首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ventral pallidum in rat is a basal forebrain structure that contains neurons that project in the limbic striatopallidal circuitry and magnocellular cholinergic corticopetal neurons. Because 5-hydroxytryptamine (5-HT) terminals on dorsal raphe projections form close appositions with these neurons, we made patch-clamp recordings in immature rat brain slices to determine whether they are modulated by postsynaptic 5-HT receptors. Inward currents were predominantly induced by 5-HT in noncholinergic neurons, which were distinguished from cholinergic neurons by immunohistochemical and electrophysiological criteria. The inward current induced by 5-HT was mimicked and occluded when adenylyl cyclase was stimulated with forskolin, and was almost abolished when h-currents in noncholinergic neurons were blocked with cesium. Consistent with 5-HT(7) receptor activation of h-curents by cAMP in other brain regions, we found inward currents were mimicked by the mixed 5-HT(1)/5-HT(7) agonists 5-methoxytryptamine, and by 5-carboxamidotryptamine (5-CT), which was more potent than 5-HT. In contrast, 5-HT(1) preferring 8-OH-DPAT was a weak partial agonist, and the 5-HT(1)-selective antagonist pindolol had no effect. However, despite this profile, antagonists that bind at the 5-HT(7) receptor only partly reduced the agonist inward current (SB-269970 and clozapine), or had no effect (mianserin and pimozide). We found in cholinergic neurons that 5-HT predominantly induced hyperpolarizing currents, which were carried by potassium channels, and were smaller than currents induced by 8-OH-DPAT and 5-CT. We conclude from this study that ascending 5-HT projections from the dorsal raphe could have direct and opposite effects on the activities of neurons within the limbic striatopallidal and cholinergic corticopetal circuitry in the ventral pallidum.  相似文献   

4.
The ventral pallidum (VP) is a key component of the cortico-basal ganglia circuits that process motivational and emotional information, and also a crucial site for reward. Although the main targets of the two VP compartments, medial (VPm) and lateral (VPl) have already been established, the collateralization patterns of individual axons have not previously been investigated. Here we have fully traced eighty-four axons from VPm, VPl and the rostral extension of VP into the olfactory tubercle (VPr), using the anterograde tracer biotinylated dextran amine in the rat. Thirty to fifty percent of axons originating from VPm and VPr collateralized in the mediodorsal thalamic nucleus and lateral habenula, indicating a close association between the ventral basal ganglia-thalamo-cortical loop and the reward network at the single axon level. Additional collateralization of these axons in diverse components of the extended amygdala and corticopetal system supports a multisystem integration that may take place at the basal forebrain. Remarkably, we did not find evidence for a sharp segregation in the targets of axons arising from the two VP compartments, as VPl axons frequently collateralized in the caudal lateral hypothalamus and ventral tegmental area, the well-known targets of VPm, while VPm axons, in turn, also collateralized in typical VPl targets such as the subthalamic nucleus, substantia nigra pars compacta and reticulata, and retrorubral field. Nevertheless, VPl and VPm displayed collateralization patterns that paralleled those of dorsal pallidal components, confirming at the single axon level the parallel organization of functionally different basal ganglia loops.  相似文献   

5.
The aim of the present study was to determine, at the light microscopic level, whether the serotonergic fibers originating from the dorsal raphe nucleus (B7), median raphe nucleus (B8) and ventral tegmentum (B9) make putative synaptic contacts with cholinergic neurons of the nucleus basalis magnocellularis and substantia innominata. For this purpose, we utilized: (i) the anterograde transport of Phaseolus vulgaris leucoagglutinin combined with choline acetyltransferase immunohistochemistry; (ii) choline acetyltransferase/tryptophan hydroxylase double immunohistochemistry; and (iii) the FluoroGold retrograde tracer technique combined with tryptophan hydroxylase immunohistochemistry. Following iontophoretic injections of Phaseolus vulgaris leucoagglutinin in the dorsal raphe nucleus, labeling was observed primarily in the ventral aspects of the nucleus basalis magnocellularis and in the intermediate region of the substantia innominata. When Phaseolus vulgaris leucoagglutinin was combined with choline acetyltransferase immunohistochemistry, a close association between the Phaseolus vulgaris leucoagglutinin-positive fibers and cholinergic neurons was observed, even though the majority of the Phaseolus vulgaris leucoagglutinin-immunoreactive terminals seemed to establish contact with non-cholinergic elements. Following Phaseolus vulgaris leucoagglutinin injection in the median raphe nucleus, very few labeled fibers with no evident close contact with nucleus basalis magnocellularis and substantia innominata cholinergic neurons were observed. After tryptophan hydroxylase/choline acetyltransferase double immunohistochemistry, a plexus of serotonergic (tryptophan hydroxylase-positive) fibers in the vicinity of choline acetyltransferase-immunoreactive neurons of the substantia innominata and nucleus basalis magnocellularis was observed, and some serotonergic terminals have been shown to come into very close contact with the cholinergic cells. Most of the tryptophan hydroxylase-immunoreactive terminals seem to establish contacts with non-cholinergic cells. Following FluoroGold injection in the nucleus basalis magnocellularis and substantia innominata, the majority of retrogradely labeled neurons was observed mainly in the ventromedial cell group of the dorsal raphe nucleus. In this area, a minority of the FluoroGold-positive neurons was tryptophan hydroxylase immunoreactive. These findings show that serotonergic terminals, identified in very close association with the cholinergic neurons in the substantia innominata and nucleus basalis magnocellularis, derive primarily from the B7 serotonergic cell group of the dorsal raphe nucleus, and provide the neuroanatomical evidence for a direct functional interaction between these two neurotransmitter systems in the basal forebrain.  相似文献   

6.
Summary Lamellar bodies are composed of stacks of closely-packed, ribosome-free cisterns which are in continuity with the rough endoplasmic reticulum. In the ferret nucleus basalis stained for choline acetyltransferase it was shown, by correlating light with electron microscopy, that only the cholinergic cells there possess lamellar bodies. The significance of lamellar bodies in the cholinergic neurons of the nucleus basalis is not known, but these structures may reflect a peculiar aspect of the functioning of the cholinergic cells which will need to be investigated further.  相似文献   

7.
The rat nucleus basalis magnocellularis (nBM) was morphometrically analyzed following multiple intracortical AF64A infusions. At 3 weeks post-infusion, brains were histochemically double-stained for acetyl-cholinesterase and Nissl substance following diisopropylfluorophosphate pretreatment. Intracortical AF64A induced significant atrophy, but not degeneration, of nucleus basalis cholinergic cell bodies. These results suggest that retrograde cellular atrophy is associated with inhibition of presynaptic high-affinity choline transport on cortical terminals of nBM cholinergic neurons.  相似文献   

8.
The effect of cholinergic drugs on N-methyl-D-aspartate (NMDA)-activated responses in neurons dissociated freshly from the nucleus basalis of Meynert (nBM) of immature and mature rats were investigated with the whole-cell patch-clamp technique. The NMDA (10(-4) M)-evoked inward current (INMDA) consisted of transient peak and successive steady-state components. In mature neurons, the peak component was suppressed by pretreatment with acetylcholine (ACh, 10(-12)-10(-5) M) but facilitated by higher concentrations (greater than 10(-5) M). Regardless of the concentration, ACh had no effect on INMDA of immature neurons. The results suggest that ACh behaves as either inhibitory or excitatory modulator of glutaminergic transmission in nBM neurons of adult mammals depending on ACh concentration.  相似文献   

9.
The present experiments were designed to examine the hypothesis that the degeneration of cholinergic nucleus basalis is related to the cognitive and neurophysiological deficits found in old age. Aged (26 months) rats were impaired both in the acquisition of spatial (water-maze) task and retention of passive avoidance task. During aging, neocortical electroencephalographic fast activity was decreased and high-voltage spindles increased. Loss of choline acetyltransferase-positive neurons correlated with the high-voltage spindle incidence and passive avoidance retention deficit. Unilateral ibotenate nucleus basalis lesioning decreased choline acetyltransferase activity in the cortex and produced a large nonspecific subcortical cell loss in young rats. Ibotenate-lesioned rats were impaired in spatial learning and passive avoidance retention in young rats. Quisqualic acid produced a greater decrease in cortical choline acetyltransferase activity and smaller nonspecific subcortical cell loss than ibotenate lesioning. Spatial learning was not impaired, but passive avoidance performance was disrupted. Slow waves and high-voltage spindles were increased and beta activity decreased on the side of either quisqualate or ibotenate nucleus basalis lesioning. These results demonstrate that age-related neurophysiological and cognitive deficits result partially from the loss of cholinergic neurons in the nucleus basalis and that quisqualic acid nucleus basalis-lesioning in young rats may be used as a pharmacological model of the age-related cholinergic neuron loss.  相似文献   

10.
The localization of serotonin and non-serotonin-containing cell bodies in the interpeduncular nucleus of the rat that project to the hippocampal formation was studied using the technique of retrograde tracing of Granular Blue and immunohistochemistry on the same sections. The results indicate that the caudal magnocellular subnucleus (pars dorsalis magnocellularis) and, to a lesser extent, the caudal part of the lateral subnucleus (par lateralis) of the interpeduncular nucleus send serotonin as well as non-serotonin fibers to the ventral hippocampus.  相似文献   

11.
Electrical and pharmacological properties of acetylcholine (ACh)-induced currents in neurons dissociated from the nucleus basalis of Meynert (nBM) of immature (2-week-old) rats were investigated with the whole-cell mode of the patch-clamp technique. At a holding potential (VH) of −50 mV, ACh (10−4M) evoked a transient inward current mimicked by nicotine (InACh), followed by a sustained outward current mimicked by carbamylcholine (ImACh). The KD values were 1.2 × 10−4 M for InACh) and 8.7 × 10−7 M for ImACh. The reversal potenial of ImACh was close to EK. The ImACh was determined to be elicited via the M2 muscarinic receptor, based on the differences in sensitivity to muscarinic antagonists such as pirenzepine and AF-DX-116.  相似文献   

12.
The electrophysiological properties of individual neurons within organotypic explants of neonatal rat cortex were examined via intracellular recordings. The explants were grown for two weeks in a serum-free medium. The electrophysiological properties of the neurons within these explants were similar to those reported for both adult cortex in vivo and short-term in vitro slice preparations. The results of the present study show that cortical explants grown under serum-free conditions can serve as a useful model for long-term developmental studies associated with the physiological basis of neural network formation.  相似文献   

13.
Zassler B  Dechant G  Humpel C 《Neuroscience》2005,130(2):317-323
Cholinergic neurons degenerate in Alzheimer's disease and dementia and neuroprotective substances are of high interest to counteract this cell death. The aim of the present study was to test the effect of urea and the nitric oxide synthetase inhibitor l-thiocitrulline on the survival of cholinergic neurons. Organotypic brain slices of the basal nucleus of Meynert were cultured for 2 weeks in the presence of 1-100 microM urea with or without NGF or other growth factors or with or without 1-10 microM of the NOS inhibitor L-thiocitrulline. A high number of cholinergic neurons survived in the presence of 0.1-100 ng/ml NGF. Urea or L-thiocitrulline alone did not exhibit neuroprotective activity; however, when brain slices were incubated with urea or L-thiocitrulline together with NGF there was a significant potentiating survival effect. Incubation of brain slices with NGF + urea + L-thiocitrulline did not further enhance the number of cholinergic neurons. NGF as well as urea did not stimulate expression of the enzyme choline acetyltransferase pointing to survival promoting effects. Urea did not modulate the NGF binding in PC12 cells indicating that this effect was indirect. It is concluded that urea may play a role as an indirect survival promoting molecule possibly involving the nitric oxide pathway.  相似文献   

14.
Cholinergic neurons in the parabigeminal nucleus of the rat midbrain were studied in an acute slice preparation. Spontaneous, regular action potentials were observed both with cell-attached patch recordings as well as with whole cell current-clamp recordings. The spontaneous activity of parabigeminal nucleus (PBN) neurons was not due to synaptic input as it persisted in the presence of the pan-ionotropic excitatory neurotransmitter receptor blocker, kynurenic acid, and the cholinergic blockers dihydro-beta-erythroidine (DHbetaE) and atropine. This result suggests the existence of intrinsic currents that enable spontaneous activity. In voltage-clamp recordings, I(H) and I(A) currents were observed in most PBN neurons. I(A) had voltage-dependent features that would permit it to contribute to spontaneous firing. In contrast, I(H) was significantly activated at membrane potentials lower than the trough of the spike afterhyperpolarization, suggesting that I(H) does not contribute to spontaneous firing of PBN neurons. Consistent with this interpretation, application of 25 microM ZD-7288, which blocked I(H), did not affect the rate of spontaneous firing in PBN neurons. Counterparts to I(A) and I(H) were observed in current-clamp recordings: I(A) was reflected as a slow voltage ramp observed between action potentials and on release from hyperpolarization, and I(H) was reflected as a depolarizing sag often accompanied by rebound spikes in response to hyperpolarizing current injections. In response to depolarizing current injections, PBN neurons fired at high frequencies, with relatively little accommodation. Ultimately, the spontaneous activity in PBN neurons could be used to modulate cholinergic drive in the superior colliculus in either positive or negative directions.  相似文献   

15.
1. A brain stem slice preparation and intracellular techniques were used to examine the cellular properties of neurons within the ventral and ventrolateral region of the nucleus tractus solitarius (v-NTS) in adult and neonatal (3-12 days old) rats. These neurons are believed to be involved in the control of respiratory function. 2. On the basis of their active and passive electrophysiologic properties, cells in the v-NTS of adult rats were categorized into type A and type B neurons. Type A neurons fired spontaneously with rates ranging from 0.5 to 5 spikes/s at resting potential (-59.0 +/- 6 mV, mean +/- SD). When depolarized, type A cells responded with an initial high rate of firing, which rapidly declined to a steady state level. Spike-frequency adaptation (SFA) index (defined as steady state firing divided by peak activity x 100) was 40%, with a time constant for adaptation of 100-280 ms. When depolarized from membrane potentials more negative than resting, these neurons exhibited a silent period (up to 900 ms) before any spiking was observed (delayed excitation). The delay depended on the duration and magnitude of the hyperpolarizing prepulse that preceded depolarization. The action potentials of type A cells had a shoulder on the repolarization phase, measured 2-3 ms at one-half height, and increased in duration during repetitive firing. 3. At resting potential, type B neurons fired three to five times faster than type A. Although both type A and type B neurons showed spike-frequency adaptation, type B neurons adapted at a much faster rate than type A. The time constant for adaptation was 2-14 ms in type B cells. These cells displayed no delayed excitation on depolarization from membrane potentials more negative than rest. Some type B cells exhibited postinhibitory rebound (PIR) and depolarizing afterpotentials (DAPs). Both types A and B v-NTS neurons had comparable input resistance and showed inward rectification. 4. Neonatal v-NTS cells, in contrast to adult cells, belonged to a single population of neurons. Their resting membrane potential was -58 +/- 6.3 mV (mean +/- SD). The majority of these cells (30/34) were active (5-10 spikes/s) at rest. When depolarized, they showed an immediate increase in firing rate, which gradually slowed down to reach a steady state. Spike-frequency adaptation index was 59%, with a time constant for adaptation of 300-750 ms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Cholinergic neurons of the basal forebrain form one of the neuron populations that are susceptible to excitotoxic injury. Whereas neuropharmacological studies have aimed at rescuing cholinergic neurons from acute excitotoxic attacks, the short-term temporal profile of excitotoxic damage to cholinergic nerve cells remains largely elusive. The effects of N-methyl-D-aspartate (NMDA) infusion on cytochemical markers of cholinergic neurons in rat magnocellular nucleus basalis were therefore determined 4, 24 and 48 h post-lesion. Additionally, the influence of excitotoxic damage on the efficacy of in vivo labelling of cholinergic neurons with carbocyanine 3-192IgG was investigated. Carbocyanine 3-192IgG was unilaterally injected in the lateral ventricle. Twenty-four hours later, NMDA (60 nM/microl) was infused in the right magnocellular nucleus basalis, while control lesions were performed contralaterally. Triple immunofluorescence labelling for carbocyanine 3-192IgG, NMDA receptor 2A and B subunits and choline-acetyltransferase (ChAT) was employed to determine temporal changes in NMDA receptor immunoreactivity on cholinergic neurons. The extent of neuronal degeneration was studied by staining with Fluoro-Jade. Moreover, changes in the numbers of ChAT or p75 low-affinity neurotrophin receptor immunoreactive neurons, and the degree of their co-labelling with carbocyanine 3-192IgG were determined in basal forebrain nuclei. The effects of NMDA-induced lesions on cortical projections of cholinergic nucleus basalis neurons were studied by acetylcholinesterase (AChE) histochemistry. Characteristic signs of cellular damage, as indicated by decreased immunoreactivity for NMDA receptors, ChAT and p75 low-affinity neurotrophin receptors, were already detected at the shortest post-lesion interval investigated. Fluoro-Jade at 4 h post-lesion only labelled the core of the excitotoxic lesion. Longer survival led to enhanced Fluoro-Jade staining, and to the decline of ChAT immunoreactivity reaching a maximum 24 h post-surgery. Significant loss of p75 low-affinity neurotrophin receptor immunoreactivity and of cortical AChE-positive projections only became apparent 48 h post-lesion. Carbocyanine 3-192IgG labelling in the ipsilateral basal forebrain exceeded that of the contralateral hemisphere at all time points investigated and progressively declined in the damaged magnocellular nucleus basalis up to 48 h after NMDA infusion.The present study indicates that excitotoxic lesion-induced alteration of cholinergic neuronal markers is a rapid and gradual process reaching its maximum 24 h post-surgery. Furthermore, in vivo labelling of cholinergic neurons may be applied to indicate neuronal survival under pathological conditions, and enable to follow their degeneration process under a variety of experimental conditions.  相似文献   

17.
Field potential and single unit recordings were used to assess the connections of the olfactory tubercle (OT) with the main olfactory bulb (MOB) and the piriform cortex (PC) in urethane-anesthetized rats. Current generators of depth profiles evoked in OT following MOB stimulation were localized 300 microns superficial to those elicited by PC shocks, suggesting that afferents from the MOB and PC end in different regions of the OT. Following MOB and PC stimulation antidromically invaded neurons were recorded in the ventral pallidal regions of the OT and in the vicinity of the islands of Calleja, respectively. These results demonstrate that the OT, which receives a monosynaptic input from the MOB, projects back to the bulb and that the PC seems to be also reciprocally linked with differentiated structures in the OT.  相似文献   

18.
Adenosine has been proposed as a homeostatic "sleep factor" that promotes the transition from waking to sleep by affecting several sleep-wake regulatory systems. In the basal forebrain, adenosine accumulates during wakefulness and, when locally applied, suppresses neuronal activity and promotes sleep. However, the neuronal phenotype mediating these effects is unknown. We used whole-cell patch-clamp recordings in in vitro rat brain slices to investigate the effect of adenosine on identified cholinergic and noncholinergic neurons of the magnocellular preoptic nucleus and substantia innominata. Adenosine (0.5-100 microM) reduced the magnocellular preoptic nucleus and substantia innominata cholinergic neuronal firing rate by activating an inwardly rectifying potassium current that reversed at -82 mV and was blocked by barium (100 microM). Application of the A1 receptor antagonist 8-cyclo-pentyl-theophylline (200 nM) blocked the effects of adenosine. Adenosine was also tested on two groups of electrophysiologically distinct noncholinergic magnocellular preoptic nucleus and substantia innominata neurons. In the first group adenosine, via activation of postsynaptic A1 receptors, reduced spontaneous firing via inhibition of the hyperpolarization-activated cation current. Blocking the H-current with ZD7288 (20 microM) abolished adenosine effects on these neurons. The second group was not affected by adenosine. These results demonstrate that, in the magnocellular preoptic nucleus and substantia innominata region of the basal forebrain, adenosine inhibits both cholinergic neurons and a subset of noncholinergic neurons. Both of these effects occur via postsynaptic A1 receptors, but are mediated downstream by two separate mechanisms.  相似文献   

19.
The effect of kainic and quinolinic acid on cortical cholinergic function was examined following injections of these agents into the nucleus basalis magnocellularis (nbm) or into the frontoparietal cortex. The release of cortical 3H-acetylcholine (3H-ACh), high affinity choline uptake (HACU) and acetylcholinesterase was measured 7 days following injections of saline (control), kainic acid (4.7 nmoles) and quinolinic acid (60, 150 and 300 nmoles) into the nbm. These cortical cholinergic parameters were also examined after injections of saline (control), kainic acid (9.4 nmoles) and quinolinic acid (300 nmoles) into the fronto-parietal cortex. The release of 3H-ACh, HACU and AChE was significantly reduced in animals injected with kainic or quinolinic acid into the nbm. Histological examination of stained sections showed a loss of cell bodies in the region of the nbm and the globus pallidus. The size of the lesion produced by quinolinic acid was proportional to the dose injected into the nbm. In animals injected with kainic acid or quinolinic acid into the cerebral cortex, the release of 3H-ACh, HACU and AChE was not significantly reduced when compared with control animals, although histological examination of stained cortical sections showed a marked loss of cortical neurons. Th results show that quinolinic acid, an endogenous neuroexcitant, produces a deficit of cholinergic function similar to that described in the cortical tissue of patients with senile dementia of Alzheimer's type. The toxic effects of quinolinic acid on cortical cholinergic function are due to its action on cholinergic cell bodies in the nbm. The cortical slice preparation from quinolinic acid-treated animals showing impairment of 3H-ACh release, may be useful in assessing the action of drugs designed to improve cholinergic function.  相似文献   

20.
In vitro intracellular recordings of central vestibular neurons have been restricted so far to the medial vestibular nucleus (MVN). We performed intracellular recordings of large Deiters' neurons in the lateral vestibular nucleus (LVN) to determine their static and dynamic membrane properties, and compare them with those of type A and type B neurons identified in the MVN. Unlike MVN neurons (MVNn), the giant-size LVN neurons (LVNn) form a homogeneous population of cells characterized by sharp spikes, a low-amplitude, biphasic after-hyperpolarization like type B MVNn, but also an A-like rectification like type A MVNn. In accordance with their lower membrane resistance, the sensitivity of LVNn to current injection was lower than that of MVNn over a large range of frequencies. The main difference between LVNn and MVNn was that the Bode plots showing the sensitivity of LVNn as a function of stimulation frequency were flatter than those of MVNn, and displayed a weaker resonance. Furthermore, most LVNn did not show a gradual decrease of their firing rate modulation in the frequency range where it was observed in MVNn. LVNn synchronized their firing with the depolarizing phase of high-frequency sinusoidal current injections. In vivo studies have shown that the MVN would be mainly involved in gaze control, whereas the giant LVNn that project to the spinal cord are involved in the control of posture. We suggest that the difference in the membrane properties of LVNn and MVNn may reflect their specific physiological roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号