首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we review progress by the Penn Biomarker Core in the Alzheimer's Disease Neuroimaging Initiative (ADNI) toward developing a pathological cerebrospinal fluid (CSF) and plasma biomarker signature for mild Alzheimer's disease (AD) as well as a biomarker profile that predicts conversion of mild cognitive impairment (MCI) and/or normal control subjects to AD. The Penn Biomarker Core also collaborated with other ADNI Cores to integrate data across ADNI to temporally order changes in clinical measures, imaging data, and chemical biomarkers that serve as mileposts and predictors of the conversion of normal control to MCI as well as MCI to AD, and the progression of AD. Initial CSF studies by the ADNI Biomarker Core revealed a pathological CSF biomarker signature of AD defined by the combination of Aβ1-42 and total tau (T-tau) that effectively delineates mild AD in the large multisite prospective clinical investigation conducted in ADNI. This signature appears to predict conversion from MCI to AD. Data fusion efforts across ADNI Cores generated a model for the temporal ordering of AD biomarkers which suggests that Aβ amyloid biomarkers become abnormal first, followed by changes in neurodegenerative biomarkers (CSF tau, F-18 fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging) with the onset of clinical symptoms. The timing of these changes varies in individual patients due to genetic and environmental factors that increase or decrease an individual's resilience in response to progressive accumulations of AD pathologies. Further studies in ADNI will refine this model and render the biomarkers studied in ADNI more applicable to routine diagnosis and to clinical trials of disease modifying therapies.  相似文献   

2.

Introduction

We conducted Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI) and compared the basic characteristics and progression profiles with those of ADNI in North America.

Methods

A total of 537 Japanese subjects with normal cognition, late amnestic mild cognitive impairment (LMCI), or mild Alzheimer's disease (AD) were enrolled using the same criteria as ADNI. Rates of changes in representative cognitive or functional measures were compared for amyloid positron emission tomography- or cerebrospinal fluid amyloid β(1–42)-positive LMCI and mild AD between J-ADNI and ADNI.

Results

Amyloid positivity rates were significantly higher in normal cognition of ADNI but at similar levels in LMCI and mild AD between J-ADNI and ADNI. Profiles of decline in cognitive or functional measures in amyloid-positive LMCI in J-ADNI (n = 75) and ADNI (n = 269) were remarkably similar, whereas those in mild AD were milder in J-ADNI (n = 73) compared with ADNI (n = 230).

Discussion

These results support the feasibility of bridging of clinical trials in the prodromal stage of AD between Asia and western countries.  相似文献   

3.
《Alzheimer's & dementia》2014,10(5):511-521.e1
BackgroundPrevious work examining normal controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) identified substantial biological heterogeneity. We hypothesized that ADNI mild cognitive impairment (MCI) subjects would also exhibit heterogeneity with possible clinical implications.MethodsADNI subjects diagnosed with amnestic MCI (n = 138) were clustered based on baseline magnetic resonance imaging, cerebrospinal fluid, and serum biomarkers. The clusters were compared with respect to longitudinal atrophy, cognitive trajectory, and time to conversion.ResultsFour clusters emerged with distinct biomarker patterns: The first cluster was biologically similar to normal controls and rarely converted to Alzheimer's disease (AD) during follow-up. The second cluster had characteristics of early Alzheimer's pathology. The third cluster showed the most severe atrophy but barely abnormal tau levels and a substantial proportion converted to clinical AD. The fourth cluster appeared to be pre-AD and nearly all converted to AD.ConclusionsSubjects with MCI who were clinically similar showed substantial heterogeneity in biomarkers.  相似文献   

4.
《Alzheimer's & dementia》2013,9(5):e111-e194
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The study aimed to enroll 400 subjects with early mild cognitive impairment (MCI), 200 subjects with early AD, and 200 normal control subjects; $67 million funding was provided by both the public and private sectors, including the National Institute on Aging, 13 pharmaceutical companies, and 2 foundations that provided support through the Foundation for the National Institutes of Health. This article reviews all papers published since the inception of the initiative and summarizes the results as of February 2011. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimers Dis 2006;9(Suppl 3):151–3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers combine optimum features from multiple modalities, including MRI, [18F]-fluorodeoxyglucose-PET, CSF biomarkers, and clinical tests; (4) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects, and are leading candidates for the detection of AD in its preclinical stages; (5) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Baseline cognitive and/or MRI measures generally predicted future decline better than other modalities, whereas MRI measures of change were shown to be the most efficient outcome measures; (6) the confirmation of the AD risk loci CLU, CR1, and PICALM and the identification of novel candidate risk loci; (7) worldwide impact through the establishment of ADNI-like programs in Europe, Asia, and Australia; (8) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker data with clinical data from ADNI to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (9) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world. The ADNI study was extended by a 2-year Grand Opportunities grant in 2009 and a renewal of ADNI (ADNI-2) in October 2010 through to 2016, with enrollment of an additional 550 participants.  相似文献   

5.
BackgroundThe Alzheimer's Disease Neuroimaging Initiative Phase 1 (ADNI-1) is a multisite prospective study designed to examine potential cerebrospinal fluid and imaging markers of Alzheimer's disease (AD) and their relationship to cognitive change. The objective of this study was to provide a global summary of the overall results and patterns of change observed in candidate markers and clinical measures over the first 2 years of follow-up.MethodsChange was summarized for 210 normal controls, 357 mild cognitive impairment, and 162 AD subjects, with baseline and at least one cognitive follow-up assessment. Repeated measures and survival models were used to assess baseline biomarker levels as predictors. Potential for improving clinical trials was assessed by comparison of precision of markers for capturing change in hypothetical trial designs.ResultsThe first 12 months of complete data on ADNI participants demonstrated the potential for substantial advances in characterizing trajectories of change in a range of biomarkers and clinical outcomes, examining their relationship and timing, and assessing the potential for improvements in clinical trial design. Reduced metabolism and greater brain atrophy in the mild cognitive impairment at baseline are associated with more rapid cognitive decline and a higher rate of conversion to AD. Use of biomarkers as study entry criteria or as outcomes could reduce the number of participants required for clinical trials.ConclusionsAnalyses and comparisons of ADNI data strongly support the hypothesis that measurable change occurs in cerebrospinal fluid, positron emission tomography, and magnetic resonance imaging well in advance of the actual diagnosis of AD.  相似文献   

6.
OBJECTIVES: While plasma biomarkers have been proposed to aid in the clinical diagnosis of Alzheimer disease (AD), few biomarkers have been validated in independent patient cohorts. Here we aim to determine plasma biomarkers associated with AD in 2 independent cohorts and validate the findings in the multicenter Alzheimer's Disease Neuroimaging Initiative (ADNI). METHODS: Using a targeted proteomic approach, we measured levels of 190 plasma proteins and peptides in 600 participants from 2 independent centers (University of Pennsylvania, Philadelphia; Washington University, St. Louis, MO), and identified 17 analytes associated with the diagnosis of very mild dementia/mild cognitive impairment (MCI) or AD. Four analytes (apoE, B-type natriuretic peptide, C-reactive protein, pancreatic polypeptide) were also found to be altered in clinical MCI/AD in the ADNI cohort (n = 566). Regression analysis showed CSF Aβ42 levels and t-tau/Aβ42 ratios to correlate with the number of APOE4 alleles and plasma levels of B-type natriuretic peptide and pancreatic polypeptide. CONCLUSION: Four plasma analytes were consistently associated with the diagnosis of very mild dementia/MCI/AD in 3 independent clinical cohorts. These plasma biomarkers may predict underlying AD through their association with CSF AD biomarkers, and the association between plasma and CSF amyloid biomarkers needs to be confirmed in a prospective study.  相似文献   

7.

Background

Alzheimer's disease (AD), the most prevalent form of dementia, affects 6.5 million Americans and over 50 million people globally. Clinical, genetic, and phenotypic studies of dementia provide some insights of the observed progressive neurodegenerative processes, however, the mechanisms underlying AD onset remain enigmatic.

Aims

This paper examines late-onset dementia-related cognitive impairment utilizing neuroimaging-genetics biomarker associations.

Materials and Methods

The participants, ages 65–85, included 266 healthy controls (HC), 572 volunteers with mild cognitive impairment (MCI), and 188 Alzheimer's disease (AD) patients. Genotype dosage data for AD-associated single nucleotide polymorphisms (SNPs) were extracted from the imputed ADNI genetics archive using sample-major additive coding. Such 29 SNPs were selected, representing a subset of independent SNPs reported to be highly associated with AD in a recent AD meta-GWAS study by Jansen and colleagues.

Results

We identified the significant correlations between the 29 genomic markers (GMs) and the 200 neuroimaging markers (NIMs). The odds ratios and relative risks for AD and MCI (relative to HC) were predicted using multinomial linear models.

Discussion

In the HC and MCI cohorts, mainly cortical thickness measures were associated with GMs, whereas the AD cohort exhibited different GM-NIM relations. Network patterns within the HC and AD groups were distinct in cortical thickness, volume, and proportion of White to Gray Matter (pct), but not in the MCI cohort. Multinomial linear models of clinical diagnosis showed precisely the specific NIMs and GMs that were most impactful in discriminating between AD and HC, and between MCI and HC.

Conclusion

This study suggests that advanced analytics provide mechanisms for exploring the interrelations between morphometric indicators and GMs. The findings may facilitate further clinical investigations of phenotypic associations that support deep systematic understanding of AD pathogenesis.  相似文献   

8.
《Alzheimer's & dementia》2008,4(4):255-264
BackgroundIn North America, the Alzheimer's Disease Neuroimaging Initiative (ADNI) has established a platform to track the brain changes of Alzheimer's disease. A pilot study has been carried out in Europe to test the feasibility of the adoption of the ADNI platform (pilot E-ADNI).MethodsSeven academic sites of the European Alzheimer's Disease Consortium (EADC) enrolled 19 patients with mild cognitive impairment (MCI), 22 with AD, and 18 older healthy persons by using the ADNI clinical and neuropsychological battery. ADNI compliant magnetic resonance imaging (MRI) scans, cerebrospinal fluid, and blood samples were shipped to central repositories. Medial temporal atrophy (MTA) and white matter hyperintensities (WMH) were assessed by a single rater by using visual rating scales.ResultsRecruitment rate was 3.5 subjects per month per site. The cognitive, behavioral, and neuropsychological features of the European subjects were very similar to their U.S. counterparts. Three-dimensional T1-weighted MRI sequences were successfully performed on all subjects, and cerebrospinal fluid samples were obtained from 77%, 68%, and 83% of AD patients, MCI patients, and controls, respectively. Mean MTA score showed a significant increase from controls (left, right: 0.4, 0.3) to MCI patients (0.9, 0.8) to AD patients (2.3, 2.0), whereas mean WMH score did not differ among the three diagnostic groups (between 0.7 and 0.9). The distribution of both MRI markers was comparable to matched US-ADNI subjects.ConclusionsAcademic EADC centers can adopt the ADNI platform to enroll MCI and AD patients and older controls with global cognitive and structural imaging features remarkably similar to those of the US-ADNI.  相似文献   

9.
《Alzheimer's & dementia》2014,10(6):704-712
BackgroundThis study examined the predictive value of different classes of markers in the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) over an extended 4-year follow-up in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.MethodsMCI patients were assessed for clinical, cognitive, magnetic resonance imaging (MRI), positron emission tomography–fluorodeoxyglucose (PET-FDG), and cerebrospinal fluid (CSF) markers at baseline and were followed on a yearly basis for 4 years to ascertain progression to AD. Logistic regression models were fitted in clusters, including demographics, APOE genotype, cognitive markers, and biomarkers (morphometric, PET-FDG, CSF, amyloid-β, and tau).ResultsThe predictive model at 4 years revealed that two cognitive measures, an episodic memory measure and a Clock Drawing screening test, were the best predictors of conversion (area under the curve = 0.78).ConclusionsThis model of prediction is consistent with the previous model at 2 years, thus highlighting the importance of cognitive measures in progression from MCI to AD. Cognitive markers were more robust predictors than biomarkers.  相似文献   

10.
The Alzheimer's Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year research project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer's disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD.  相似文献   

11.
The Australian Imaging Biomarkers and Lifestyle (AIBL) study is a longitudinal study of 1112 volunteers from healthy, mild cognitive impairment, and Alzheimer's disease (AD) populations who can be assessed and followed up for prospective research into aging and AD. AIBL aims to improve understanding of the pathogenesis, early clinical manifestation, and diagnosis of AD, and identify diet and lifestyle factors that influence the development of AD. For AIBL, the magnetic resonance imaging parameters of Alzheimer's Disease Neuroimaging Initiative (ADNI) were adopted and the Pittsuburgh compound B (11C-PiB) positron emission tomography (PET) acquisition and neuropsychological tests were designed to permit comparison and pooling with ADNI data. Differences to ADNI include assessment every 18-months, imaging in 25% (magnetic resonance imaging, 11C-PiB PET but no fluorodeoxyglucose PET), more comprehensive neuropsychological testing, and detailed collection of diet and lifestyle data. AIBL has completed the first 18-month follow-up and is making imaging and clinical data available through the ADNI website. Cross-sectional analysis of baseline data is revealing links between cognition, brain amyloid burden, structural brain changes, biomarkers, and lifestyle.  相似文献   

12.

Objective

Develop a cerebrospinal fluid biomarker signature for mild Alzheimer's disease (AD) in Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects.

Methods

Amyloid‐β 1 to 42 peptide (Aβ1–42), total tau (t‐tau), and tau phosphorylated at the threonine 181 were measured in (1) cerebrospinal fluid (CSF) samples obtained during baseline evaluation of 100 mild AD, 196 mild cognitive impairment, and 114 elderly cognitively normal (NC) subjects in ADNI; and (2) independent 56 autopsy‐confirmed AD cases and 52 age‐matched elderly NCs using a multiplex immunoassay. Detection of an AD CSF profile for t‐tau and Aβ1–42 in ADNI subjects was achieved using receiver operating characteristic cut points and logistic regression models derived from the autopsy‐confirmed CSF data.

Results

CSF Aβ1–42 was the most sensitive biomarker for AD in the autopsy cohort of CSF samples: receiver operating characteristic area under the curve of 0.913 and sensitivity for AD detection of 96.4%. In the ADNI cohort, a logistic regression model for Aβ1–42, t‐tau, and APOε4 allele count provided the best assessment delineation of mild AD. An AD‐like baseline CSF profile for t‐tau/Aβ1–42 was detected in 33 of 37 ADNI mild cognitive impairment subjects who converted to probable AD during the first year of the study.

Interpretation

The CSF biomarker signature of AD defined by Aβ1–42 and t‐tau in the autopsy‐confirmed AD cohort and confirmed in the cohort followed in ADNI for 12 months detects mild AD in a large, multisite, prospective clinical investigation, and this signature appears to predict conversion from mild cognitive impairment to AD. Ann Neurol 2009  相似文献   

13.
ObjectiveTo investigate associations between statin use and cognitive change, as well as diagnostic conversion, in individuals with cognitively normal (CN) status, mild cognitive impairment (MCI), and dementia due to Alzheimer disease (AD-dementia).MethodsA multicenter cohort study with 1629 adults 48 to 91 years old with CN status, early MCI (EMCI), late MCI (LMCI), or AD-dementia at baseline followed prospectively for 24 months. Statin use was assessed at baseline, and cognition was measured over time with a composite memory score, a composite executive function score, and a global cognition score (Alzheimer's Disease Assessment Scale). Conversion to a more impaired diagnostic category was determined by clinician assessment. Repeated measures linear mixed-effects models were used to evaluate associations between statin use and change in cognition over time. Cox proportional hazards models were used to evaluate associations between statin use and time to diagnostic conversion. All models were stratified by baseline diagnostic group.ResultsStatin use was not associated with change in cognitive measures for CN, LMCI, or AD-dementia participants. Among EMCI participants, statin use was associated with a significantly slower rate of decline on the memory composite, but no other cognitive measure. Statin use was not associated with time to conversion for any diagnostic group.ConclusionsThis study did not support an association between statin use and diagnostic conversion but suggested a possible association between statin use and cognitive change in EMCI. Additional randomized clinical trials of statins may be warranted in the prodromal EMCI stage of AD.  相似文献   

14.
Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1‐weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI‐to‐AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = ?0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose‐positron emission tomography (Pearson correlation, r = ?0.57, p < 0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148–1161, 2016. © 2015 Wiley Periodicals, Inc .  相似文献   

15.
Recent advances in biomarker studies compiled from the Alzheimer's Disease Neuroimaging Initiative (ADNI) are summarized here. CSF Aβ42, total tau, and phosphorylated tau181 are the most sensitive biomarkers for diagnosing Alzheimer's disease (AD) and predicting the onset of AD in cases with mild cognitive impairment (MCI) due to AD. Many perspective studies on PiB-PET, FDG-PET, MRI volumetry, and some neuropsychiatric tests have provided evidence for the usefulness of these biomarkers for diagnosing AD and MCI due to AD. Basic and clinical studies have contributed considerably to the establishment of clinical evidence that supports the usefulness of these markers. Given the progress in the diagnosis of preclinical AD, discovery of therapy that is essential for the cure of AD is expected soon.  相似文献   

16.
The feasibility of pharmacotherapy with cholinesterase inhibitors, which have been approved as the treatment agent for Alzheimer's disease (AD), for mild cognitive impairment (MCI) is discussed together with the results of previous studies. The clinical trials of cholinesterase inhibitors in patients with early or mild AD are reviewed first, because some cases of MCI may be regarded as cases of very early‐stage AD or very mild AD. Clinical trials for MCI treatment are then analyzed, although only preliminary results of data analysis have been reported. In addition, the methodological issues in the clinical trials for MCI treatment are discussed. The author points out that there should be focus on the observation period of trials, patient inclusion and exclusion criteria and subtypes of MCI, and that the suitability of cognitive measurements need to be further discussed.  相似文献   

17.
Alzheimer's disease (AD) generally begins with mild memory problems in an insidious manner and progresses to develop multiple cognitive as well as functional impairment within a few years. Currently, the diagnosis of AD requires multiple cognitive deficits including memory disturbance and exclusion of other dementing disorders. However, normal elderly people quite commonly complain of increasing forgetfulness with age. Mild cognitive impairment (MCI) is generally regarded as an intermediate state between normal aging and dementia. In other words, MCI refers to persons that are not normal nor clinically diagnosed dementia. (Winblad et al. J. Intern. Med. 2004). When daily functioning is impaired as a result of cognitive decline, dementia is the appropriate diagnostic label. Alzheimer's Disease Neuroimaging Initiative (ADNI) aims at; 1) Major goal is collection of data and to establish a brain imaging and biomarker database; 2) Determine the optimum methods for acquiring and processing images for clinical trials: 3) Develop "standards" for imaging, biomarkers; 4) "Validate" imaging and biomarker data by correlating with behavioral data to facilitate new AD therapies by disease modifiers. Japan-ADNI will be started as a part of world wide ADNI. Currently, gamma-secretase modifiers and Abeta aggregation inhibitors as well as amyloid vaccination are under clinical trials.  相似文献   

18.
The structural covariance network (SCN) has provided a perspective on the large‐scale brain organization impairment in the Alzheimer''s Disease (AD) continuum. However, the successive structural impairment across brain regions, which may underlie the disrupted SCN in the AD continuum, is not well understood. In the current study, we enrolled 446 subjects with AD, mild cognitive impairment (MCI) or normal aging (NA) from the Alzheimer''s Disease Neuroimaging Initiative (ADNI) database. The SCN as well as a casual SCN (CaSCN) based on Granger causality analysis were applied to the T1‐weighted structural magnetic resonance images of the subjects. Compared with that of the NAs, the SCN was disrupted in the MCI and AD subjects, with the hippocampus and left middle temporal lobe being the most impaired nodes, which is in line with previous studies. In contrast, according to the 194 subjects with records on CSF amyloid and Tau, the CaSCN revealed that during AD progression, the CaSCN was enhanced. Specifically, the hippocampus, thalamus, and precuneus/posterior cingulate cortex (PCC) were identified as the core regions in which atrophy originated and could predict atrophy in other brain regions. Taken together, these findings provide a comprehensive view of brain atrophy in the AD continuum and the relationships among the brain atrophy in different regions, which may provide novel insight into the progression of AD.  相似文献   

19.
20.
Volume losses in the medial temporal lobe, posterior cingulated, and orbitofrontal region have been observed in Alzheimer's disease (AD). Smaller reductions in similar regions have also been reported in amnestic mild cognitive impairment (aMCI), a canonical precursor to AD. We previously demonstrated that volume loss in bilateral anteromedial temporal lobe is present at baseline in longitudinally followed normal subjects who later developed MCI or AD. In this study we compared grey matter volumes within this predefined anteromedial temporal region (AMTR) at baseline between: 1) normal subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) who subsequently developed cognitive complaints as reflected in a CDR memory box score of 0.5; and 2) normal subjects who remained normal over a median of 48 months of follow-up (CDR sum of boxes 0). We found significantly decreased volume within AMTR in the ADNI memory complainers. To relate AMTR results to those from conventional anatomy, we demonstrate that volumes extracted with the ICBM amygdala region had the best correspondence with AMTR volumes. In contrast, regions that have demonstrated volume loss in frank MCI and AD in ADNI, e.g., the posterior cingulate, did not show volume loss. These findings provide independent confirmation that volume changes preceding MCI occur in AMTR, a region of overlap between amygdala and anterior hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号