首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Liaw  S F Chang  F C Hsiao 《Gene therapy》2001,8(13):999-1004
The primary objective of this study was to investigate the feasibility of using PEO-PPO-PEO non-ionic copolymeric micelles as a carrier for eye-drop gene delivery of plasmid DNA with lacZ gene in vivo. Using pyrene fluorescence probe methods, zeta potential, and dynamic light scattering test (DLS), the ability of micelle formation of these block copolymers with plasmid was studied. Gene expressions were visualized by both the quality of enzymatic color reaction using X-gal staining and by the quantification of the substrate chlorophenol red galactopyranoside (CPRG) in enucleated eyes on day 2 after gene transfer. In addition, microscopy to identify the types of cell showing uptake and expression of the transferred gene was used. We found that the block polymeric micelles were formed above 0.1% (w/v) of block copolymer with a size of 160 nm and a zeta potential of -4.4 mV. After 2 days of topically delivery three times a day, the most intense gene expression was observed on days 2 and 3. Reporter expression was detected around the iris, sclera, conjunctiva, and lateral rectus muscle of rabbit eyes and also in the intraocular tissues of nude mice upon in vivo topical application for 48 h with a DNA/polymeric micelle formulation. Furthermore, after two enhancement treatments, the transport mechanisms of the block copolymeric micelles were found through endocytosis in tissues by enhancement through the tight junction pathway. Thus, efficient and stable transfer of the functional gene could be achieved with PEO-PPO-PEO polymeric micelles through topical delivery in mice and rabbits. These in vivo experiments indicate the possible potential use of block copolymers for DNA transfer.  相似文献   

2.
Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) was conjugated to the 3′ end of small interfering RNA (siRNA) via a disulfide bond to synthesize siRNA-PLGA hybrid conjugates. siRNA-PLGA conjugates were spontaneously self-assembled to form a spherical core/shell type micellar structure of ~ 20 nm in an aqueous environment, probably by hydrophobic interaction of PLGA blocks in the core surrounded by an siRNA shell layer. When linear polyethylenimine was added to the siRNA-PLGA micelles in aqueous solution, stable siRNA-PLGA/LPEI micelles with a size of ~ 30 nm were produced via ionic complexation between siRNA and LPEI in the outer shell. The cationic siRNA-PLGA/LPEI micelles showed superior intracellular uptake and enhanced gene silencing effect, compared to naked siRNA/LPEI complexes. The hybrid micelle structure based on siRNA and PLGA can be potentially used as an efficient siRNA delivery system for gene silencing.  相似文献   

3.
The R3V6 peptides, which are composed of a 3-arginine block and a 6-valine block, formed self-assembled micelles in aqueous solution. Dye quenching assays showed that a hydrophobic fluorescent dye, 5-dodecanoylaminofluorescein (DAF), interacted with and was loaded into the hydrophobic core of the micelles. In this study, dexamethasone-loaded R3V6 peptide micelles (R3V6-Dexa) were evaluated as a gene carrier. R3V6-Dexa had higher gene delivery efficiency in human embryonic kidney 293 cells compared to those of the R3V6 peptides and poly-L-lysine (PLL). Dexamethasone might stabilize the micelle structure of the R3V6 peptides by forming strong hydrophobic cores and enhanced the transfection efficiency. Furthermore, R3V6-Dexa reduced the expression of an inflammatory cytokine, interleukin-6 (IL-6), more efficiently in lipopolysaccharide (LPS)-induced Raw264.7 cells than did dexamethasone, suggesting that R3V6-Dexa is also a useful carrier for dexamethasone delivery. A focal brain ischemia-reperfusion model was produced by middle cerebral artery occlusion (MCAO). A heme oxygenase-1 (HO-1) expression plasmid DNA, pSV-HO-1, was delivered into the brain using R3V6-Dexa as a carrier. The pSV-HO-1/R3V6-Dexa complex was injected into the brain 1hr prior to MCAO. Twenty-four hours later, the HO-1 expression of the pSV-HO-1/R3V6-Dexa injection group was higher than those of the MCAO control, pβ-Luc/R3V6-Dexa, and pSV-HO-1/PEI25k injection groups. In addition, the infarct size was reduced due to the delivery of pSV-HO-1/R3V6-Dexa complex. Therefore, R3V6-Dexa may be a useful carrier for HO-1 gene delivery and stroke gene therapy.  相似文献   

4.
Doxorubicin (DOX) was physically loaded into micelles prepared from poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) block copolymer (PEG-PBLA) by an o/w emulsion method with a substantial drug loading level (15 to 20 w/w%). DOX-loaded micelles were narrowly distributed in size with diameters of approximately 50-70 nm. Dimer derivatives of DOX as well as DOX itself were revealed to be entrapped in the micelle, the former seems to improve micelle stability due to its low water solubility and possible interaction with benzyl residues of PBLA segments through pi-pi stacking. Release of DOX compounds from the micelles proceeded in two stages: an initial rapid release was followed by a stage of slow and long-lasting release of DOX. Acceleration of DOX release can be obtained by lowering the surrounding pH from 7.4 to 5.0, suggesting a pH-sensitive release of DOX from the micelles. A remarkable improvement in blood circulation of DOX was achieved by use of PEG-PBLA micelle as a carrier presumably due to the reduced reticuloendothelial system uptake of the micelles through a steric stabilization mechanism. Finally, DOX loaded in the micelle showed a considerably higher antitumor activity compared to free DOX against mouse C26 tumor by i.v. injection, indicating a promising feature for PEG-PBLA micelle as a long-circulating carrier system useful in modulated drug delivery.  相似文献   

5.
We describe the development of an aerosol system for topical gene delivery to the lungs of C57BL/6 mice. This system is based on the combination of the commercial cationic lipid Lipofectin with a novel amphiphilic triblock copolymer, poly(p-dioxanone-co-L-lactide)-block-poly(ethylene glycol) (PPDO/PLLA-b-PEG, and abbreviated in the text as polymeric micelles). After optimizing conditions for DNA delivery to the lungs of mice using the combination of polymeric micelles with Lipofectin and LacZ DNA, we used the Lipofectin/polymeric micelle system to deliver the tumor suppressor gene PTEN to the lungs of C57BL/6 mice bearing the B16-F10 melanoma. Lipofectin/PTEN/polymeric micelles significantly improved gene expression of PTEN in the lungs of mice with no evidence of cell toxicity or acute inflammation. Importantly, lung metastasis, as measured by lung weight, was significantly reduced (P<0.001), as were total tumor foci in the lungs (P<0.001) and size of individual tumor nodules in animals treated with Lipofectin/PTEN/polymeric micelles compared with control animals. Survival time was also extended. These results suggest that the Lipofectin/polymeric micelle system is appropriate for enhancing gene delivery in vivo and that it can be applied as a non-invasive gene therapy for lung cancer.  相似文献   

6.
Amphiphilic block copolymers composed of methoxy poly(ethylene glycol) (MPEG) and poly(epsilon-caprolactone) (PCL) were synthesized and then conjugated with folic acid to produce a folate-receptor-targeted drug carrier for tumor-specific drug delivery. Folate-conjugated MPEG/PCL micelles containing the anticancer drug paclitaxel were prepared by micelle formation in aqueous medium. The size of the folate-conjugated MPEG/PCL micelles formed was about 50-130 nm, depending on the molecular weight of block copolymers, and was maintained at less than 150 nm even after loading with paclitaxel. The in vitro release profile of the paclitaxel from the MPEG/PCL micelles exhibited no initial burst release and showed sustained release. Paclitaxel-loaded folate-conjugated MPEG/PCL micelles (PFOL50) exhibited much higher cytotoxicity for cancer cells, such as MCF-7 and HeLa cells, than MPEG/PCL micelles without the folate group (PMEP50). Confocal image analysis revealed that fluorescent paclitaxel-loaded PFOL50 micelles were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells.  相似文献   

7.
Hydrotropic polymer micelle system for delivery of paclitaxel.   总被引:13,自引:0,他引:13  
Hydrotropic polymer micelle system has been developed for delivery of poorly water-soluble drugs such as paclitaxel. Hydrotropic polymers based on N,N-diethylnicotinamide were synthesized and used as a hydrophobic block for constructing amphiphilic block copolymers. The hydrotropic block copolymers self-assembled to form micelles in aqueous media. The size of the prepared polymer micelles was in the range of 30-50 nm, and increased to 100-120 nm after paclitaxel loading. The critical micelle concentrations (CMCs) of the block copolymers were higher by an order of magnitude than those of other typical polymer micelles, due to less hydrophobicity of the hydrotropic blocks. The drug loading capacity and physical stability of the polymer micelles were characterized and compared with those of other polymer micelles. The hydrotropic polymer micelles containing hydrotrope-rich cores showed not only higher loading capacity but also enhanced physical stability in aqueous media. They could be redissolved in aqueous media by simple vortexing and/or a mild heating. The hydrotropic polymer micelles provide an alternative approach for formulation of poorly soluble drugs.  相似文献   

8.
New polyphosphoramidate with a spermidine side chain as a gene carrier.   总被引:4,自引:0,他引:4  
A new cationic polymer (PPA-SP), polyphosphoramidate bearing spermidine side chain, was prepared as a non-viral vector for gene delivery. PPA-SP was synthesized from poly(1,2-propylene H-phosphonate) by the Atherton-Todd reaction. The weight average molecular weight of PPA-SP was 3.44x10(4) with a number average degree of polymerization of 90, as determined by GPC/LS/RI method. The average net positive charge per polymer chain was 102. PPA-SP was able to condense plasmid DNA efficiently and formed complexes at an N/P ratio (free amino groups in polymer to phosphate groups in DNA) of 2 and above, as determined by agarose gel electrophoresis. This new gene carrier offered significant protection to DNA against nuclease degradation at N/P ratios above 2, and showed lower cytotoxicity than PLL and PEI in cell culture. The LD(50) of PPA-SP was 85 microg/ml in COS-7 cells, in contrast to 20 and 42 microg/ml for PLL and PEI, respectively. The complexes prepared in saline at N/P ratios of 5 approximately 10 had an average size of 250 nm and zeta-potential of 26 mV. PPA-SP mediated efficient gene transfection in a number of cell lines, and the transfection protocol was optimized in HEK293 cells using a luciferase plasmid as a marker gene. Gene expression mediated by PPA-SP was greatly enhanced when chloroquine was used in conjunction at a concentration of 100 microM. Under the optimized condition, PPA-SP/DNA complexes yield a luciferase expression level closed to PEI/DNA complexes or Transfast mediated transfection. In a non-invasive CNS gene delivery model, PPA-SP/DNA complexes yielded comparable bcl-2 expression as PEI/DNA complexes in mouse brain stem following injection of the complexes in the tongue.  相似文献   

9.
We have designed the gene delivery carrier targeted to Molt 4 cells, human leukemia T cells, using monoclonal antibody against leukemia-specific JL1 antigen, anti-JL1 antibody, as a targeting moiety. Anti-JL1 antibody has been proven to bind to JL1 antigen and subsequently be internalized into Molt 4 cells, demonstrating that anti-JL1 antibody has the potential as a targeting ligand for leukemia-specific gene transfer. Anti-JL1 antibody was modified with the heterobifunctional crosslinker, PDPH, at carbohydrate sites and conjugated to thiolated poly-L-lysine (PLL) via disulfide bridges. The composition and antigen binding affinity of antibody-PLL conjugates were analyzed by the amino acid analysis and the flow cytometry, respectively. Antibody-PLL conjugates neutralized pSV-beta-galactosidase plasmid DNA at 5:1 weight ratio and condensed into about 200--300-nm complexes. DNA/antibody-PLL complexes were effectively internalized into Molt 4 cells after 4 h incubation at 37 degrees C and showed significantly higher in vitro transfection efficiency than DNA/PLL complexes and DNA/Lipofectin formulation due to the targeting effect of receptor-mediated endocytosis induced by anti-JL1 antibody.  相似文献   

10.
Block copolymer micelles formed from copolymers of poly(caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) were investigated as a drug delivery vehicle for dihydrotestosterone (DHT). The physical parameters of the PCL-b-PEO micelle-incorporated DHT were measured, including the loading capacity of the micelles for DHT, the apparent partition coefficient of DHT between the micelles and the external medium and the kinetics of the release of DHT from the micelle solution. The MTT survival assay was used to assess the in vitro biocompatibility of PCL-b-PEO micelles in HeLa cell cultures. The biological activity of the micelle-incorporated DHT was evaluated in HeLa cells which had been co-transfected with the expression vectors for the androgen receptor and the MMTV-LUC reporter gene. The PCL-b-PEO micelles were found to have a high loading capacity for DHT and the release profile of the drug from the micelle solution was found to be a slow steady release which continued over a 1-month period. The biological activity of the micelle-incorporated DHT was found to be fully retained.  相似文献   

11.
To establish non-viral gene delivery systems for intravenous administration, complexes of DNA and block copolymer consisting of poly-L-lysine and poly(ethylene glycol) were tested in in vivo turnover studies. The polyion complex micelles have self-assembling core-shell structures, yielding spherical nano-particles with small absolute values of zeta-potential. Southern blot analysis showed that supercoiled DNA was observed for 30 min and open circular or linear DNA was seen for 3 h after intravenous administration of PIC micelles having the charge ratios of 1:4 and PLL length of 48 mer. The PIC micelles with shorter PLL length showed lower stability in the blood stream suggesting that DNA is able to persist as an intact molecule in the blood stream using this system. Though having no ligands, PIC micelles with charge ratios of 1:2 and 1:4 transfected efficiently into HepG2 cells. Preincubation with free copolymer inhibited expression of the reporter gene, suggesting that adsorption of block copolymer to the cell surface blocked the interaction site of the PIC micelles. When the PIC micelles were injected via supramesenteric vein, expression of the gene was observed only in the liver and was sustained for 3 days. It was suggested that this gene delivery system is intrinsically efficient.  相似文献   

12.
Polymeric micelles were constructed from poly(l-lactic acid) (PLA; Mn 3K)-b-poly(ethylene glycol) (PEG; Mn 2K)-b-poly(l-histidine) (polyHis; Mn 5K) as a tumor pH-specific anticancer drug carrier. Micelles (particle diameter: ∼ 80 nm; critical micelle concentration (CMC): 2 μg/ml) formed by dialysis of the polymer solution in dimethylsulfoxide (DMSO) against pH 8.0 aqueous solution, are assumed to have a flower-like assembly of PLA and polyHis blocks in the core and PEG block as the shell. The pH-sensitivity of the micelles originates from the deformation of the micellar core due to the ionization of polyHis at a slightly acidic pH. However, the co-presence of pH-insensitive lipophilic PLA block in the core prevented disintegration of the micelles and caused swelling/aggregation. A fluorescence probe study showed that the polarity of pyrene retained in the micelles increased as pH was decreased from 7.4 to 6.6, indicating a change to a more hydrophilic environment in the micelles. Considering that the size increased up to 580 nm at pH 6.6 from 80 nm at pH 7.4 and that the transmittance of micellar solution increased with decreasing pH, the micelles were not dissociated but rather swollen/aggregated. Interestingly, the subsequent decline of pyrene polarity below pH 6.6 suggested re-self-assembly of the block copolymers, most likely forming a PLA block core while polyHis block relocation to the surface. Consequently, these pH-dependent physical changes of the PLA-b-PEG-b-polyHis micelles provide a mechanism for triggered drug release from the micelles triggered by the small change in pH (pH 7.2–6.5).  相似文献   

13.
A new micelle system formed from methoxy (polyethylene glycol)-b-poly (5-benzyloxy-trimethylene carbonate; MePEG-b-PBTMC 5000-b-4800) was investigated as a delivery system for the hydrophobic anti-cancer agent, ellipticine. The ellipticine was loaded into the MePEG-b-PBTMC micelles with a loading efficiency of 95% using a high-pressure extrusion technique. The ellipticine-loaded micelles have a spherical morphology and an average diameter of 96 nm. The anti-cancer activity of ellipticine was confirmed to be retained following formulation in the MePEG-b-PBTMC micelles. The extent of protein adsorption to the MePEG-b-PBTMC micelles was investigated by transmission electron microscopy, dynamic light scattering and gel filtration chromatography. Overall, the amount of protein both loosely and tightly associated with the micelles was found to be minimal and insignificant. The partitioning properties of ellipticine between an aqueous medium containing protein and the MePEG-b-PBTMC micelles were examined over a range of protein concentrations. Under physiologically relevant conditions, it was found that 61% of the drug remained within the micelle fraction while 39% was in the protein-containing aqueous phase. In addition, the in vitro drug release profile of ellipticine from the micelles was fit using a modified Higuchi model and found to be accelerated in the presence of protein. These studies demonstrate that although there are no significant interactions between micelle and protein, the properties of the micelle as a delivery vehicle may be strongly influenced by protein-drug interactions.  相似文献   

14.
Ex vivo transfer of therapeutic genes to cells is one of the potential strategies to prolong the life span of cell transplants. However, relatively safe non-viral carriers have not been extensively investigated due to their lower transfection efficiency. In this study, poly(L-lysine)-g-sulfonylurea varying SU content (PLL-SU) was synthesized to promote gene delivery efficacy to an insulin secreting cell line, RINm5F, which is known to express sulfonylurea receptor (SUR). The polymer formed complexes with a model reporter gene of pCMV-Luc (DNA) and the size of resulting particles was around 100 nm. The transfection efficiency of a polymer synthesized with 5 mol% of SU in the reaction feed (PLL-SU5%) to RINm5F cell was at least 5 times higher than that of PLL. The cytotoxicity of PLL-SU5%/DNA complex was equivalent to that of PLL/DNA complex. PLL-SU5% showed less transfection efficiency than PLL to NIH3T3 and HepG2 cells which are SUR negative. In RINm5F cells, the addition of free SU decreased the transfection efficiency of PLL-SU5%/DNA complex, suggesting that the complex shares the same receptors for SU. The PLL-SU5%/DNA complex seems to be internalized via SUR-mediated endocytosis pathway as suggested by vacuolar ATPases inhibition by Bafilomycin A1. It is noted that RINm5F cells treated with PLL-SU5%/DNA complex secreted more insulin than control, untreated cells, suggesting the insulinotropic effect of SU in PLL-SU5%. In conclusion, PLL-SU may be useful for transfer of therapeutic genes into insulin secreting cells.  相似文献   

15.
A novel drug targeting system for acidic solid tumors has been developed based on ultra pH-sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of poly(l-lactic acid) (PLLA) and a hydrophilic shell consisting of polyethylene glycol (PEG) conjugated to TAT (TAT micelle), 2) an ultra pH-sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TAT micelles had particle sizes between 20 and 45 nm and their critical micelle concentrations were 3.5 mg/l to 5.5 mg/l. The TAT micelles, upon mixing with pH-sensitive PSD-b-PEG, showed a slight increase in particle size between pH 8.0 and 6.8 (60-90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flow cytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The confocal microscopy indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above micelles would be able to target any hydrophobic drug near the nucleus.  相似文献   

16.
Nonviral polycation-based gene carriers (polyplexes) have attracted attention as safe and efficient gene delivery systems. Polyplex micelles comprised of poly(ethyleneglycol)-block-poly{N’-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-PAsp(DET)) and plasmid DNA (pDNA) have shown high transfection efficiency with low toxicity due to the pH-sensitive protonation behavior of PAsp(DET), which enhances endosomal escape, and their self-catalytic degradability under physiological conditions, which reduces cumulative toxicity during transfection. In this study, we improved the safety and transfection efficiency of this polyplex micelle system by adding an anionic polycarbohydrate, chondroitin sulfate (CS). A quantitative assay for cell membrane integrity using image analysis software showed that the addition of CS markedly reduced membrane damage caused by free polycations in the micelle solution. It also reduced tissue damage and subsequent inflammatory responses in the skeletal muscle and lungs of mice following in vivo gene delivery with the polyplex micelles. Subsequently, this led to prolonged transgene expression in the target organs. This combination of polyplex micelles and CS holds great promise for safe and efficient gene introduction in clinical settings.  相似文献   

17.
alpha-Lactosyl-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) block copolymer (lactose-PEG-PAMA) was synthesized to construct a PIC micellar-type gene vector potentially useful for selective transfection of hepatic cells. Lactose-PEG-PAMA spontaneously formed a polyion complex (PIC) micelle with plasmid DNA (pDNA) encoding luciferase (pGL3-Luc) in aqueous solution without any precipitate formation. The lactosylated PIC micelle thus prepared achieved substantially higher transfection efficiency compared to the control PIC micelle without lactose moieties against HepG2 cells possessing asialoglycoprotein (ASGP) receptors recognizing the beta-d-galactose residue. This pronounced transfection efficacy of the lactosylated PIC micelle was inhibited by the addition of excess asialofetuin (ASF), a natural ligand against the ASGP receptor, indicating ASGP receptor-mediated endocytosis to be a major route of the cellular uptake of the lactosylated micelles. Notably, the lactosylated PIC micelle revealed enhanced transfection compared to the control PIC micelle at a lower dose of pDNA, demonstrating the feasibility of using the ligand-conjugated PIC micellar vector for gene delivery to targeted cells.  相似文献   

18.
19.
Block copolymer micelles, containing dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt), the oxaliplatin parent complex, were prepared through polymer-metal complex formation of DACHPt with poly(ethylene glycol)-poly(glutamic acid) block copolymer [PEG-P(Glu)] in distilled water. By dynamic light scattering (DLS) measurement, the micelle size was determined to be 40 nm with narrow distribution. The release of platinum complexes from the micelle core was measured in phosphate buffer saline (pH 7.4) at 37 degrees C. DACHPt-loaded micelle showed a sustained release rate of platinum after an induction period of 12 h. In the same conditions, the kinetic stability of DACHPt-loaded micelle was measured. The micelle was found to be very stable, keeping the initial size, for 240 h. Against murine colon adenocarcinoma 26 (C-26) cells, DACHPt-loaded micelle exhibited considerable in vitro cytotoxicity, lower than oxaliplatin but increasing with exposure time as a result of the release of platinum complexes from the micelle. In vivo biodistribution assay performed on tumor-bearing mice demonstrated that the micelle showed prolonged blood circulation due to its high stability and high tumor accumulation for a prolonged time.  相似文献   

20.
For efficient gene delivery into cells, a new formulation method based on using polyethylene glycol (PEG) grafted poly(L-lysine) (PLL) and a fusogenic peptide is presented in this study. First, PEG grafted PLL (PEG-g-PLL) was complexed with DNA by controlling the polymer/DNA ratio to form negatively charged nano-particulate complexes. A positively charged fusogenic peptide, KALA, was then coated by ionic interaction onto the surface of polymer/DNA complexes to make net positively charged KALA/polymer/DNA complexes. The use of PEG-g-PLL for KALA coating significantly suppressed the aggregation of complexes due to steric stabilization effect of PEG present on the surface, while the use of PLL alone induced severe aggregation of the complexes via KALA mediated inter-particulate cross-linking. For PEG-g-PLL/DNA complexes, enhanced transfection efficiency was observed with increasing amount of KALA. This suggests that maintaining the size of DNA/polymer complexes after KALA coating plays an important role in gene transfection. KALA/DNA/PEG-g-PLL complexes exhibited lower cytotoxicity compared with other polymer/DNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号