首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyse HLA and insulin-dependent diabetes mellitus (IDDM) association in the ethnically mixed population of La Réunion island, we carried out a family study on 70 diabetic subjects. HLA-DQA1, -DQB1 and -DRB1 typing was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), completed by PCR-sequence-specific oligonucleotide (SSO) and PCR-sequence-specific priming (SSP). Haplotype-relative risks (HRR) were determined with the non-transmitted parental haplotypes as controls, and relative risks (RR) were calculated with a classical case-control study. The most significant risks were found for the cis and trans combinations between DQA1*03 or *0501 (Arg52+) and DQB1*02 or *0302 (Asp57?) alleles, suggesting a direct role for the HLA-DQ heterodimer in IDDM susceptibility. Interestingly, due to the mixed origin of the population, the trans-encoded DQ molecules in the (DR3)-DQA1*0501-DQB1*02/(DR4)-DQA1*03-DQB 1*0302 subjects were also found cis-encoded in patients with the (DR7 or 9)-DQA1*03-DQB1*02 haplotype and in a patient with the rare (DR 11)-DQA1*0501-DQB 1*0302 haplotype. A relative predispositional effect (RPE) analysis gave significant haplotype-IDDM+ associations in the following order: (DR3)-DQA1*0501-DQB1*02>(DR4)-DQA1*03-DQB1*0302>(DR9)-DQA1*03-DQB*02>(DR7)-DQA1*03-DQB1*02>(DR2)-DQA1*01-DQB1*0502. No protective effect remained significant once the susceptible haplotypes were removed. A stratification study showed a stronger influence of the DQ genes than DRB1 alleles within the DR7 haplotypes. On the other hand, IDDM subjects with only one susceptible haplotype had inherited this haplotype more often from their father than from their mother. This paternal effect could be related to the greater risk of IDDM in offspring of diabetic fathers than the risk in offspring of diabetic mothers.  相似文献   

2.
Twenty alleles for the locus human leukocyte antigen (HLA-A) and 46 for the HLA-B locus were detected in Jordanians. This indicates the existence of high polymorphism in this area. The most frequent HLA class I alleles found were A*0201 (0.1344), B*0713 (0.1724), and C*0502 (0.1793). Twenty-six different alleles in the Jordanian population were identified for the DRB1 locus being the DRB1*0704 (0.2552), DRB1*0401 (0.1965), and DRB1*1501 (0.0896) the most frequent. Common DQA1 alleles were DQA1*0201 (0.2690), DQA1*0301 (0.2414), and DQA1*0501 (0.1724). Three-loci haplotype heterogeneity was common: 38 HLA class II haplotypes were identified, of which the most frequently observed was DRB1*0401-DQA1*0301-DQB1*0302 (0.1793). In addition, as expected, 220 different five-loci haplotypes with several unusual allelic combinations were observed, although many of them are pan-European haplotypes. The most frequent five-loci haplotype was the A30-B7-DRB1*03-DQA1*0501-DQB1*0201 (0.0138). It seems that the specific Jordanian haplotypes are the following: the A31-B7-DRB1*04/07-DQA1*0301/0201-DQB1*0302/0202 haplotypes (0.0103) and the A1-B7-DRB1*07-DQA1*0201-DQB1*0202, A2-B7-DRB1*04-DQA1*0301-DQB1*0302, A11-B7-DRB1*07-DQA1*0201-DQB1*0201 haplotypes but at lower frequencies (0.007). A tree analysis of HLA class I and class II alleles were made for several Caucasian populations and individual genetic distances calculated. The haplotype frequencies, genetic distances, and dendrograms do not reveal great differences as compared with those in other Mediterranean countries and Western Europeans populations. Our results suggest that both HLA class I and class II polymorphism (but especially the former) of the Jordanian population demonstrates considerable heterogeneity, which reflects ancient and recent admixture with neighboring populations, and important human migratory trends throughout the history.  相似文献   

3.
目的检测江苏地区汉族人群HLA-DQA1和DQB1等位基因及单倍型的频率,分析该人群DQA1、DQB1基因多态性和DQA1-DQB1单倍型特点。方法应用聚合酶链反应-直接测序分型法(PCR-sequence-based typing ,PCR-SBT)方法对100名健康、无血缘关系的江苏汉族人群的HLA-DQA1和DQB1进行基因分型。结果共检出7个DQA1等位基因和13个DQB1等位基因。DQA1等位基因中,DQA1*0301/02/03的基因频率最高(29.5%),其次为DQA1*0501(18.5%)、DQA1*0102(17.0%)、DQA1*0201(12.5%);DQB1等位基因中,DQB1*0201/02(21.5%)、DQB1*0301/09(14.5%)、DQB1*0303(13.5%)和DQB1*0603(11.5%)最为常见。分析得出30种DQA1-DQB1单倍型,DQA1*0301/02/03-DQB1*0303(12.5%)、DQA1*0201.DOB1*0201/02(10.5%)、DQA1*0501-DQB1*0201/02(9.5%)、DQA1*0501-DQB1*0301/09(7.0%)为常见的单倍型。结论江苏汉族人群HLA-DQA1和DQB1基因具有较为丰富的多态性,基因频率分布具有中国北方群体的特征且具有一定的独特性。  相似文献   

4.
Abstract: This study presents the results of HLA-DRB1, -DQA1, and -DQB1 sequence-specific oligonucleotide probe (SSOP) typings for a population sample of 47 individuals originating from Western Algeria. Allele and haplotype frequencies, as well as linkage disequilibria are computed by the standard methods used for the XIth International Histocompatibility Workshop data. A total of 24 alleles are detected at the DRB1 locus, where a very high heterozygosity level (0.914) is found. The highest DRB1 frequencies are 0.160, DRB1*1101, and 0.138, for DRB1*0301 and DRB1*0701. The DQA1 and DQB1 loci are less polymorphic. Among the 8 DQA1 alleles detected, DQA1*0501 is highly predominant with a frequency of 0.383. Thirteen DQB1 alleles are observed among which DQB1*0301 and DQB1*0201 are the most frequent (0.351 and 0.245, respectively). Three haplotypes predominate clearly: DRB1*1101-DQA1*0501-DQB1*0301 (0.138), DRB1*0701-DQA1*0201-DQB1*0201 (0.128) and DRB1*0301-DQA1*0501-DQB1*0201 (0.117). The two latter are among the most frequent haplotypes found in European and North American Caucasoid populations, but the DQA1*0501-DQB1*0201 association is not significant in Algerians. The genetic distances computed for each locus among a set of populations from different continents are significantly correlated to geography. They indicate that the Algerians are very close to South European populations, particularly to Sardinians, Italians, Romanians and French, with some intermediate characteristics between Europeans and sub-Saharan Africans. These results may serve as reference for future studies of HLA and disease in the Algerian population.  相似文献   

5.
We describe for the first time extended haplotypes in a Croatian population. The present study gives the HLA-A, -B, -DRB1, -DQA1 and -DQB1 allele and haplotype frequencies in 105 families with at least two offspring. All individuals were studied by conventional serology for HLA class I antigens (A and B), while class II alleles (DRB1, DQA1, DQB1) were typed using the PCR-SSOP method. HLA genotyping was performed by segregation in all 105 families. For extended haplotype analysis, 420 independent parental haplotypes were included. Fourteen HLA-A, 18 HLA-B, 28 DRB1, 9 DQA1 and 11 DQB1 alleles were found in the studied population. Most of the DRB1 alleles in our population had an exclusive association with one specific DQA1-DQB1 combination. This strong linkage disequilibrium within the HLA class II region is often extended to the HLA-B locus. A total of 10 HLA-A, -B, -DRB1, -DQA1, -DQB1 haplotypes were observed with a frequency 相似文献   

6.
The initiation of a CD8 cell-mediated pathway (M+) was adopted as a phenotypic trait to analyse genetic predisposition in trichosanthin (Tk)-induced immunosuppression. Tk is a natural protein antigen with 247 amino acid residues. Based on DNA typing for DR, DQ, DP and TAP genes, data in this paper indicate that only DQ genes were primarily involved and that the alleles DQA1*0501 and DQB1*0201 were strongly associated with the M+ phenotype in cis (on DR3 haplotype) or trans (on DR5/DR7 heterozygotes) complementation. This is consistent with our observation that only the DQ-positive cells were capable of expanding after being co-cultured with Tk for 96h. Two points of interest were noted. (1) The susceptible haplotype DRB1*0301-DQA1*0501-DQB1*0201 showed an association with the M+ phenotype only if combined with DRB1*04-, DRB1*08-, or DRB1*09-related haplotypes. When co-presented with DRB1*11-, DRB1*15-, DRB1*07-related haplotypes, however, no cis complementation could be detected. A detailed analysis of the association patterns indicated that the DQB1 locus of the non-susceptible haplotypes was the main factor for up- or down-modulation. (2) For M+ phenotype-related trans complementation in Tk-induced suppression, it was found that not only DQA1*0501-DQB1*0201 (DR5/7) alleles, but also associated DQA1*0301-DQB1*0201 (DR4/7, 9/7) alleles, were involved. The allele DQB1*0201 was not associated with the DQA1 alleles in DRB1*01-, DRB1*15-, DRB1*13-, DRB1*07-related haplotypes. The results obtained indicate that there are some additional genetic factors involved in the functional expression of cis and trans complementation of DQA1 and DQB1 genes, among which the DQ alleles play a critical role as self-regulators.  相似文献   

7.
Y. W. Chang  B. R. Hawkins   《Human immunology》1997,56(1-2):125-135
ABSTRACT: HLA-A, and -B antigen, gene and haplotype frequencies have been calculated from 18,774 southern Chinese donors on a Hong Kong-based bone marrow donor registry. Two hundred and fifty donors were also tested for HLA-DRB1, -DQA1, and -DQB1 alleles using the PCR-SSP technique. Forty-one HLA-A, -B combinations showed statistically significant positive linkage disequilibrium at the 0.05 level after adjustment for the number of haplotypes theoretically possible and 43 showed significant negative disequilibrium. Thirty-nine different DRB1-DQA1-DQB1 haplotypes were identified of which 20 occurred 5 or more times. The most prevalent was DRB1*0901-DQA1*0301-DQB1*0303 (haplotype frequency = 0.1620). This is the first paper to report the distribution of DQA1*0104, DQA1*05011 and DQA1*05012/13 alleles in Chinese. These data are important for phylogenetic, comparative and medico-legal studies and are of particular value in estimating the likelihood of obtaining appropriately matched donors for Chinese patients awaiting bone marrow transplantation.  相似文献   

8.
HLA-DRB1, DQA1 and DQB1 alleles have been determined in 42 families with one IDDM proband and 64 healthy controls, by oligotyping (PCR-SSO) using primers and probes from the XI International Histocompatibility Workshop. A positive DRB1 *03 and DRB1 *04 association with the disease was observed, whereas DRB 1*11 and DRB 1 *07 showed negative association but 19% of patients carried DRB1 alleles different to DRB 1 *03 or *04. When single alleles were considered, DQA1 *03 showed the strongest association with susceptibility to the disease (RR = 8.2, Pc = 0.00001) but this association was outgrown by 2 and 3 allele combinations, with genotype DRB 1 *04-DQA 1 *03-DQB1*0302/DRB1*03- DQA 1*0501- DQB 1*0201 showing the strongest association (RR = 28, Pc = 0.002). Application of the relative predispositional effect (RPE) method to our data, revealed a further susceptibility risk provided by the DRB1*13-DQA1*0102-DQB 1*0604 haplotype once DR3 and DR4 haplotypes were removed. When DQA1-DQB1 genotypes were analysed for presence of Arg 52 (DQ α) and absence of Asp 57 (DQ β), genotypes SS/SS were found significantly increased in diabetics. Interestingly, one of the strongest associations with the disease was observed with the DQA 1*03-DQB 1*0201 combination encoded mainly by genes in trans (RR = 11.7 Pc = 0.00004). These observations and their comparison with DR-DQ haplotypes in more homogeneous ethnic groups support the stronger influence of the DQ molecule rather than the individual DR or DQ alleles in the susceptibility to IDDM. They also emphasize the need for detailed HLA haplotype studies in non-Caucasian and ethnically mixed populations to gain further insight into the nature of genetic and environmental factors contribution to autoimmunity.  相似文献   

9.
Chen BH  Chiang CH  Lin SR  Chao MG  Tsai ST 《Human immunology》1999,60(11):1131-1137
Certain alleles of human leukocyte antigen (HLA)-DR and -DQ genes have been strongly associated with susceptibility and resistance to insulin- dependent diabetes mellitus (IDDM). To further clarify the association of HLA DQ alleles with IDDM and the influence of age at onset and gender on the association with IDDM, we investigated the association of HLA-DQA1, -DQB1 in 54 childhood onset Chinese (21 male) IDDM patients and 65 normal controls by using polymerase chain reaction-sequence specific primer (PCR-SSP). The mean age plus or minus SD at onset of IDDM patients was 8.37+/-3.54 year old. Our results revealed that the frequencies of DQA1 *0301, *0302, DQB1 *0201, and *0302 in IDDM patients were significantly higher than that in the control group (p < 0.025, < 0.005, < 0.001, and < 0.001, respectively). The frequency of DQA1 *0301, *0302, DQB1 *0201, and *0302 were susceptible alleles to IDDM with relative risks of 2.0, 3.5, 5.0 and 4.3, respectively. The protective alleles to IDDM were DQA1 *0101, *0103, DQB1 *0301, *0503, and *0602. We divided IDDM patients into three groups according to age at onset (1-5, 6-10, and 11-15 years old). The frequency of DQA1 *0302 decreased as age increased, and the frequency of DQA1 *0501 increased as age increased. Our results also showed that male IDDM patients had higher frequencies of DQA *0501, DQB1 *0201 than female IDDM patients (p < 0.025 and < 0.025, respectively), while female IDDM patients had higher frequencies of DQB1 *0502 than male IDDM patients (p < 0.05). In our study significant susceptibility haplotypes to IDDM were DQA1 *0301-DQB1 *0302, DQA1 *0501-DQB1 *0201, DQA1 *0301-DQB1 *0201, and DQA *0302-DQB1 *0201.  相似文献   

10.
Allelic frequencies at the three most polymorphic loci of the HLA class II region (DRB1, DQA1 and DQB1) were determined in the Nganasan and Ket, the remnants of the two most ancient groups in the Lower Yenisey River/Taimyr Peninsula region in northern Siberia. By single-stranded conformational polymorphism typing, verified by sequencing, 19 HLA-DRB1-DQA1-DQB1 haplotypes and 15 HLA-DRB1, seven DQA1 and 11 DQB1 alleles were found. The most frequent alleles were DRB1*1301 (23.5%), DQA1*0103 (29.4%), *0501/03/05 (29.4%), and DQB1*0301/09 (32.4%) in the Ket, and DRB1*0901 (25%), DQA1*0301 (39.6%), and DQB1*0301/09 (37.5%) in the Nganasan. The distribution patterns and comprehensive phylogenic analysis based on the haplotype frequencies of 17 Siberian populations suggest that the founders of both the Ket and the Nganasan came from Palaeolithic populations in the Altai-Sayan Upland.  相似文献   

11.
We have investigated polymorphism in the 5′-URR of the DQA1 gene by PCR-SSO method in a group of 55 Italian healthy individuals olygotyped for DRB1, DQA1, DQB1 genes and in 20 10th IHWS cell lines as controls. We used primers and oligos (X and Y box) supplied by 12th IHWS and a DIG-11-ddUTP/AMPPD method. We have detected eight QAP variants (1.1,1.2,1.3,1.4,2.1,3.1,4.1,4.2) in our samples. As far as the association of DR/DQ haplotype and QAP sequences, we observed cases of one to one relationship (DQA1*0201 and QAP2.1, DQA1*0301 and QAP3.1, DQA1*0401 and QAP4.2, DQA1*0501 and QAP4.1); cases in which the same QAP allele was present in different DQA1-DRB1 haplotypes (QAP1.2 with DQA1*0102 in DRB1*15-DQB1*0602 and DRB1*16-DQB1*0502 haplotypes or with DQA1*0103 in the DRB1*15-DQB1*0601 haplotypes; QAP1.3 linked to DQA1*0102, DQA1*0103 or DQA1*0104 in different haplotypes; QAP4.1 linked to DQA1*0501 in DRB1*11-DQB1*0301, DRB1*0301-DQB1*0201, DRB1*1303-DQB1*0301 haplotypes or to DQA1*0601 in DRB1*0803-DQB1*0301); cases where the same DQA1 allele is associated with different QAP sequences according to the DRB1 specificity (DQA1*0102 allele with QAP1.2 or QAP1.4 in DRB1*1302). Besides, we have observed that the QAP1.3, previously reported associated with DQA1*0101-DRB1*1401 haplotype, is really linked to DQA1*0104-DRB1*1401 haplotype. An intriguing data is that sometimes the same QAP is linked to different DQA1 alleles but to the same generic DRB1 allele: DRB1*02 haplotype includes always the QAP1.2 variant but can bring different DQA1 alleles (*0102 or *0103) and DRB1*08 haplotype has always the QAP4.2 variant with different DQA1 alleles (*0401 or *0601). The variability of linkage QAP-DQA1 can give further informations about HLA susceptibility in autoimmune diseases and in regulation of immune response in transplantation and oncology.  相似文献   

12.
We describe the analysis of the Major Histocompatibility Complex (MHC) class II polymorphism in Mexican Mestizo population. The study provides the HLA-DRB1, DQA1 and DQB1 allele frequencies in 99 Mexican Mestizos. DNA from these individuals was typed by PCR followed by hybridization using sequence specific oligonucleotides (PCR-SSO). The relationship with other worldwide populations was studied by using HLA data from 69 different populations and calculating neighbor-joining dendrograms and correspondence multidimensional values. The highest frequencies were for DRB1*0802 (allele frequency = 0.151), DRB1*0701 (allele frequency = 0.111) and DRB1*0407 (allele frequency = 0.106). Among the eight DQA1 alleles detected, the most frequent were DQA1*03011 (allele frequency = 0.257), DQA1*0501 (allele frequency = 0.227) and DQA1*0401 (allele frequency = 0.166). Twelve DQB1 alleles were found and four of them, DQB1*0302 (allele frequency = 0.237), DQB1*0301 (allele frequency = 0.176), DQB1*0201 (allele frequency = 0.166) and DQB1*0402 (allele frequency = 0.166) showed the highest frequencies. The haplotype DRB1*0802-DQA1*0401-DQB1*0402 (0.151) predominated clearly, followed by DRB1*0701-DQA1*0201-DQB1*0201 (0.111) and DRB1*0407-DQA1*03011-DQB1*0302 (0.101). Both genetic distances and correspondence analyses showed that Mexicans clustered with Amerindian population. These results suggest that the Mexican Mestizo population be principally characterized by haplotypes presents in Amerindian and Caucasian populations with a low frequency of Black haplotypes. In summary, the HLA class II haplotype frequencies demonstrated the tri-racial component existing in Mexican Mestizos.  相似文献   

13.
HLA class II is the primary susceptibility gene to type 1 diabetes and the analysis of HLA class II association could help to clarify the relative weight of genetic contribution to the incidence of the disease. Here we present an extensive typing for HLA class II alleles and their haplotypes in a homogenous population of type 1 diabetic patients (n=134) and controls (n=128) and in simplex (n=100) and multiplex families (n=50) from continental Italy (Lazio region). Among the various haplotypes tested, the DRB1*0301-DQA1*0501-DQB1*0201 was the most frequent found in type 1 diabetic patients and was transmitted in 82% of affected siblings, whereas DRB1*0402-DQA1*0301-DQB1*0302 appeared to have the highest odds ratio (10.4), this haplotype was transmitted in 96.3% of affected siblings, followed by DRB1*0405-DQA1*0301-DQB1*0302, DRB1*0405-DQA1*0301-DQB1*0201, DRB1*0401-DQA1*0301-DQB1*0302 and DRB1*0404-DQA1*0301-DQB1*0302. The following haplotypes showed a significant decreased transmission to diabetic siblings: DRB1*0701-DQA1*0201-DQB1*0303, DR2-DQA1*01-DQB1*0602, DR5-DQA1*0501-DQB1*0301. We suggest that the HLA DR/DQ haplotype/genotype frequencies observed could in part explain the low incidence of type 1 diabetes registered in Lazio region (8.1/100.000/year), for a number of reasons: i) the low frequency, in the general control population, of the most susceptible haplotypes and genotype for type 1 diabetes DRB1*0301-DQA1*0501-DQB1*0201 (14%), and DR4-DQA1*0301-DQB1*0302 (9%) and DRB1*0301-DQA1*0501-DQB1*0201/DR4-DQA1*0301-DQB1*0302 (0.8%) compared to other countries characterised by high incidence rate of the disease, Sardinia and Finland, respectively; ii) a significant lower ratio, in the control population, between the susceptible DRB1*0301-DQA1*0501-DQB1*0201 and the neutral DRB1*0701-DQA1*0501-DQB1*0201 haplotypes compared to the Sardinian population; iii) the high frequency of protection haplotypes/genotypes as the DR5-DQA1*0501-DQB1*0301, and DR5-DQA1*0501-DQB1*0301/DR5-DQA1*0501-DQB1*0301 very common in the control population of Lazio region and the DRB1*1401-DQA1*0101-DQB1*0503 haplotype.  相似文献   

14.
Autoimmune polyglandular syndrome (APS) type 2 is defined by the manifestation of at least two autoimmune endocrine diseases. Only few data exist on genetic associations of APS type 2. In this controlled study, 98 patients with APS type 2, 96 patients with type 1 diabetes (T1D), and 92 patients with autoimmune thyroid disease, both as a single autoimmune endocrinopathy, were tested for association with alleles of the human leukocyte antigen (HLA) class II loci DRB1, DQA1, and DQB1. Patients with APS type 2 had significantly more often the alleles DRB1*03 (P(c) < 0.0001), DRB1*04 (P(c) < 0.000005), DQA1*03 (P(c) < 0.0001), and DQB1*02 (P(c) < 0.05), when compared with controls. Less frequent in APS were DRB1*15 (P(c) < 0.05), DQA1*01 (P(c) < 0.0005), and DQB1*05 (P(c) < 0.005). With regard to frequency and linkage of these alleles, the susceptible haplotypes DRB1*0301-DQA1*0501-DQB1*0201 and DRB1*0401/04-DQA1*0301-DQB1*0302 were deduced. Protective haplotypes in this study were DRB1*1501-DQA1*0102-DQB1*0602 and DRB1*0101-DQA1*0101-DQB1*0501. Comparing APS patients with vs without AD, no significant differences regarding HLA class II alleles were noted in our collective. Patients with T1D as a singular disease had the same susceptible and protective HLA alleles and haplotypes. The prevalence of DRB1*03 and DRB1*04 in APS patients was not because of the presence of diabetes, as the APS type 2 patients without diabetes had the same allele distribution. In conclusion, these data suggest a common immunogenetic pathomechanism for T1D and APS type 2, which might be different from the immunogenetic pathomechanism of other autoimmune endocrine disease.  相似文献   

15.
We analyzed the frequencies and haplotypes of DQA1*03 and *05 subtypes, DQA1*03011 or DQA1*0302 and DQA1 *0501 or DQA1*0503, respectively, differing only at codon 160 in the non-polymorphic third exon of the DQA1 gene. Of these, 1,862 and 337 individuals selected as DQA1*03- and DQA1**05-positive samples, respectively among 2,215 unrelated Japanese were typed for their nucleotide variation at residue 160 using PCR-SSP. As observed in other populations, all the samples carrying DQA1*03011 (Gene Frequency, GF: 7.8%) were found to share DQB1*0302, whereas those carrying DQA1*0302 (GF: 44.3%) were associated with a variety of DQB1 alleles including DQB1*0302. Both of the DQA1-DQB1 haplotypes with DQA1*03011 and DQA1*0302 carrying DRB1*0406, DQA1*03011-DQB1*0302 and DQA1*0302-DQB1*0302, showed a strong linkage disequilibrium with B62 (p< .0001, p< .005). These results suggested that DQA1*03011 was generated from a single amino acid change at residue 160 in the DQA1*0302-DQB1*0302 haplotype. However, none of the haplotypes with two different DQA1*03 subtypes carrying DRB1*0403, *0405, *0802 and *0901 showed a linkage disequilibrium with any common B-locus antigens, revealing extensive haplotypic diversity of the DQA1*03 group. For example, DRB1*0802 haplotypes showed linkage disequilibria with two different B-locus antigens, B35 and B61 depending on the presence of DQA1*03011 and DQA1*0302, respectively. The GFs of DQA1*0501 and *0503 were 5.1% and 2.7%, respectively. The DQA1*05 associated haplotypes in the DR52-antigen group with DQB1*0301 were divided into two groups, depending on the bimorphism at residue 160. Such a high degree of haplotypic diversity in association with DRB1 and B alleles observed in the DQA1*03 and *05 groups related to amino acid variation at residue 160, which may affect biological function such as the interaction between CD4 and HLA-DQ molecules, seems to reflect selective pressure in the evolutionary process of HLA antigens  相似文献   

16.
Abstract: HLA-class II polymorphisms have been studied in a population of 141 unrelated healthy Croatians using PCR amplification, followed by non-radioactive oligonucleotide hybridization. Thirty one DRB1, 8 DQA1, 13 DQB1 and 16 DPB1 alleles were found in the tested population. DRB1*1601, 0701, 1501, 0101 and 1104 are the most frequent alleles at the DRB1 locus. At the DQA1 locus two alleles predominate: DQA1*0501 and 0102, while the most frequent DQB1 allele is *0301. Analysis of HLA-DPB1 polymorphism showed that, as in other Europeans, DPB1* 0401 is the most frequent allele. Four different two locus haplotypic associations (DRB1-DRB3, DRB1-DRB5, DRB1-DQB1 and DQA1-DQB1) as well as three locus DRB1-DQA1-DQB1 haplotypic associations were assigned on the basis of known linkage disequilibria. Several unusual two-locus associations have been observed: DRB1*0301-DRB3* 0202, DRB1*1501-DRB5*02, DRB1*1601-DRB5*0101, DRB1*1502-DRB5*0101, DQA1*0103-DQB1*0503 and DQA1*0501-DQB1*0302. Among 236 examined DRB1-DQA1-DQB1 haplotypic combinations, the most frequent was DRB1*1601-DQA1*0102-DQB1*0502 that was found with statistically significant higher frequency than in other Europeans. Twenty-eight distinct probable haplotypes were observed just once, suggesting that the main characteristic of Croatian population is great heterogeneity of haplotypes. This study will serve as a reference for further anthropology studies, HLA and disease associations studies and for donor/recipient matching in organ and bone marrow transplantation.  相似文献   

17.
The aim of the present study was to determine the relevant major histocompatibility complex (MHC) class II alleles in the genetic susceptibility to systemic lupus erythematosus (SLE) in Mexican Mestizo patients. We examined the gene and haplotype frequencies of the HLA-DRB1, DQA1 and DQB1 alleles by polymerase chain reaction-sequence-specific oligonucleotide probes in 81 Mexican SLE Mestizo patients and 99 ethnically matched controls. We found a significantly increased frequency of the HLA-DRB1*0301 (p(c) = 0.031, odds ratio = 2.63) allele and significantly decreased frequencies of the DRB1*0802 (p(c) = 0.035) and DRB1*1101 (p(c) = 0.037) alleles in the SLE group. Haplotype analysis showed increased frequencies of DRB1*0301-DQA1*0501-DQB1*0201 (p(c) = 0.017, odds ratio = 2.97), and decreased frequency of DRB1*0802-DQA1*0401-DQB1*0402 (p(c) = 0.034) in SLE patients. The most frequently detected haplotypes in SLE patients showed different haplotypic combinations in the homologous chromosome from those found in controls. Thus, the combinations detected in SLE patients were either not detected in the control group or infrequently found. The results suggest that the DRB1*0301 is the principal class II allele associated with the genetic susceptibility to SLE in Mexican patients and that the presence of a specific haplotype of the homologous chromosome in patients with DRB1*0407-DQA1*03-DQB1*0302 and DRB1*1501-DQA1*0102-DQB1*0602 haplotypes could have an additive effect on the susceptibility to the disease. Finally, the low frequency of the DRB1*0301 and DRB1*1501 alleles in the control population suggests that the genetic admixture between Mexican Indians and Caucasian populations was an event that could have increased the risk of Mexicans to develop SLE.  相似文献   

18.
Multiple sclerosis (MS) is a common neurological disease caused by genetic and environmental factors. Previous genetic analyses have suggested that theMHC/HLA region on chromosome 6p21 contains an MS- predisposing component. Which of the many genes present in this region is primarily responsible for disease susceptibility is still an open issue. In this study, we evaluated, in a large cohort of MS families from the Mediterranean island of Sardinia, the role of allelic variation at the HLA-DRB1, DQA1 and DQB1 candidate loci in MS predisposition. Using the transmission disequilibrium test (TDT), we found significant evidence of association with MS in both the Sardinian- specific DRB1*0405(DR4)- DQA1*0501-DQB1*0301 haplotype and the DRB1* 0301(DR3)-DQA1*0501-DQB1*0201 haplotype. Detailed comparative analysis of the DRB1-DQA1- DQB1 haplotypes present in this data set did not identify an individual locus that could explain MS susceptibility. The predisposing effect is haplotype specific, in that it is confined to specific combinations of alleles at the DRB1, DQA1 and DQB1 loci. Cross- ethnic comparison between the two HLA haplotypes associated with MS in Sardinians and the DRB1*1501 (DR2)-DQA1*0102-DQB1* 0602 haplotype, associated with MS in other Caucasian populations, failed to identify any shared epitopes in the DR and DQ molecules that segregated with disease susceptibility. These results suggest that another MHC gene(s), in linkage disequilibrium with specific HLA-DRB1, DQA1, DQB1 haploypes, might be primarily responsible for genetic susceptibility to MS. Alternatively, the presence of complex interactions between different HLA haplotypes, other non-HLA predisposing genes and environmental factors may explain different associations in different populations.   相似文献   

19.
The extreme polymorphism in different loci of the human leukocyte antigen (HLA) system has been used as an invaluable tool for anthropological studies. Determination of HLA allele and haplotype frequencies in different ethnic groups is useful for population genetic analyses and the study of genetic relationships among them. In the present study, molecular analysis of HLA-A, -B, -C, -DQA1, -DQB1, and -DRB1 genes has been used to assign HLA allele and haplotype frequencies in 100 unrelated healthy individuals from the Baloch ethnic group of Iran. The results were compared with Baloch and other ethnic groups in the neighboring Pakistan. The results of this study showed that the most frequent HLA class I alleles were A*02011 (20.2%), B*4006 (11.1%), and C*04011 (28.6%). The most common HLA class II alleles were DQA1*0101/2 (42.5%), DQB1*0201 (32%), and DRB1*0301 (29%). Three-locus haplotype analysis revealed that A*11011-B*4006-C*15021 (5.8%) and DQA1*0501-DQB1*0201-DRB1*0301 (22.1%) were the most common HLA class I and II haplotypes, respectively, in this population. Neighbor-joining tree based on DA genetic distances and correspondence analysis according to HLA-A, -B, -DQB1, and -DRB1 allele frequencies showed that Baloch of Iran are genetically very close to Baloch and Brahui of Pakistan. This may reflect an admixture of Brahui and Baloch ethnic groups of Pakistan in the Balochistan province of Iran.  相似文献   

20.
The polymorphism of the HLA class II genes DRB1, DQA1, and DQB1 was investigated in 100 unrelated Iranian individuals from Fars province in Southern Iran, using the restriction fragment length polymorphism (RFLP) method. Subtyping of DRB1*04, *15, and *16 alleles was performed using PCR amplification with sequence specific primes (PCR-SSP). The allele and the haplotype frequencies were calculated. The most common DRB1 alleles were DRB1*11, DRB1*15, and DRB1*04 with a frequency of 25.0%, 14.5%, and 10.5%, respectively. In contrast, the allelic frequency of DRB1*12 and DRB1*08 was very low (1.5% for each). In the DR15 group DRB1*1501 was the most prevalent variant (6.0%). Concerning DR4, the most common alleles were DRB1*0405 and DRB1*0402 (3.5% for each). Interestingly, DRB1*0402 was associated with DQB1*0302 and DRB1*0405 was associated with DQB1*0302 and DQB1*02, the latter being a rare DRB1/DQB1 haplotype in Caucasian individuals. The most frequent DQB1 alleles were DQB1*0301 (31.0%), and DQB1*05 (22.0%). The most frequent DQA1 variants were DQA1*0501 (39.0%) and DQA1*0102 (14.5%). The most common haplotype was DRB1*11-DQB1*0301-DQA1*0501 (25.0%) followed by DRB1*0301-DQB1*02-DQA1*0501 (10%) and DRB1*0701- DQB1*02-DQA1*0201 (6.5%). Data presented in this study suggest that the Iranian population shares some HLA components with populations resident in eastern and southern European countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号