro study. To determine the role of Abl tyrosine kinase in arterial vessels, plasmids encoding Abl short hairpin RNA (shRNA) were transduced into mesenteric arteries by chemical loading plus liposomes. Abl silencing diminished increases in CAS phosphorylation on PE stimulation. Previous studies have shown that assembly of the multiprotein compound containing CrkII, neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) and the Arp2/3 (Actin Related Protein) complex triggers actin polymerization in smooth muscle as well as in nonmuscle cells. In this study, Abl silencing attenuated the assembly of the multiprotein compound in resistance arteries on contractile stimulation. Furthermore, the increase in F/G-actin ratios (an index of actin assembly) and constriction on contractile stimulation were reduced in Abl-deficient arterial segments compared with control arteries. However, myosin regulatory light chain phosphorylation (MRLCP) elicited by contractile activation was not inhibited in Abl-deficient arteries. These results suggest that Abl may play a pivotal role in mediating CAS phosphorylation, the assembly of the multiprotein complex, actin assembly, and constriction in resistance arteries. Abl does not participate in the regulation of myosin activation in arterial vessels during contractile stimulation.  相似文献   

4.
5.
Antibodies from three different lines of monoclonal hybridomas crossreact with both the beta subunit of spectrin and the 90-kDa peptide present in highly purified preparations of the heme-controlled eIF-2 alpha (initiation factor 2 alpha-subunit) kinase from rabbit reticulocytes. Antibodies from two of the three lines enhance the enzymatic activity of the kinase preparation for phosphorylation of the alpha subunit of eukaryotic translational initiation factor 2 (eIF-2) and for phosphorylation of the 100-kDa peptide thought to be a peptide of the kinase that is phosphorylated during its activation. Also, it is shown that both the beta subunit of spectrin and the 90-kDa peptide can be phosphorylated by two protein kinases from reticulocytes, the catalytic subunit of cAMP-dependent protein kinase and a cAMP-independent protein kinase similar to casein kinase II. Furthermore, a phosphorylated 90-kDa peptide can be derived from phosphorylated beta subunit of spectrin by tryptic proteolysis. We conclude that the 90-kDa peptide is derived by proteolysis from the beta subunit of spectrin, probably from its carboxyl terminus, and suggest that the heme-sensitive eIF-2 alpha kinase, like the 56-kDa phosphatase [Wollny, E., Watkins, K., Kramer, G. & Hardesty, B. (1984) J. Biol. Chem. 259, 2484-2492], is associated with an element of the membrane skeleton in intact reticulocytes.  相似文献   

6.
Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with 32PO4, exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a Mr approximately equal to 100,000 protein and a Mr approximately equal to 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in naDodSO4/polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins ("100-kDa," "87-kDa," and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. "100-kDa" is a Mr approximately equal to 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, "87-kDa" is a Mr approximately equal to 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of Mr approximately equal to 74,000 (IIIa) and Mr approximately equal to 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. Furthermore, 100-kDa was shown to be identical to the Mr approximately equal to 100,000 protein whose phosphorylation was increased by acetylcholine treatment. The acetylcholine-dependent increase in phosphorylation of tyrosine hydroxylase, 100-kDa, 87-kDa, and protein III required extracellular calcium and was mimicked by nicotine, veratridine, elevated K+, and calcium ionophore A23187, but not by muscarine. In addition, forskolin increased the phosphorylation of tyrosine hydroxylase, 100-kDa, and protein III, but not that of 87-kDa. Phorbol 12,13-dibutyrate increased the phosphorylation of tyrosine hydroxylase, 87-kDa, and protein III, but not that of 100-kDa. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects.  相似文献   

7.
8.
Horne  WC; Huang  SC; Becker  PS; Tang  TK; Benz  EJ Jr 《Blood》1993,82(8):2558-2563
Erythrocyte protein 4.1 is an 78- to 80-Kd peripheral membrane protein that promotes the interaction of spectrin with actin protofilaments and links the resulting interlocking network to the integral membrane proteins. There are several isoforms of protein 4.1 that appear to be expressed in a restricted group of tissues. These arise from alternative mRNA splicing events that lead to the combinational insertion or deletion of at least 10 blocks of nucleotides (motifs) within the mature mRNA. One of these, motif I, consists of 63 nucleotides encoding 21 amino acids in the N-terminal region of the putative spectrin/actin-binding domain. The expression of the motif U- containing isoform occurs late in erythroid maturation. We generated recombinant isoforms of protein 4.1 and of the putative 10-Kd spectrin/actin-binding fragment that contain or lack this 21 amino acid sequence and examined their ability to form a ternary complex with erythrocyte spectrin and F-actin. The isoforms of the complete protein and of the 10-Kd fragment that contain the sequence encoded by motif I efficiently form the ternary complex. Isoforms that lack this sequence, but are otherwise identical, do not participate in the formation of the ternary complex. These results, in conjunction with the expression of motif I during late erythroid maturation, suggest that interaction with actin and the erythroid form of spectrin is a specialized property of the erythrocyte form of protein 4.1. Alternative mRNA splicing in developing red blood cells thus plays a key adaptive role in the formation of the highly specialized erythrocyte membrane.  相似文献   

9.
Src phosphorylation of cortactin enhances actin assembly   总被引:6,自引:0,他引:6  
Src kinase mediates growth factor signaling and causes oncogenic transformation, which includes dramatic changes in the actin cytoskeleton, cell shape, and motility. Cortactin was discovered as a substrate for Src. How phosphorylation of cortactin can enhance actin assembly is unknown. Here, using an actin assembly system reconstituted from purified components, we demonstrate for the first time a biochemical mechanism by which Src phosphorylation of cortactin affects actin assembly. The adaptor Nck is an important component of the system, linking phosphorylated cortactin with neuronal WASp (N-WASp) and WASp-interacting protein (WIP) to activate Arp2/3 complex.  相似文献   

10.
Altered protein tyrosine phosphorylation in asthmatic bronchial epithelium.   总被引:4,自引:0,他引:4  
A disease-related, corticosteroid-insensitive increase in the expression of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase in asthmatic bronchial epithelium has been shown previously by the current authors. To determine whether this is associated with enhanced intracellular signalling, the aim of this study was to evaluate epithelial tyrosine phosphorylation. Bronchial biopsies were analysed for the presence of phosphotyrosine by immunohistochemistry. Bronchial epithelial cells were exposed to EGF, hydrogen peroxide or tumour necrosis factor-alpha in vitro for measurement of tyrosine phosphorylated signalling intermediates and interleukin (IL)-8 release. Phosphotyrosine was increased significantly in the epithelium of severe asthmatics when compared with controls or mild asthmatics; however, in mild asthma, phosphotyrosine levels were significantly decreased when compared with controls. There was no significant difference between phosphotyrosine levels before or after 8 weeks of treatment with budesonide. Stimulation of bronchial epithelial cells resulted in tyrosine phosphorylation of several proteins, including EGFR, Shc and p42/p44 mitogen-activated protein kinase. In the presence of salbutamol, a transient partial suppression of EGFR phosphorylation occurred, whereas dexamethasone was without effect. Neither salbutamol nor dexamethasone inhibited EGF-stimulated IL-8 release. These data indicate that regulation of protein tyrosine kinase activity is abnormal in severe asthma. The epidermal growth factor receptor and/or other tyrosine kinase pathways may contribute to persistent, corticosteroid-unresponsive inflammation in severe asthma.  相似文献   

11.
J Palek 《Blood reviews》1987,1(3):147-168
The membrane skeleton, a protein lattice that laminates the internal side of the red cell membrane, contains four major proteins: spectrin, actin, protein 4.1 and ankyrin. By mass, the most abundant of these proteins is spectrin, a fibre-like protein composed of two chains, alpha and beta, which are twisted along each other into a heterodimer. At their head region, spectrin heterodimers are assembled into tetramers. At their distal end, these tetramers are interconnected into a two dimensional network by their linkage to oligomers of actin. This interaction is greatly strengthened by protein 4.1. The skeleton is attached to the membrane by ankyrin, a protein that connects the spectrin beta chain to the major transmembrane protein band 3, the anion channel protein. Additional attachment sites are those of protein 4.1 with several glycoproteins, namely glycophorin A and C, as well as direct interactions between spectrin, protein 4.1 and the negatively charged lipids of the inner membrane lipid bilayer. Hereditary spherocytosis, elliptocytosis and pyropoikilocytosis represent a group of disorders that are due to deficiency or dysfunction of one of the membrane skeletal proteins (Fig. 1). Known deficiency states include that of spectrin, ankyrin and protein 4.1. Severe spectrin and ankyrin deficiencies (with decrease in spectrin and ankyrin contents to about 50% of the normal amount) are both rare disorders associated with severe autosomal recessive hereditary spherocytosis. On the other hand, mild spectrin deficiency is found in the majority of patients with autosomal dominant spherocytosis in which the degree of spectrin deficiency correlates with the clinical severity of the disease. Protein 4.1 deficiency, in contrast, is associated with hereditary elliptocytosis, which in certain populations constitutes about 20% of all such patients. Known skeletal protein dysfunctions include mutants of both alpha and beta spectrin that involve the spectrin heterodimer self-association site. These are clinically expressed as hereditary elliptocytosis (HE) and a closely related disorder, hereditary pyropoikilocytosis (HPP). At the level of protein function, this defect can be detected by analysis of the content of spectrin dimers and tetramers in 0 degrees C low ionic strength extracts of red cell membranes. Their structural identification is accomplished by limited proteolytic digestion of spectrin followed by two-dimensional tryptic peptide mapping.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
13.
R A Mooney  K L Bordwell 《Endocrinology》1992,130(3):1533-1538
Insulin stimulated the tyrosine phosphorylation of a 61-kilodalton (kDa) protein in rat adipocytes prelabeled for 2 h with [32P]orthophosphate. Tyrosine phosphorylation of this 61-kDa protein displayed very similar insulin concentration dependency to receptor autophosphorylation and tyrosine phosphorylation of a high molecular mass receptor substrate of 160 kDa. Phosphorylation of the 61-kDa protein was very rapid with maximum labeling attained at 30 sec, paralleling that of the other two proteins. Phosphoamino acid analysis revealed that each of the insulin-responsive phosphoproteins contained phosphoserine as well as phosphotyrosine, though the ratio of two phosphoamino acids recovered from each protein differed. The 61-kDa protein yielded relatively equal proportions of phosphoserine and phosphotyrosine. In contrast, the insulin receptor yielded relatively more label on phosphotyrosine than phosphoserine, whereas label incorporated into the 160-kDa protein was recovered primarily on phosphoserine. Cleveland peptide maps using either Staphylococcus aureus V8 proteinase or chymotrypsin revealed no similarities between the 61-kDa protein and the other tyrosine phosphorylated proteins. With subcellular fractionation, the 160-kDa protein was found in equal proportions in the high speed pellet (100,000 g) and supernatant. The 61-kDa protein had a similar distribution to that of the 160-kDa protein but was also detected in the low speed pellet (10,000 g). The insulin receptor was localized to the low speed pellet. In summary, rat adipocytes contain an insulin-dependent phosphotyrosyl protein of 61 kDa which is distinct from the more prominent high molecular mass receptor substrate. This 61-kDa protein has characteristics consistent with it being a substrate for the insulin receptor tyrosine kinase.  相似文献   

14.
There is considerable evidence that the epidermal growth factor receptor (EGFR) and IGF-I receptor (IGF-IR) cross-talk in breast cancer cells. In the present study, we have examined whether EGFR/IGF-IR cross-talk exists in EGFR-positive tamoxifen-resistant variants of MCF-7 (Tam-R) and T47D (T47D-R) breast cancer cell lines. Although Tam-R cells expressed reduced IGF-IR protein levels compared with their wild-type MCF-7 counterparts, phosphorylated IGF-IR protein levels were equivalent in the two cell lines under basal growth conditions, possibly as a consequence of increased IGF-II expression in Tam-R cells. IGF-II activated both IGF-IR and EGFR in Tam-R cells, whereas only activation of IGF-IR was observed in wild-type cells. In contrast, epidermal growth factor rapidly induced EGFR, but not IGF-IR, phosphorylation in Tam-R cells. IGF-II promoted direct association of c-SRC with IGF-IR, phosphorylated c-SRC, and increased EGFR phosphorylation at tyrosine 845, a c-SRC-dependent phosphorylation site. Pretreatment with either AG1024 (IGF-IR-specific inhibitor) or an IGF-II neutralizing antibody inhibited basal IGF-IR, c-SRC, and EGFR phosphorylation, and AG1024 significantly reduced Tam-R basal cell growth. The c-SRC inhibitor SU6656 also inhibited growth, reduced basal and IGF-II-induced c-SRC and EGFR phosphorylation, and blocked EGFR activation by TGFalpha. Similarly, in T47D-R cells, AG1024 and SU6656 inhibited basal and IGF-II-induced phosphorylation of c-SRC and EGFR, and SU6656 reduced TGFalpha-induced EGFR activity. These results suggest the existence of a unidirectional IGF-IR/EGFR cross-talk mechanism whereby IGF-II, acting through the IGF-IR, regulates basal and ligand-activated EGFR signaling and cell proliferation in a c-SRC-dependent manner in Tam-R cells. This cross-talk between IGF-IR and EGFR is not unique to Tam-R cells because this mechanism is also active in a tamoxifen-resistant T47D-R cell line.  相似文献   

15.
Postsynaptic membranes from the electric organ of Torpedo californica, rich in the nicotinic acetylcholine receptor, were shown to contain an endogenous tyrosine protein kinase. This endogenous kinase phosphorylated three major proteins with molecular masses corresponding to 50 kDa, 60 kDa, and 65 kDa. The phosphorylation of these three proteins occurred exclusively on tyrosine residues under the experimental conditions used and was abolished by 0.1% Nonidet P-40 and stimulated by Mn2+. The 50-kDa, and 60-kDa, and 65-kDa phosphoproteins were demonstrated to be the beta, gamma, and delta subunits, respectively, of the nicotinic acetylcholine receptor by purification of the phosphorylated receptor using affinity chromatography. The endogenous tyrosine kinase specifically phosphorylated the beta, gamma, and delta subunits rapidly to a final stoichiometry of approximately equal to 0.5 mol of phosphate per mol of sub-unit. Two-dimensional phosphopeptide mapping of the phosphorylated beta, gamma, and delta subunits, after limit proteolysis with trypsin or thermolysin, indicated that each subunit was phosphorylated on a single site. Locations are proposed for the amino acid residues phosphorylated on the receptor by the tyrosine-specific protein kinase and by two other protein kinases (cAMP-dependent protein kinase and protein kinase C) which phosphorylate the receptor.  相似文献   

16.
The predicted human erbB-3 gene product is closely related to epidermal growth factor receptor (EGFR) and erbB-2, which have been implicated as oncogenes in model systems and human neoplasia. We expressed the erbB-3 coding sequence in NIH 3T3 fibroblasts and identified its product as a 180-kDa glycoprotein, gp180erbB-3. Tunicamycin and pulse-chase experiments revealed that the mature protein was processed by N-linked glycosylation of a 145-kDa erbB-3 core polypeptide. The intrinsic catalytic function of gp180erbB-3 was shown by its ability to autophosphorylate in vitro. Ligand-dependent signaling of its cytoplasmic domain was established employing transfectants that express a chimeric EGFR/erbB-3 protein, gp180EGFR/erbB-3. EGF induced tyrosine phosphorylation of the chimera and promoted soft agar colony formation of such transfectants. These findings combined with the detection of constitutive tyrosine phosphorylation of gp180erbB-3 in 4 of 12 human mammary tumor cell lines implicate the activated erbB-3 product in the pathogenesis of some human malignancies.  相似文献   

17.
Hypersecretory disease associated with Pseudomonas aeruginosa (PA) infections is characterised by increased goblet cells and increased mucin production. Recently, an epidermal growth factor receptor (EGFR) signalling cascade was shown to be a common pathway through which many stimuli induce mucin MUC5AC expression in airways by differentiation to a goblet cell phenotype. This study looked at whether PA products induce EGFR expression and activation and thus result in mucin MUC5AC production. Human airway epithelial (NCI-H292) cells were stimulated with PA culture supernatant (Sup). MUC5AC protein production, MUC5AC and EGFR messenger ribonucleic acid (mRNA) expression, and phosphorylated EGFR and phosphorylated p44/42 mitogen-activated protein kinase (MAPK) were all examined using enzyme-linked immunosorbent assay, by in situ hybridisation and by immunoblotting. PA Sup induced MUC5AC mRNA and subsequent protein expression, EGFR and p44/42 MAPK phosphorylation and EGFR mRNA expression. Induction of MUC5AC mRNA and protein expression and EGFR and p44/42 MAPK phosphorylation were inhibited completely by pretreatment with a selective EGFR tyrosine kinase inhibitor. Pretreatment with a selective inhibitor of MAPK kinase prevented MUC5AC production and p44/42 MAPK phosphorylation but not EGFR phosphorylation. The authors conclude that PA products induce mucin MUC5AC production in human airway epithelial cells via the expression and activation of epidermal growth factor receptor.  相似文献   

18.
We report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido[32P]cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO4/PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca2+/calmodulin, Ca2+/phospholipid, or EGTA. Similarities with the beta-adrenergic receptor protein kinase are discussed.  相似文献   

19.
Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2) or phosphotyrosine interaction domains (PID). Additionally, several cytoplasmic proteins that may or may not associate with the receptor undergo tyrosine phosphorylation. To identify several components of the EGFR signaling pathway in a single step, we have immunoprecipitated molecules that are tyrosine phosphorylated in response to EGF and analyzed them by one-dimensional gel electrophoresis followed by mass spectrometry. Combining matrix-assisted laser desorption/ionization (MALDI) and nanoelectrospray tandem mass spectrometry (MS/MS) led to the identification of nine signaling molecules, seven of which had previously been implicated in EGFR signaling. Several of these molecules were identified from low femtomole levels of protein loaded onto the gel. We identified Vav-2, a recently discovered guanosine nucleotide exchange factor that is expressed ubiquitously, as a substrate of the EGFR. We demonstrate that Vav-2 is phosphorylated on tyrosine residues in response to EGF and associates with the EGFR in vivo. Binding of Vav-2 to the EGFR is mediated by the SH2 domain of Vav-2. In keeping with its ubiquitous expression, Vav-2 seems to be a general signaling molecule, since it also associates with the platelet-derived growth factor (PDGF) receptor and undergoes tyrosine phosphorylation in fibroblasts upon PDGF stimulation. The strategy suggested here can be used for routine identification of downstream components of cell surface receptors in mammalian cells.  相似文献   

20.
Parker EM  Zaman MM  Freedman SD 《Pancreas》2000,21(3):219-225
We previously showed that endocytosis at the apical plasma membrane (APM) of the pancreatic acinar cell is activated by the cleavage of GP2, a GPI-linked protein, from the apical cell surface. This endocytic process, as measured by horseradish peroxidase uptake into pancreatic acinar cells, is blocked by the tyrosine kinase inhibitors genistein and tyrphostin B42 as well as by disruption of actin filaments with cytochalasin. This suggests that the cleavage of GP2 from the cell membrane may activate endocytosis through a tyrosine kinase-regulated pathway. However, the mechanism by which GP2 and tyrosine kinases act together to activate endocytosis at the APM remains unknown. In this study, we demonstrate that pp60, p62yes, caveolin, and annexin, which have previously been implicated in endocytosis in other cell lines, were present in high abundance in GPI-enriched membranes by Western blot analysis. pp60, p62yes, and caveolin all co-immunoprecipitated with GP2 except annexin. An 85-kDa protein whose tyrosine-dependent phosphorylation is correlated with the activation of endocytosis in intact acinar cells also was present in these immunoprecipitates. This suggests that in pancreatic acini, GP2 may exist in a complex with src kinases, caveolin, and an 85-kDa phosphorylated substrate to regulate endocytosis at the APM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号