首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hippocampal pyramidal cells receive GABA-mediated synaptic input from several distinct interneurons. In order to define the effect of perisomatic synapses, intracellular recordings were made with biocytin-containing microelectrodes from synaptically connected inhibitory and pyramidal cell pairs in subfields CA1 and CA3 of the rat hippocampus. Subsequent physiological analysis was restricted to the category of cells, here referred to as basket cells (n= 14), which had an efferent synaptic target profile (n= 282 synaptic contacts) of predominantly somatic (48.2%) and proximal dendritic synapses (45.0%). Electron microscopic analysis revealed that in two instances identified postsynaptic pyramidal cells received a total of 10 and 12 labelled basket cell synapses respectively. At an average membrane potential of -57.8 ± 4.6 mV, unitary inhibitory postsynaptic potentials (IPSPs; n= 24) had a mean amplitude of 450 ± 238 μV, a 10–90% rise time of 4.6 ± 3.2 ms and, measured at half-amplitude, a mean duration of 31.6 ± 18.2 ms. In most instances (n= 19) the IPSP decay could be fitted with a single exponential with a mean time constant of 32.4 ± 18.0 ms. Unitary basket cell-evoked IPSPs fluctuated widely in amplitude, ranging from the level of detectability to <2 mV. The response reversal of IPSPs (n= 5) was extrapolated to be at -74.9 ± 6.0 mV. Averages of unitary IPSPs had a mean calculated conductance of 0.95 ± 0.29 nS, ranging from 0.52 to 1.16 nS. Unitary basket cell IPSPs (n= 3) increased in amplitude by 26.3 ± 19.9% following bath application of the GABAB receptor antagonist CGP 35845A (1–4 μM), whereas subsequent addition of the GABAA receptor antagonist bicuculline (10–13 μM) reduced the IPSP amplitude to 13.5 ± 3.1% of the control response. Rapid presynaptic trains of basket cell action potentials resulted in the summation of up to four postsynaptic responses (n= 5). However, any increase in the rate of tonic firing (2- to 10-fold) led to a <50% reduction of the postsynaptic response amplitude. At depolarized membrane potentials, averaged IPSPs could be followed by a distinct depolarizing overshoot or postinhibitory facilitation (n= 4). At firing threshold, pyramidal cells fired postinhibitory rebound-like action potentials, the latter in close temporal overlap with the depolarizing overshoot. In conclusion, hippocampal basket cells have been identified as one source of fast, GABAA receptor-evoked perisomatic inhibition. Unitary events are mediated by multiple synaptic release sites, thus providing an effective mechanism to avoid total transmission failures.  相似文献   

2.
W R Holmes 《Brain research》1989,478(1):127-137
The role of dendritic diameters in maximizing the effectiveness of synaptic inputs was examined in a cell represented as a single cylinder and in a cortical pyramidal cell using mathematical models and computer stimulations. For current input into one end of a cylinder of fixed physical length, the maximum potential at the other end of the cylinder was obtained when the cylinder diameter was chosen so that the electrotonic length, L, of the cylinder was 2.98. For a steady-state or transient synaptic conductance change into the end of a cylinder, the maximum potential at the other end occurred for a value of L less than 2.98; how much less depended on the magnitude of the conductance change. In the model of the reconstructed cortical pyramidal cell, synaptic inputs at proximal, mid-dendritic, and distal locations were most effective for different, particular sets of dendritic diameters. For each synaptic input, there is a set (probably non-unique) of dendritic diameters which maximizes the effectiveness of that input. Paradoxically, a synaptic input at a given physical distance from the soma may produce a larger change in soma potential when it is at a longer electrotonic distance from the soma than at a shorter one. The dendritic diameters determine which inputs are operating at maximal effectiveness. Changes in Rm or Ri or changes in synaptic conductance magnitude or time course may shift the loci of inputs operating at maximal effectiveness. This would change the weighting of synaptic inputs and possibly affect neuronal function.  相似文献   

3.
The pattern of excitatory and inhibitory inputs to the inhibitory neurons is largely unknown. We have set out to quantify the major excitatory and inhibitory inputs to layer 4 basket cells from the primary visual cortex of the cat. The synapses formed with the soma, and proximal and distal dendrites, were examined at the light and electron microscopic levels in four basket cells, recorded in vivo and filled with horseradish peroxidase. The major afferents of layer 4 have been well characterised, both at the light and electron microscopic levels. The sizes of the synaptic boutons of the major excitatory inputs to layer 4 from the thalamic relay cells, spiny stellate cells, and layer 6 pyramidal neurons are statistically different. Their distributions were compared to those of the boutons forming asymmetric contacts onto the basket cells, which were assumed to be provided by the same set of excitatory afferents. The best-fit results showed that about equal numbers of synapses were provided by the layer 6 pyramids (43%) and the spiny stellates (44%), whereas the thalamic afferents contributed only 13%. A similar analysis on the symmetric synaptic input to the basket cells indicated that as much as 79% of the symmetric synapses could have originated from other layer 4 basket cells. Thalamic and spiny stellate synapses were preferentially located on the soma and proximal dendrites, regions that also had 76% of all the symmetric contacts. J. Comp. Neurol. 380: 230–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
In neurons with large dendritic arbors, the postsynaptic potentials interact in a complex manner with active and passive membrane properties, causing not easily predictable transformations during the propagation from synapse to soma. Previous theoretical and experimental studies in both cerebellar Purkinje cells and neocortical pyramidal neurons have shown that voltage-dependent ion channels change the amplitude and time-course of postsynaptic potentials. We investigated the mechanisms involved in the propagation of inhibitory postsynaptic potentials (IPSPs) along active dendrites in a model of the Purkinje cell. The amplitude and time-course of IPSPs recorded at the soma were dependent on the synaptic distance from the soma, as predicted by passive cable theory. We show that the effect of distance on the amplitude and width of the IPSP was significantly reduced by the dendritic ion channels, whereas the rise time was not affected. Somatic IPSPs evoked by the activation of the most distal synapses were up to six times amplified owing to the presence of voltage-gated channels and the IPSP width became independent of the covered distance. A transient deactivation of the Ca(2+) channels and the Ca(2+)-dependent K(+) channels, triggered by the hyperpolarization following activation of the inhibitory synapse, was found to be responsible for these dynamics. Nevertheless, the position of activated synapses had a marked effect on the Purkinje cell firing pattern, making stellate cells and basket cells most suitable for controlling the firing rate and spike timing, respectively, of their target Purkinje cells.  相似文献   

5.
The number and distribution of excitatory and inhibitory inputs affect the integrative properties of neurons. These parameters have been studied recently for several hippocampal neuron populations. Besides parvalbumin- (PV) containing cells that include basket and axo-axonic cells, cholecystokinin (CCK)-containing interneurons also form a basket cell population with several properties distinct from PV cells. Here, at the light microscopic level, we reconstructed the entire dendritic tree of CCK-immunoreactive (IR) basket cells to describe their geometry, the total length and laminar distribution of their dendrites. This was followed by an electron microscopic analysis of serial ultrathin sections immunostained against gamma-aminobutyric acid, to estimate the density of excitatory and inhibitory synapses on their somata, axon initial segments and different subclasses of dendrites. The dendritic tree of CCK-IR basket cells has an average length of 6300 microm and penetrates all layers. At the electron microscopic level, CCK basket cells receive dendritic inputs with a density of 80-230 per 100 microm. The ratio of inhibitory inputs is relatively high (35%) and increases towards the soma (83%). The total numbers of excitatory and inhibitory synapses converging onto CCK-IR cells are approximately 8200. Comparison of the two, neurochemically distinct basket cells reveals that CCK-containing basket cells receive much less synaptic input than PV cells; however, the relative weight of inhibition is higher on CCK cells. Additional differences in their anatomical and physiological properties predict that CCK basket cells are under a more diverse, elaborate control than PV basket cells, and thus the function of the two populations must be different.  相似文献   

6.
Passive cable properties of dendritic spines and spiny neurons   总被引:4,自引:0,他引:4  
A cable model of the linear properties of dendritic spines was generated using the Laplace transform technique. Analytical solutions for the voltages generated in the spine by a current impulse at the spine head were used in a numerical procedure for simulating the effect of a synaptic conductance change. The synaptic current produced by the conductance change was used as an input for evaluation of the postsynaptic potential and current injected into the dendrite at the base of the spine. The primary effect of the dendritic spine was to attenuate synaptic current. This effect was produced by the high input impedance at axospinous synapses, which resulted in giant spike-like excitatory postsynaptic potentials (EPSPs) that approached the reversal potential of the synapse and thus reduced the potential gradient driving the synaptic current. Although virtually all of the synaptic current was transferred to the dendrite, it produced much smaller EPSPs there due to the low dendritic input impedance. Very small conductance changes produced near maximal synaptic currents in dendritic spines. The current attenuating effect of the spine was accentuated with brief synaptic transients and reduced with prolonged synaptic conductance changes. The size and shape of the spine head, and the diameter and boundary conditions of the dendrite had little or no effect on current attenuation for spines in the naturally occurring size range. The diameter and length of the spine stalk and the size and location of the spine apparatus were the key morphological factors determining the synaptic currents generated by axospinous synapses. Naturally occurring size and shape differences among dendritic spines produced large differences in synaptic potency when compared in a model spiny neuron based on the neostriatal spiny projection neuron. These differences were comparable to those produced by differences in synaptic-location on the same neuron.  相似文献   

7.
The axonal arborizations of the basket cells in the cerebral neocortex have long been considered as the source of the presynaptic terminals contacting the cell bodies of pyramidal cells. Given that the concept of the cortical basket cell is based upon indirect evidence only, it was deemed worthwhile to re-investigate this problem using the Golgi-EM technique. This approach permits one to trace the presynaptic terminals back to their parent cell body, so that it allows for a positive identification of basket cells, i.e. cells which produce axosomatic synapses by preference. A type of interneuron in layer II–III of the cat visual cortex is described. Its axon terminals form multiple synaptic contacts, of the symmetrical type, on cell bodies and proximal dendrites of pyramidal and non-pyramidal cells. On the basis of this efferent synaptic pattern, this interneuron is considered to be a basket cell. The possible correspondence of this interneuronal type with other putative basket cells described in previous Golgi studies is discussed. In addition, a simple re-sectioning method for semithin sections is described, which has been used to identify individual Golgi-impregnated axonal boutons in electron microscopy.  相似文献   

8.
Purkinje cells, the output neurons of the cerebellar cortex, receive inhibitory input from basket, stellate and neighbouring Purkinje cells. The aim of the present study was to clarify the role of GABAB receptors on neurons giving inhibitory input to Purkinje cells. In sagittal slices prepared from the cerebellar vermis of the rat, the GABAB receptor agonist baclofen lowered the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded in Purkinje cells. These effects were prevented by the GABAB receptor antagonist CGP 55845. Two mechanisms were involved in the depression of the inhibitory input to Purkinje cells. The first mechanism was suppression of the firing of basket, stellate and Purkinje cells. The second mechanism was presynaptic inhibition of GABA release from terminals of the afferent axons. This was indicated by the finding that baclofen decreased the amplitude of IPSCs occurring in Purkinje cells synchronously with action potentials recorded in basket cells. A further support for the presynaptic inhibition is the observation that baclofen decreased the amplitude of autoreceptor currents which are due to activation of GABAA autoreceptors at axon terminals of basket cells by synaptically released GABA. The presynaptic inhibition was partly due to direct inhibition of the vesicular release mechanism, because baclofen lowered the frequency of miniature IPSCs recorded in Purkinje cells in the presence of cadmium and in the presence of tetrodotoxin plus ionomycin. The results show that activation of GABAB receptors decreased GABAA receptor-mediated synaptic input to cerebellar Purkinje cells both by lowering the firing rate of the inhibitory input neurons and by inhibiting GABA release from their axon terminals with a presynaptic mechanism.  相似文献   

9.
The synaptic termination in the cat motor cortex of afferents from the ventrolateral nucleus of the thalamus (VL) has been studied with experimental light and electron microscopic methods. The distribution of normal synapses on motor cortex pyramidal, stellate, and Betz cells was also examined. Synapses in the motor cortex can be classified into two general types. The first and most prominent type contains flat vesicles, lacks a compact postsynaptic density, and corresponds to Colonnier's ('68) symmetrical synapse. Stellate neurons receive synapses of both types on their cell bodies and proximal dendritic shafts, while pyramidal cells have only symmetrical synapses at these sites. The dendritic spines of both stellate and pyramidal cells are contacted by predominantly asymmetrical synapses. Betz cells, like smaller pyramidal neurons, receive only symmetrical synapses on their cell bodies. The proximal portions of the Betz cells apical dendrites, however, receive both asymmetrical and symmetrical synapses. Following VL lesions, degenerating synapses were mainly found in three cortical layers: the upper third of layer I (18%), layer III (66%), and layer VI (13%). Degenerating synapses were not seen in the lower two-thirds of layer I or in layer II, and were only rarely seen in layer V (3%). Ninety-one percent of the VL synapses were found on spines and 8% on stellate-type dendritic shafts. Stellate cell bodies rarely received VL synapses (1%) and none occurred on pyramidal or Betz cell bodies and their proximal dendrites. A VL synapse within layer III was found on two dendritic spines of a Betz cell apical dendrite. Thus, part of the VL input to layer III synapses on the processes of both motor cortex output neurons (Betz cells in layer V) and cortical interneurons (stellate cells in layer III).  相似文献   

10.
Neural activity guides the patterning of neuron synaptic territory in the developing nervous system. Evidence supporting this hypothesis comes from numerous studies on projection neurons in neuromuscular and visual systems. It is unknown whether the innervation field of GABAergic interneurons, which forms local dense innervations, follows similar rules. Cortical basket cells innervate hundreds of pyramidal cell somata and proximal dendrites. Thanks to this connectivity pattern, they can tightly control neural excitability and synchronization. Here we show that reducing excitation, and thus neurotransmitter release, in mouse cortical single basket cells in slice cultures decreases the number of innervated cells without changing the pattern of perisomatic innervation, both at the peak and after the proliferation phase of perisomatic synapse formation. Conversely, suppressing neurotransmitter release in single basket cells can have completely opposite effects depending on the developmental stage. Our results reveal a remarkably specific and age-dependent role of neural activity and neurotransmission levels in the establishment of the synaptic territory of cortical GABAergic cells.  相似文献   

11.
Temporal lobe epilepsy (TLE) is a common type of epilepsy with hippocampus as the usual site of origin. The CA3 subfield of hippocampus is reported to have a low epileptic threshold and hence initiates the disorder in patients with TLE. This study computationally investigates how impaired dendritic inhibition of pyramidal cells in the vulnerable CA3 subfield leads to generation of epileptic activity. A model of CA3 subfield consisting of 800 pyramidal cells, 200 basket cells (BC) and 200 Oriens—Lacunosum Moleculare (O‐LM) interneurons was used. The dendritic inhibition provided by O‐LM interneurons is reported to be selectively impaired in some TLEs. A step‐wise approach is taken to investigate how alterations in network connectivity lead to generation of epileptic patterns. Initially, dendritic inhibition alone was reduced, followed by an increase in the external inputs received at the distal dendrites of pyramidal cells, and finally additional changes were made at the synapses between all neurons in the network. In the first case, when the dendritic inhibition of pyramidal cells alone was reduced, the local field potential activity changed from a theta‐modulated gamma pattern to a prominently gamma frequency pattern. In the second case, in addition to this reduction of dendritic inhibition, with a simultaneous large increase in the external excitatory inputs received by pyramidal cells, the basket cells entered a state of depolarization block, causing the network to generate a typical ictal activity pattern. In the third case, when the dendritic inhibition onto the pyramidal cells was reduced and changes were simultaneously made in synaptic connectivity between all neurons in the network, the basket cells were again observed to enter depolarization block. In the third case, impairment of dendritic inhibition required to generate an ictal activity pattern was lesser than the two previous cases. Moreover, the ictal like activity began earlier in the third case. Hence, our study suggests that greater synaptic plasticity occurring in the whole network due to increase in reception of external excitatory inputs (due to impaired dendritic inhibition) makes the network more susceptible to generation of epileptic activity. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The dendrites of ganglion cells in the mammalian retina become extensively remodelled during synapse formation in the inner plexiform layer. In particular, after birth in the cat, many short spiny protrusions are lost from the dendrites of ganglion cells during the time when ribbon, presumably bipolar, synapses appear in the inner plexiform layer and when conventional, presumed amacrine, synapses increase significantly in number. It has therefore been postulated that these transient spines may be the initial or preferred substrates for competitive interactions between amacrine or bipolar cell terminals that subsequently result in the formation of appropriate synapses onto the ganglion cells. If so, the majority of synapses made onto developing ganglion cells should be found on these dendritic spines. To test this hypothesis, we determined the synaptic connectivity of identified ganglion cells in the postnatal cat retina during the period of peak spine loss and synapse formation. The dendritic trees of ganglion cells were intracellularly filled with Lucifer yellow that was subsequently photo-oxidized into an electron-dense product suitable for electron microscopy. In serial reconstructions of the dendrites of a postnatal day 11 (P11) alpha ganglion cell and a P14 beta ganglion cell, conventional and ribbon synapses were found predominantly on dendritic shafts. Only three out of a total of 341 dendritic spines from the two cells received direct presynaptic input, all of which were conventional synapses. Thus, our observations suggest that the transient dendritic spines are not the preferred postsynaptic sites as previously suspected. However, it is possible that these structures play a different role in synaptogenesis, such as mediating interactions between retinal neurons that may lead to cell-cell recognition, a necessary step prior to synapse formation at the appropriate target sites (Cooper and Smith, Soc. Neurosci. Abstr. , 14 , 893, 1988).  相似文献   

13.
14.
Dopamine (DA) afferents to the prefrontal cortex (PFC) play an important role in the cognitive functions subserved by this cortical area. Within the PFC, DA terminals synapse onto the distal dendrites of both local circuit neurons and pyramidal projection cells. We have previously demonstrated in the rat PFC that some of the dendrites and spines postsynaptic to DA terminals arise from pyramidal neurons that project to the nucleus accumbens. However, it is not known whether the pyramidal cells that give rise to callosal intercortical connections of the PFC also receive DA synaptic input. To address this question, retrograde tract tracing using an attenuated strain of pseudorabies virus (PRV-Bartha) was combined with immunocytochemistry for tyrosine hydroxylase (TH) to identify DA terminals in the PFC. Thirty-six to 40 hours following injection of PRV into the contralateral PFC, numerous callosal projection neurons were extensively labeled throughout their dendritic trees, with no evidence of PRV trans-synaptic passage. In tissue prepared for electron microscopy, labeling for PRV was distributed throughout pyramidal cell somata and extended into distal dendrites and dendritic spines. Some PRV-labeled dendrites and spines received symmetric synaptic input from terminals containing peroxidase labeling for TH. These results demonstrate that DA terminals synapse onto the distal dendrites of callosally projecting PFC neurons and suggest substrates through which DA may modulate interhemispheric cortical communication.  相似文献   

15.
To assess the position of interneurons in the hippocampal network, fast spiking cells were recorded intracellularly in vitro and filled with biocytin. Sixteen non-principal cells were selected on the basis of 1) cell bodies located in the pyramidal layer and in the middle of the slice, 2) extensive labeling of their axons, and 3) a branching pattern of the axon indicating that they were not axo-axonic cells. Examination of their efferent synapses (n = 400) demonstrated that the cells made synapses on cell bodies, dendritic shafts, spines, and axon initial segments (AIS). Statistical analysis of the distribution of different postsynaptic elements, together with published data (n = 288) for 12 similar cells, showed that the interneurons were heterogeneous with regard to the frequency of synapses given to different parts of pyramidal cells. When the cells were grouped according to whether they had less or more than 40% somatic synaptic targets, each population appeared homogeneous. The population (n = 19) innervating a high proportion of somata (53 ± 10%, SD) corresponds to basket cells. They also form synapses with proximal dendrites (44 ± 12%) and rarely with AISs and spines. One well-filled basket cell had 8,859 boutons within the slice, covering an area of 0.331 mm2 of pyramidal layer tangentially and containing 7,150 pyramidal cells, 933 (13%) of which were calculated to be innervated, assuming that each pyramidal cell received nine to ten synapses. It was extrapolated that the intact axon probably had about 10,800 boutons innervating 1,140 pyramids. The proportion of innervated pyramidal cells decreased from 28% in the middle to 4% at the edge of the axonal field. The other group of neurons, the bistratified cells (n = 9), showed a preference for dendritic shafts (79 ± 8%) and spines (17 ± 8%) as synaptic targets, rarely terminating on somata (4 ± 8%). Their axonal field was significantly larger (1,250 ± 180 μm) in the medio-lateral direction than that of basket cells (760 ± 130 μm). The axon terminals of bistratified cells were smaller than those of basket cells. Furthermore, in contrast to bistratified cells, basket cells had a significant proportion of dendrites in stratum lacunosum-moleculare suggesting a direct entorhinal input. The results define two distinct types of GABAergic neuron innervating pyramidal cells in a spatially segregated manner and predict different functions for the two inputs. The perisomatic termination of basket cells is suited for the synchronization of a subset of pyramidal cells that they select from the population within their axonal field, whereas the termination of bistratified cells in conjunction with Schaffer collateral/commissural terminals may govern the timing of CA3 input and/or voltage-dependent conductances in the dendrites. © 1996 Wiley-Liss, Inc.  相似文献   

16.
What patterns of synaptic input cause cortical neurons to fire action potentials? Are they stochastic in nature, or do action potentials arise from the specific timing of synaptic input? We addressed these questions by measuring the membrane potential fluctuations associated with the generation of visually evoked action potentials in cat striate cortical neurons in vivo. In response to visual stimulation, action potentials occurred at the crest of large‐amplitude, transient depolarizations (TDs) riding on sustained depolarization of the membrane potential. The magnitude, duration and rate of depolarization of these transient events were tuned for stimulus orientation. Using numerical simulations, we find that these transient events can arise from the temporal interplay between synchronous excitation and inhibition. To validate these findings, we made conductance measurements, at the preferred stimulus orientation, and showed that the TDs arise either from an increase in excitatory conductance, or from a combination of increased excitatory and decreased inhibitory conductance, both riding on sustained changes in synaptic conductances. The properties of the TDs and their underlying conductance suggest that they arise from a specific temporal interplay between synchronous excitatory and inhibitory synaptic inputs. Our results illustrate a mechanism by which the timing of synaptic inputs determines much of the spiking activity in striate cortical neurons.  相似文献   

17.
A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal neurons in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role during anesthesia. The aim of this study was to investigate effects of a general anesthetic, halothane, on membrane and synaptic properties of rat hippocampal interneurons. GABA receptor-mediated IPSCs were recorded with whole-cell patch-clamp techniques in visually identified CA1 pyramidal cells and interneurons located at the border of stratum lacunosum-moleculare and stratum radiatum. Halothane (0.35 mm congruent with 1.2 vol%) depressed evoked IPSC amplitudes recorded from both pyramidal cells and inhibitory interneurons. Also, halothane considerably prolonged the decay time constant of evoked IPSCs in pyramidal cells and interneurons. The frequencies of miniature IPSCs were increased by halothane (two- to threefold) in both types of neuron. On the other hand, halothane effects on resting membrane potentials were variable but minimal in both types of neurons. In current-clamp recordings, halothane depressed EPSP amplitudes and increased IPSP amplitudes recorded from both types of neurons. In addition, halothane increased the failure rate of synaptically evoked action potentials. Taken together, these data provide evidence that halothane increases GABA(A) receptor-mediated synaptic inhibition between synaptically connected interneurons and depresses excitatory transmission, similar to effects observed in pyramidal neurons.  相似文献   

18.
Highly synchronized neural firing has been discussed in relation to learning and memory, for instance sharp‐wave activity in hippocampus. We were interested to study how a postsynaptic CA1 pyramidal neuron would integrate input of different levels of synchronicity. In previous work using computational modeling we studied how the integration depends on dendritic conductances. We found that the transient A‐type potassium channel KA was able to selectively suppress input of high synchronicity. In recent years, compartmentalization of dendritic integration has been shown. We were therefore interested to study the influence of localization and pattern of synaptic input over the dendritic tree of the CA1 pyramidal neuron. We find that the selective suppression increases when synaptic inputs are placed on oblique dendrites further out from the soma. The suppression also increases along the radial axis from the apical trunk out to the end of oblique dendrites. We also find that the KA channel suppresses the occurrence of dendritic spikes. Moreover, recent studies have shown interaction between synaptic inputs. We therefore studied the influence of apical tuft input on the integration studied above. We find that excitatory input provides a modulatory influence reducing the capacity of KA to suppress synchronized activity, thus facilitating the excitatory drive of oblique dendritic input. Conversely, inhibitory tuft input increases the suppression by KA providing a larger control of oblique depolarizing factors on the CA1 pyramidal neuron in terms of what constitutes the most effective level of synchronicity. Furthermore, we show that the selective suppression studied above depends on the conductance of the KA channel. KA, as several other potassium channels, is modulated by several neuromodulators, for instance acetylcholine and dopamine, both of which have been discussed in relation to learning and memory. We suggest that dendritic conductances and their modulatory systems may be part of the regulation of processing of information, in particular for how network synchronicity affects learning and memory. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
An electron microscopic study on the synaptic connections between neurons of ventrolateral nucleus of thalamus (VL) and pyramidal tract neurons (PTNs) in cat motor cortex was conducted by means of the anterograde degenerating procedure coupled with horseradish peroxidase (HRP) intracellular staining. Following VL lesions, a large majority of the degenerating terminals were found to terminate on dendritic spines and a few on the dendritic shaft. An asymmetric type synapse formed by a VL degenerating terminal and the dendritic shaft of a branch of apical dendrite of a labeled fast pyramidal tract neuron was demonstrated.  相似文献   

20.
Axons of pyramidal cells in piriform cortex stained by intracellular injection of horseradish peroxidase (HRP) have been analyzed by light and electron microscopy. Myelinated primary axons give rise to extensive, very fine caliber (0.2 micron) unmyelinated collaterals with stereotyped radiating branching patterns. Serial section electron microscopic analysis of the stained portions of the collateral systems (initial 1-2 mm) revealed that they give rise to synaptic contacts on dendritic spines and shafts. These synapses typically contain compact clusters of large, predominantly spherical synaptic vesicles subjacent to asymmetrical contacts with heavy postsynaptic densities. On the basis of comparisons with Golgi material and intracellularly stained dendrites, it was concluded that dendritic spines receiving synapses from the proximal portions of pyramidal cell axon collaterals originate primarily from pyramidal cell basal dendrites. Postsynaptic dendritic shafts contacted closely resemble dendrites of probable GABAergic neurons identified in antibody and [3H]-GABA uptake studies. Electron microscopic examination of pyramidal cell axon initial segments revealed a high density of symmetrical synaptic contacts on their surfaces. Synaptic vesicles in the presynaptic boutons were small and flattened. It is concluded that pyramidal cells synaptically interact over short distances with other pyramidal cells via basal dendrites and with deep nonpyramidal cells that probably include GABAergic cells mediating a feedback inhibition. This contrasts with long associational projections of pyramidal cells that terminate predominantly on apical dendrites of other pyramidal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号