首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Involvement of the Akt/mTOR pathway on EGF-induced cell transformation   总被引:2,自引:0,他引:2  
Our previous study demonstrated that phosphatidylinositol 3-kinase (PI3K) is necessary for epidermal growth factor (EGF)-induced cell transformation in mouse epidermal JB6 cells. Akt and the mammalian target of rapamycin (mTOR) are regarded as PI3K downstream effectors. Therefore, in this study, we investigated the role of Akt and mTOR on EGF-induced cell transformation in JB6 cells using rapamycin, a specific mTOR inhibitor, and cells expressing dominant negative mutants of Akt1 (DNM-Akt1). We found that the treatment of cells with rapamycin inhibited EGF-induced cell transformation but only slightly inhibited JB6 cell proliferation at 72 h. Although LY294002, a PI3K inhibitor, attenuated EGF-induced activator protein 1 (AP-1) activation, treatment with rapamycin did not affect AP-1 activity. Treatment with rapamycin inhibited EGF-induced phosphorylation and activation of ribosomal p70 S6 protein kinase (p70 S6K), an mTOR downstream target, but had no effect on phosphorylation and activation of Akt. Rapamycin also had no effect on EGF-induced phosphorylation of extracellular signal-regulated protein kinases (ERKs). We showed that introduction of DNM-Akt1 into JB6 mouse epidermal Cl 41 (JB6 Cl 41) cells inhibits EGF-induced cell transformation without blocking cell proliferation. The expression of DNM-Akt1 also suppressed EGF-induced p70 S6K activation as well as Akt activation. These results indicated an involvement of the Akt/mTOR pathway in EGF-induced cell transformation in JB6 cells.  相似文献   

2.
Lung cancer is one of the most commonly occurring malignancies. It has been reported that mammalian target of rapamycin (mTOR) is phosphorylated in lung cancer and its activation was more frequent in tumors with overexpression of phosphatidylinositol 3-kinase (PI3K)/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human nonsmall cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex such as Rictor, Raptor, GβL and PRAS40. There was an increase in the phosphorylation of AMPKα and a decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer.  相似文献   

3.
Hou G  Xue L  Lu Z  Fan T  Tian F  Xue Y 《Cancer letters》2007,253(2):236-248
mTOR/p70S6K pathway is considered a central regulator in various malignant tumors, but its roles in esophageal squamous cell carcinoma (ESCC), which is a common cause of mortality in China, remain unknown. Here, we identify that the mTOR/p70S6K pathway is activated in ESCC; rapamycin and siRNA against mTOR rapidly inhibited expression of mTOR and the phosphorylation of its major downstream effectors, p70S6K and 4E-BP1, arrested cells in the G(0)/G(1) phase and induced apoptosis of ESCC cells. The findings may lay a foundation for making further investigations on the mTOR/p70S6K pathway as a potential target for ESCC therapy.  相似文献   

4.
The mechanisms of cell transformation mediated by the nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) tyrosine kinase are only partially understood. Here, we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma display persistent activation of mammalian target of rapamycin (mTOR) as determined by phosphorylation of mTOR targets S6rp and 4E-binding protein 1 (4E-BP1). The mTOR activation is serum growth factor-independent but nutrient-dependent. It is also dependent on the expression and enzymatic activity of NPM/ALK as demonstrated by cell transfection with wild-type and functionally deficient NPM/ALK, small interfering RNA (siRNA)-mediated NPM/ALK depletion and kinase activity suppression using the inhibitor WHI-P154. The NPM/ALK-induced mTOR activation is transduced through the mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway and, to a much lesser degree, through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Accordingly, whereas the low-dose PI3K inhibitor wortmannin and Akt inhibitor III profoundly inhibited Akt phosphorylation, they had a very modest effect on S6rp and 4E-BP1 phosphorylation. In turn, MEK inhibitors U0126 and PD98059 and siRNA-mediated depletion of either ERK1 or ERK2 inhibited S6rp phosphorylation much more effectively. Finally, the mTOR inhibitor rapamycin markedly decreased proliferation and increased the apoptotic rate of ALK+TCL cells. These findings identify mTOR as a novel key target of NPM/ALK and suggest that mTOR inhibitors may prove effective in therapy of ALK-induced malignancies.  相似文献   

5.
Liu D  Huang Y  Chen B  Zeng J  Guo N  Zhang S  Liu L  Xu H  Mo X  Li W 《Cancer》2011,117(16):3763-3773

BACKGROUND:

Dysregulation of the mammalian target of rapamycin (mTOR) pathway has been shown to contribute to tumorigenesis. This study explored protein expression profiles of mTOR pathway and the relationship with prognosis in patients with nonsmall cell lung carcinoma (NSCLC).

METHODS:

The protein expression profiles of mTOR/phosphorylated (p‐)mTOR, phosphoinositide‐dependent kinase 1 (PDK1)/p‐PDK1, p‐Akt1, and P70 ribosomal protein S6 kinase (P70S6K)/p‐P70S6K were determined via immunohistochemical staining assay. The clinical prognostic values of both single and combined protein expression were investigated with univariate and multivariate survival analysis.

RESULTS:

Compared with normal lung tissues, the protein levels of mTOR/p‐mTOR, p‐Akt1 Ser473/Thr308, and P70S6K/p‐P70S6K were higher (all P < .05), whereas p‐PDK1 was lower (P < .05) in tumor tissues. p‐mTOR expression was associated with histological differentiation, histological type, lymph node invasion, and stage (all P < .05). Overall survival in NSCLC patients was significantly shorter in cases with positive phenotype for p‐mTOR, p‐PDK1, and p‐P70S6K (all P < .05). Subjects with coexpression of any 2 of p‐mTOR, p‐PDK1, p‐Akt1 Ser473, and p‐P70S6K demonstrated worse prognosis than those expressing no biomarker or any 1 biomarker alone (all P < .05). Multivariate analysis showed that the combination of p‐mTOR/p‐P70S6K is an independent prognostic factor in addition to tumor stage.

CONCLUSIONS:

This study provides clinical evidence that activated components of mTOR pathway, not total protein, are predictors of poor prognosis in NSCLC. Moreover, evaluating protein‐expression profiles of these molecules might be a new strategy for individual therapy in subjects with NSCLC. Cancer 2011;. © 2011 American Cancer Society.  相似文献   

6.
Wan X  Mendoza A  Khanna C  Helman LJ 《Cancer research》2005,65(6):2406-2411
Osteosarcoma is the most frequent primary malignant tumor of bone with a high propensity for metastasis. We have previously showed that ezrin expression is necessary for metastatic behavior in a murine model of osteosarcoma (K7M2). In this study, we found that a mechanism of ezrin-related metastatic behavior is linked to an Akt-dependent mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (S6K1)/eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) pathway. Suppression of ezrin expression either by antisense transfection or by small interfering RNAs or disruption of ezrin function by transfection of a dominant-negative ezrin-T567A mutant led to decreased expression and decreased phosphorylation of both S6K1 and 4E-BP1. Proteosomal inhibition by MG132 reversed antisense-mediated decrease of S6K1 and 4E-BP1 protein expression, but failed to affect the effect of ezrin on phosphorylation of S6K1 and 4E-BP1. Blockade of the mTOR pathway with rapamycin or its analog, cell cycle inhibitor-779 led to significant inhibition of experimental lung metastasis in vivo. These results suggest that blocking the mTOR/S6K1/4E-BP1 pathway may be an appropriate target for strategies to reduce tumor cell metastasis.  相似文献   

7.
Determinants of rapamycin sensitivity in breast cancer cells.   总被引:9,自引:0,他引:9  
PURPOSE: Rapamycin inhibits the serine-threonine kinase mammalian target of rapamycin (mTOR), blocking phosphorylation of p70 S6 kinase (S6K1) and 4E-binding protein 1 (4E-BP1) and inhibiting protein translation and cell cycle progression. Rapamycin and its analogues are currently being tested in clinical trials as novel-targeted anticancer agents. Although rapamycin analogues show activity in clinical trials, only some of the treated patients respond. The purpose of this study is to identify determinants of rapamycin sensitivity that may assist the selection of appropriate patients for therapy. EXPERIMENTAL DESIGN: Breast cancer cell lines representing a spectrum of aberrations in the mTOR signaling pathway were tested for rapamycin sensitivity. The expression and phosphorylation state of multiple components of the pathway were tested by Western blot analysis, in the presence and absence of rapamycin. RESULTS: Cell proliferation was significantly inhibited in response to rapamycin in 12 of 15 breast cancer cell lines. The ratio of total protein levels of 4E-BP1 to its binding partner eukaryotic initiation factor 4E did not predict rapamycin sensitivity. In contrast, overexpression of S6K1, and phosphorylated Akt independent of phosphatase and tensin homologue deleted from chromosome 10 status, were associated with rapamycin sensitivity. Targeting S6K1 and Akt with small interfering RNA and dominant-negative constructs, respectively, decreased rapamycin sensitivity. Rapamycin inhibited the phosphorylation of S6K1, ribosomal S6 protein, and 4E-BP1 in rapamycin-resistant as well as -sensitive cells, indicating that its ability to inhibit the mTOR pathway is not sufficient to confer sensitivity to rapamycin. In contrast, rapamycin treatment was associated with decreased cyclin D1 levels in the rapamycin-sensitive cells but not in rapamycin-resistant cells. CONCLUSIONS: Overexpression of S6K1 and expression of phosphorylated Akt should be evaluated as predictors of rapamycin sensitivity in breast cancer patients. Furthermore, changes in cyclin D1 levels provide a potential pharmacodynamic marker of response to rapamycin.  相似文献   

8.
9.
Sridharan S  Basu A 《Cancer research》2011,71(7):2590-2599
The 40S ribosomal protein S6 kinase (S6K) acts downstream of mTOR, which plays important roles in cell proliferation, protein translation, and cell survival and is a target for cancer therapy. mTOR inhibitors are, however, of limited success. Although Akt is believed to act upstream of mTOR, persistent inhibition of p70 S6 kinase or S6K1 can activate Akt via a negative feedback loop. S6K exists as two homologues, S6K1 and S6K2, but little is known about the function of S6K2. In the present study, we have examined the effects of S6K2 on Akt activation and cell survival. Silencing of S6K1 caused a modest decrease, whereas knockdown of S6K2 caused a substantial increase in TNF-α and TRAIL (TNF-related apoptosis-inducing ligand)-mediated apoptosis. In contrast to S6K1, depletion of S6K2 by siRNA decreased basal and TNF-induced Akt phosphorylation. Ectopic expression of constitutively active Akt in MCF-7 cells restored cell survival in S6K2-depleted cells. We have previously shown that activation of Akt induces downregulation of Bid via p53. Knockdown of S6K2 caused an increase in p53, and downregulation of p53 by siRNA decreased Bid level. Silencing of Bid blunted the ability of S6K2 deficiency to enhance TNF-induced apoptosis. Taken together, our study shows that the two homologues of S6K have distinct effects on Akt activation and cell survival. Thus, targeting S6K2 may be an effective therapeutic strategy to treat cancers.  相似文献   

10.
Mammalian target of rapamycin (mTOR) has a pivotal role in carcinogenesis and cancer cell proliferation in diverse human cancers. In this study, we observed that epimagnolin, a natural compound abundantly found in Shin‐Yi, suppressed cell proliferation by inhibition of epidermal growth factor (EGF)‐induced G1/S cell‐cycle phase transition in JB6 Cl41 cells. Interestingly, epimagnolin suppressed EGF‐induced Akt phosphorylation strongly at Ser473 and weakly at Thr308 without alteration of phosphorylation of MAPK/ERK kinases (MEKs), extracellular signal‐regulated kinase (ERKs), and RSK1, resulting in abrogation of the phosphorylation of GSK3β at Ser9 and p70S6K at Thr389. Moreover, we found that epimagnolin suppressed c‐Jun phosphorylation at Ser63/73, resulting in the inhibition of activator protein 1 (AP‐1) transactivation activity. Computational docking indicated that epimagnolin targeted an active pocket of the mTOR kinase domain by forming three hydrogen bonds and three hydrophobic interactions. The prediction was confirmed by using in vitro kinase and adenosine triphosphate‐bead competition assays. The inhibition of mTOR kinase activity resulted in the suppression of anchorage‐independent cell transformation. Importantly, epimagnolin efficiently suppressed cell proliferation and anchorage‐independent colony growth of H1650 rather than H460 lung cancer cells with dependency of total and phosphorylated protein levels of mTOR and Akt. Inhibitory signaling of epimagnolin on cell proliferation of lung cancer cells was observed mainly in mTOR‐Akt‐p70S6K and mTOR‐Akt‐GSK3β‐AP‐1, which was similar to that shown in JB6 Cl41 cells. Taken together, our results indicate that epimagnolin potentiates as chemopreventive or therapeutic agents by direct active pocket targeting of mTOR kinase, resulting in sensitizing cancer cells harboring enhanced phosphorylation of the mTORC2‐Akt‐p70S6k signaling pathway.  相似文献   

11.
Li J  Xue L  Hao H  Han Y  Yang J  Luo J 《Oncology reports》2012,27(2):461-466
Chronic myelogenous leukemia (CML) is a neoplasm of myeloid progenitor cells expressing Bcr-Abl fusion protein. However, some patients with CML are less likely to respond to imatinib, the inhibitor of Bcr-Abl kinase. Recent studies showed that mTOR pathway can increase responses to imatinib. The analysis of mTOR pathway in CML may provide new insights into possible targets of novel therapies. Therefore, we examined the expression of mTOR pathway molecules in bone marrow cells from CML patients and effect of rapamycin on K562 cells in?vitro. Western blot analysis showed the visibly higher phosphorylation of mTOR (70.6%), 4E-BP1 (76.5%) and p70S6K (73.5%) in bone marrow cells from CML patients. Moreover, treatment of CML cell line (K562) with rapamycin resulted in a decrease of phosphorylation of mTOR, 4E-BP1 and p70S6K. In?vitro, the cell viability in groups with rapamycin treatment displayed a significant decrease in a dose-dependent manner by MTT. The data presented an increase of G0/G1 phase cells and decrease of S phase cells after rapamycin treatment, and the decreased expression of cyclinD1, higher expression of p21 at mRNA level was also detected in K562 with rapamycin. Treatment with 20 nmol/l or more rapamycin could increase apoptotic cells, decrease expression of bcl-2 and activate caspase-3. In conclusion, the mTOR pathway might be involved in chronic myelogenous leukemia. Inhibition of mTOR pathway could interfer with cell proliferation and increase cell apoptosis in K562 cells. It suggested that mTOR might be an important therapeutic target for myelogenous leukemia.  相似文献   

12.
目的:探讨α4在化学致癌物诱导细胞转化中的可能作用。方法:采用免疫印迹检测化学致癌物诱导既往转化细胞模型和肝肿瘤细胞株中α4的表达水平,再利用病毒感染法在肝永生化细胞株L02R上构建α4高表达(L02R-α4)和低表达(L02R-SHα4)的细胞株,检测其细胞生长速度和转化能力。进一步选择已建立的细胞株、化学致癌物AFB1诱导转化的细胞(L02RT-AFB1)及肝肿瘤细胞株HepG2和SMMC等,在有或无mTOR通路抑制剂雷帕霉素处理下,通过免疫印迹检测mTOR下游两个分子p70S6K1和4E-BP1的表达及磷酸化水平。结果:在化学致癌物诱导转化的细胞模型和肝肿瘤细胞株中发现α4的表达比对照细胞上调1.9~5.9倍。蛋白印迹结果证实L02R-α4和L02R-SHα4细胞株构建成功,α4表达上调能够促进L02R细胞增殖并发生转化(P<0.05)。在α4高表达的转化细胞L02R-α4中,p70S6K1和4E-BP1呈高磷酸化状态。当有雷帕霉素作用时,所有细胞中p70S6K1和4E-BP1的磷酸化水平明显下降,在L02R-SHα4细胞中下降尤为显著。结论:α4具有癌基因功能,α4的异常上调激活mTOR通路,促进细胞增殖并诱导细胞恶性转化。  相似文献   

13.
Jiang W  Zhu Z  Thompson HJ 《Cancer research》2008,68(13):5492-5499
Dietary energy restriction (DER) inhibits mammary carcinogenesis, yet mechanisms accounting for its protective activity have not been fully elucidated. In this study, we tested the hypothesis that DER exerts effects on intracellular energy sensing pathways, resulting in alterations of phosphorylated proteins that play a key role in the regulation of cancer. Experiments were conducted using the 1-methyl-1-nitrosourea-induced mammary cancer model in which rats were 0%, 20%, or 40% energy restricted during the postinitiation stage of carcinogenesis. Parallel experiments were done in non-carcinogen-treated rats in which effects of DER at 0%, 5%, 10%, 20%, or 40% in liver were investigated. In a DER dose-dependent manner, levels of Thr(172) phosphorylated AMP-activated protein kinase (AMPK) increased in mammary carcinomas with a concomitant increase in phosphorylated acetyl-CoA-carboxylase, a direct target of AMPK, the phosphorylation of which is regarded as an indicator of AMPK activity. Levels of phosphorylated mammalian target of rapamycin (mTOR) decreased with increasing DER, and down-regulation of mTOR activity was verified by a decrease in the phosphorylation state of two mTOR targets, 70-kDa ribosomal protein S6 kinase (p70S6K) and eukaryote initiation factor 4E binding protein 1 (4E-BP1). Coincident with changes in mTOR phosphorylation, levels of activated protein kinase B (Akt) were also reduced. Similar patterns were observed in mammary glands and livers of non-carcinogen-treated rats. This work identifies components of intracellular energy sensing pathways, specifically mTOR, its principal upstream regulators, AMPK and Akt, and its downstream targets, p70S6K and 4E-BP1, as candidate molecules on which to center mechanistic studies of DER.  相似文献   

14.
PURPOSE: Overexpression of eIF4E in surgical margins of head and neck cancer patients is an independent risk factor for recurrence. We hypothesize that overexpressed eIF4E is functionally active in tumor margins through activation of the Akt/mammalian target of rapamycin (mTOR) pathway EXPERIMENTAL DESIGN: Western blots and/or immunohistochemistry were performed to determine whether phosphorylation of mTOR and activation of its downstream molecules eIF4E-binding protein-1 (4E-BP1) and p70 S6 kinase and the upstream modulator of mTOR, Akt, were expressed in margins overexpressing eIF4E. RESULTS: There was a significant association between phospho-4E-BP1 and eIF4E expression of a margin or a significant difference in phospho-4E-BP1 expression between the eIF4E-positive and -negative margins (P < 0.01). A significant association between eIF4E and phospho-p70 S6 kinase as well as eIF4E and phospho-mTOR was also noted (P < 0.05). Western blot analysis indicated a highly significant difference in the phosphorylation status of 4E-BP1 between tumors and resection margins. A total of 89% of the 4E-BP1-expressing margins expressed more of the phosphorylated (beta, gamma, and delta) isoforms, whereas 81% of the 4E-BP1-expressing tumors expressed more of the unphosphorylated alpha isoform. A similar difference in Akt activation was noted between eIF4E-positive margins and tumors (P < 0.05). CONCLUSIONS: Overexpression of eIF4E is functionally active in tumor margins through activation of the Akt/mTOR signaling pathway. The greater degree of expression of downstream targets and upstream regulators of mTOR in margins compared with the tumors indicates preferential activation of the Akt/mTOR signaling pathway in margins overexpressing eIF4E. Rapamycin analogs can potentially be used as adjuvant therapy for patients with eIF4E-positive margins.  相似文献   

15.
The Akt/mammalian target of rapamycin (mTOR)/4E-BP1 pathway is considered to be a central regulator of protein synthesis, involving the regulation of cell proliferation, differentiation, and survival. The inhibitors of mTOR as anticancer reagents are undergoing active evaluation in various malignancies including breast cancer. However, the activation status of the Akt/mTOR/4E-BP1 pathway and its potential roles in breast cancers remain unknown. Thus, we examined 165 invasive breast cancers with specific antibodies for the phosphorylation of Akt, mTOR, and 4E-BP1 by immunohistochemistry and compared them with normal breast epithelium, fibroadenoma, intraductal hyperplasia, and ductal carcinoma in situ. We discovered that the phosphorylation of Akt, mTOR, and 4E-BP1 increased progressively from normal breast epithelium to hyperplasia and abnormal hyperplasia to tumor invasion. Phosphorylated Akt, mTOR, and 4E-BP1 were positively associated with ErbB2 overexpression. Survival analysis showed that phosphorylation of each of these three markers was associated with poor disease-free survival independently. In vitro, we further confirmed the causal relationship between ErbB2 overexpression and mTOR activation, which was associated with enhanced invasive ability and sensitivity to a mTOR inhibitor, rapamycin. Our results, for the first time, demonstrate the following: (a) high levels of phosphorylation of Akt, mTOR, and 4E-BP1 in breast cancers, indicating activation of the Akt/mTOR/4E-BP1 pathway in breast cancer development and progression; (b) a link between ErbB2 and the Akt/mTOR/4E-BP1 pathway in breast cancers in vitro and in vivo, indicating the possible role of Akt/mTOR activation in ErbB2-mediated breast cancer progression; and (c) a potential role for this pathway in predicting the prognosis of patients with breast cancer, especially those treated with mTOR inhibitors.  相似文献   

16.
mTOR is a central controller for cell growth/proliferation and survival. Recent studies have shown that mTOR also regulates cell adhesion, yet the underlying mechanism is not known. Here we found that inhibition of mTOR by rapamycin reduced the basal or type I insulin-like growth factor (IGF-1)-stimulated adhesion of cancer cells. Further research revealed that both mTORC1 and mTORC2 were involved in the regulation of cell adhesion, as silencing expression of raptor or rictor inhibited cell adhesion. Also, PP242, an mTORC1/2 kinase inhibitor, inhibited cell adhesion more potently than rapamycin (mTORC1 inhibitor). Of interest, ectopic expression of constitutively active and rapamycin-resistant mutant of p70 kinase 1 (S6K1) or downregulation of eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) conferred resistance to rapamycin inhibition of cell adhesion, whereas expression of constitutively hypophosphorylated 4E-BP1 (4EBP1-5A) or downregulation of S6K1 suppressed cell adhesion. In contrast, neither genetic manipulation of Akt activity nor pharmacological inhibition of Akt affected cell adhesion. The results suggest that both mTORC1 and mTORC2 are involved in the regulation of cell adhesion; and mTORC1 regulates cell adhesion through S6K1 and 4E-BP1 pathways, but mTORC2 regulates cell adhesion via Akt-independent mechanism.  相似文献   

17.
Akt regulates nuclear/cytoplasmic localization of tuberin   总被引:1,自引:0,他引:1  
  相似文献   

18.
Patients with advanced gastric carcinoma, especially peritoneal dissemination, have a poor prognosis even after any treatment. Chemokines are now known to play an important role in cancer growth and metastasis. We recently reported that the chemokine CXCL12 plays an important role in the development of peritoneal carcinomatosis from gastric carcinoma. In this study, we investigated signalling pathway involved in the peritoneal carcinomatosis induced by chemokine CXCL12.Akt was rapidly and strongly phosphorylated by chemokine CXCL12. CXCL12 also induced the activation of p70S6K (S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) included in mammalian target of rapamycin (mTOR) pathways which are located downstream of Akt, resulting in enhancements of metastatic properties such as MMP production, cell migration and cell growth in peritoneal disseminated gastric cancer, NUGC4 cells. Furthermore, mTOR inhibitor rapamycin not only drastically inhibited migration and MMP production, but also induced type II programmed cell death, autophagic cell death.In the present study, we have shown for the first time that the mTOR pathway plays a central role in the development of peritoneal carcinomatosis, and blocking this pathway induces autophagic cell death in disseminated gastric cancer.Therefore, blocking on the CXCR4/mTOR signalling pathway may be useful for the future development of a more effective therapeutic strategy for gastric cancer involved in peritoneal dissemination.  相似文献   

19.
This study found that phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling was activated in human T-cell lymphotropic virus type I (HTLV-1)-infected leukemia cells. Rapamycin (1-100 nM, 48h), the inhibitor of mTOR and its analog RAD001 (1-100 nM, 48 h)-induced growth inhibition and G0/G1 cell cycle arrest of these cells in association with de-phosphorylation of p70S6K and 4E-BP-1, although IC50 was not achieved. Paradoxically, rapamycin-stimulated phosphorylation of Akt at Ser473. Blockade of Akt signaling by the PI3K inhibitor LY294002 (1-20 microM, 48 h) also resulted in the growth inhibition and G0/G1 cell cycle arrest of HTLV-1-infected cells, with IC50 ranging from 5 to 20muM, and it caused de-phosphorylation of p70S6K and 4E-BP-1. Of note, when rapamycin was combined with LY294002, rapamycin-induced phosphorylation of Akt was blocked, and the ability of rapamycin to induce growth arrest of HTLV-1-infected T-cells and suppress the p-p70S6K and p-4E-BP-1 proteins was potentiated. Moreover, both LY294002 and rapamycin down-regulated the levels of c-Myc and cyclin D1 proteins in these cells, and their combination further decreased levels of these cell cycle-regulating proteins. Taken together, longitudinal inhibition of PI3K/Akt/mTOR signaling represents a promising treatment strategy for individuals with adult T-cell leukemia.  相似文献   

20.
Liu L  Li F  Cardelli JA  Martin KA  Blenis J  Huang S 《Oncogene》2006,25(53):7029-7040
Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), inhibits tumor cell motility. However, the underlying mechanism is poorly understood. Here, we show that rapamycin inhibited type I insulin-like growth factor (IGF-I)-stimulated motility of a panel of cell lines. Expression of a rapamycin-resistant mutant of mTOR (mTORrr) prevented rapamycin inhibition of cell motility. However, cells expressing a kinase-dead mTORrr remained sensitive to rapamycin. Downregulation of raptor or rictor by RNA interference (RNAi) decreased cell motility. However, only downregulation of raptor mimicked the effect of rapamycin, inhibiting phosphorylation of S6 kinase 1 (S6K1) and 4E-BP1. Cells infected with an adenovirus expressing constitutively active and rapamycin-resistant mutant of p70 S6K1, but not with an adenovirus expressing wild-type S6K1, or a control virus, conferred to resistance to rapamycin. Further, IGF-I failed to stimulate motility of the cells, in which S6K1 was downregulated by RNAi. Moreover, downregulation of eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) by RNAi-attenuated rapamycin inhibition of cell motility. In contrast, expression of constitutively active 4E-BP1 dramatically inhibited IGF-I-stimulated cell motility. The results indicate that both S6K1 and 4E-BP1 pathways, regulated by TORC1, are required for cell motility. Rapamycin inhibits IGF-I-stimulated cell motility, through suppression of both S6K1 and 4E-BP1/eIF4E-signaling pathways, as a consequence of inhibition of mTOR kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号