首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
《Annales d'endocrinologie》2023,84(2):308-315
Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder in women of reproductive age. Typically, it is associated with ovulatory dysfunction: dysovulation or anovulation, and symptoms of hyperandrogenism. It incurs risk of metabolic disorders such as diabetes, dyslipidemia and fatty liver. As a key endocrine organ in metabolic homeostasis, adipose tissue is often implicated in these complications. Studies of white adipose tissue (WAT) in PCOS have focused on the mechanism of insulin resistance in this tissue. Clinically, abnormalities in WAT distribution are seen, with decreased waist-to-hip ratio and increased ratio of adipose to lean mass. Such abnormalities are greater when total circulating androgens are elevated. At tissue level, white adipocyte hyperplasia occurs, along with infiltration of macrophages. Secretion of adipokines, cytokines and chemo-attractant proteins is increased in a pro-inflammatory manner, leading to reduced insulin sensitivity via alteration of glucose transporters, and hence decreased glucose uptake. The kinetics of non-esterified fatty acids (or free fatty acids) is also altered, leading to lipotoxicity. In recent years, brown adipose tissue (BAT) has been studied in women with PCOS. Although abundance is low in the body, BAT appears to play a significant role in energy expenditure and metabolic parameters. Both supra-clavicular skin temperature, which reflects BAT activity, and BAT mass are reduced in women with PCOS. Moreover, BAT mass and body mass index (BMI) are inversely correlated in patients. In the adipocyte, increased total circulating androgen levels reduce expression of uncoupling protein 1 (UCP1), a key protein in the brown adipocyte, leading to reduced biogenesis and mitochondrial respiration and hence a reduction in post-prandial thermogenesis. BAT is currently being investigated as a possible new therapeutic application.  相似文献   

2.
Exogenous leptin enhances energy utilization in ob/ob mice by binding its hypothalamic receptor and selectively increasing peripheral fat oxidation. Leptin also increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but the neurotransmitter that mediates this effect has not been established. The present experiments sought to determine whether leptin regulates UCP1 expression in BAT and its own expression in white adipose tissue (WAT) through the long or short forms of leptin receptor and modulation of norepinephrine release. Mice lacking dopamine beta-hydroxylase (Dbh-/-), the enzyme responsible for synthesizing norepinephrine and epinephrine from dopamine, were treated with leptin (20 microg/g body weight/day) for 3 days before they were euthanized. UCP1 messenger RNA (mRNA) and protein expression were 5-fold higher in BAT from control (Dbh+/-) compared with Dbh-/- mice. Leptin produced a 4-fold increase in UCP1 mRNA levels in Dbh+/- mice but had no effect on UCP1 expression in Dbh-/-. The beta3-adrenergic agonist, CL-316,243 increased UCP1 expression and established that BAT from both groups of mice was capable of responding to beta-adrenergic stimulation. Similarly, exogenous leptin reduced leptin mRNA in WAT from Dbh+/- but not Dbh-/- mice. In separate experiments, leptin produced comparable reductions in food intake in both Dbh+/- and Dbh-/- mice, illustrating that norepinephrine is not required for leptin's effect on food intake. Lastly, db/db mice lacking the long form of the leptin receptor failed to increase UCP1 mRNA in response to exogenous leptin but increased UCP1 mRNA in response to CL-316,243. These studies establish that norepinephrine is required for leptin to regulate its own expression in WAT and UCP1 expression in BAT and indicate that these effects are likely mediated through the centrally expressed long form of the leptin receptor.  相似文献   

3.
Brown adipose tissue (BAT) and white adipose tissue (WAT) and adipocytes are targets of Trypanosoma cruzi infection. Adipose tissue obtained from CD-1 mice 15 days after infection, an early stage of infection revealed a high parasite load. There was a significant increase in macrophages in infected adipose tissue and a reduction in lipid accumulation, adipocyte size, and fat mass and increased expression of lipolytic enzymes. Infection increased levels of Toll-like receptor (TLR) 4 and TLR9 and in the expression of components of the mitogen-activated protein kinase pathway. Protein and messenger RNA (mRNA) levels of peroxisome proliferator-activated receptor γ were increased in WAT, whereas protein and mRNA levels of adiponectin were significantly reduced in BAT and WAT. The mRNA levels of cytokines, chemokines, and their receptors were increased. Nuclear Factor Kappa B levels were increased in BAT, whereas Iκκ-γ levels increased in WAT. Adipose tissue is an early target of T. cruzi infection.  相似文献   

4.
OBJECTIVE: Examination of the pattern of expression of peroxisome proliferator-activated receptor (PPAR) isoforms alpha and gamma in a model of obesity. DESIGN: Examination of adipose tissue and primary adipocyte cultures from lean and obese Zucker rats at different ages (28 days and 12 weeks). METHODS: mRNA levels were measured by RNase protection assay.RESULTS: The highest levels of PPARalpha and gamma mRNA were present in brown adipose tissue (BAT), followed by liver and white adipose tissue (WAT) for the alpha and gamma subtypes, respectively, at both ages examined. PPARalpha was expressed 100-fold higher in BAT compared with WAT, and PPARgamma mRNA levels were 2-fold higher in the WAT of obese compared with lean rats. PPARalpha and gamma expression was minimal in m. soleus, although higher levels of PPARgamma were found in the diaphragm. In marked contrast to the findings in vivo, virtually no PPARalpha mRNA could be detected in BAT cultures differentiated in vitro. CONCLUSION: PPARalpha and gamma are most highly expressed in BAT in vivo. However, PPARalpha is undetectable in brown adipose cells in vitro, suggesting that the expression of this receptor is induced by some external stimuli. In addition, the expression of PPARgamma was increased in WAT from young obese animals, compatible with an early adaptive phenomenon. Finally, the presence of PPARgamma mRNA is detectable only in particular muscles, such as the diaphragm, suggesting the possibility of an influence of fiber type on its expression, although exercise did not influence the expression of PPARgamma in other skeletal muscles.  相似文献   

5.
The present study was conducted to assess the effects of chronic treatment with triiodothyronine (T3) on mRNA expression of uncoupling protein (UCP) family in male Wistar King A rats. Subcutaneous injection of T3 (37 nmol/body weight 100 g) over 7 d increased mRNA expression of UCP1 in brown adipose tissue (BAT), UCP2 in white adipose tissue (WAT), and UCP3 in skeletal muscle (MSL) mRNA by 1.3, 1.7, and 2.0-fold, respectively. In contrast, the expression of ob gene mRNA in WAT and serum leptin level in the T3-treated rats decreased by 0.5-fold of the controls. These results suggest that T3 may increase UCP family expression independent of leptin action.  相似文献   

6.
The inhibitory effect of beta3-adrenoceptor agonists on the ob gene in brown adipose tissue (BAT) and white adipose tissue (WAT) is now well documented both in vivo in lean animals and in vitro, but the reported effects of beta3-adrenoceptor agonists on ob gene expression in obese animals remain controversial. We investigated whether ob gene expression in BAT and WAT is reduced by acute and chronic administrations of a beta3-adrenoceptor agonist, CL316,243 (CL). The ob gene mRNA levels in BAT, perimetric and inguinal WAT of obese Yellow KK mice were about 4-fold higher than those of lean controls. Acute exposure (6 h) to CL decreased ob gene mRNA levels in three fat depots in both animals. Chronic exposure (10 days) to CL also decreased ob gene mRNA levels in BAT, perimetric, and inguinal WAT in both animals. We concluded that acute and chronic regulation by a beta3-adrenoceptor agonist suppressed ob gene expression in obese Yellow KK mice and lean controls.  相似文献   

7.
White adipose tissue (WAT) is now recognized as a highly active metabolic tissue and important endocrine organ producing numerous peptides and proteins with broad biological activity. The term adipokines has been coined to refer to a series of adipocyte-derived biologically active molecules, which may influence the function as well as the structural integrity of other tissues. Adipokines are implicated in control of food intake, energy balance and body weight (leptin), glucose homeostasis (e.g., adiponectin, resistin, adiponutrin), lipid metabolism (e.g., retinol-binding protein, cholesterolester transfer protein), angiogenesis (vascular endothelial growth factor VEGF), fibrinolytic system (plasminogen activator inhibitor-1 PAI-1), pro- and anti-inflammatory effects (e.g., tumor necrosis factor-alpha TNF-alpha, interleukin-6 IL-6) or sexual development and reproduction (leptin). Alterations of WAT mass in obesity or lipoatrophy effect the production of most adipose secreted factors. Besides others, alcohol consumption affects also hormonal system leading to non-physiological increase/decrease of hormone gene expression and plasma hormone concentrations appearing as final poor or stronger effects on target tissues. As mentioned above, white adipose tissue is important endocrine organ, so alcohol intake can alter also adipokines expression in WAT and adipokines plasma levels and in this way it can affect the adipokine-targeted tissues and their functions.  相似文献   

8.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) activation up-regulates thermogenesis-related genes in rodent white and brown adipose tissues (WAT and BAT) without increasing whole-body energy expenditure. We tested here whether such dissociation is the result of a negative modulation of sympathetic activity to WAT and BAT and thyroid axis components by PPARgamma activation. Administration of the PPARgamma agonist rosiglitazone (15 mg/kg.d) for 7 d to male Sprague Dawley rats increased food intake (10%), feed efficiency (31%), weight gain (45%), spontaneous motor activity (60%), and BAT and WAT mass and reduced whole-body oxygen consumption. Consistent with an anabolic setting, rosiglitazone markedly reduced sympathetic activity to BAT and WAT (>50%) and thyroid status as evidenced by reduced levels of plasma thyroid hormones (T(4) and T(3)) and mRNA levels of BAT and liver T(3)-generating enzymes iodothyronine type 2 (-40%) and type 1 (-32%) deiodinases, respectively. Rosiglitazone also decreased mRNA levels of the thyroid hormone receptor (THR) isoforms alpha1 (-34%) and beta (-66%) in BAT and isoforms alpha1 (-20%) and alpha2 (-47%) in retroperitoneal WAT. These metabolic effects were associated with a reduction in mRNA levels of the pro-energy expenditure peptides CRH and CART in specific hypothalamic nuclei. A direct central action of rosiglitazone is, however, unlikely based on its low brain uptake and lack of metabolic effects of intracerebroventricular administration. In conclusion, a reduction in BAT sympathetic activity and thyroid status appears to, at least partly, explain the PPARgamma-induced reduction in energy expenditure and the fact that up-regulation of thermogenic gene expression does not translate into functional stimulation of whole-body thermogenesis in vivo.  相似文献   

9.
人体内脂肪组织分为棕色脂肪组织(BAT)和白色脂肪组织(WAT).它们在组织形态和生理作用上存在较大差异,BAT主要在寒冷环境或交感神经兴奋下参与产热过程,而WAT主要以甘油三酯的形式储存多余能量.通过对BAT形成和作用机制的研究发现,两种脂肪组织的起源不同,并且揭示出部分细胞因子与BAT形成及活化之间的复杂关系,从而...  相似文献   

10.
In mammals with a lower mass-specific metabolic rate than small laboratory rodents, the brown adipose tissue (BAT) loses its thermogenic activity after birth and undergoes a transformation into white adipose tissue (WAT). Rabbit is a model of these mammals of larger body mass. Preadipocytes from cervical BAT of foetal or newborn rabbits differentiated in a chemically-defined medium and expressed low levels of uncoupled protein-1 (UCP1) mRNA, greatly increased by beta3-adrenergic or retinoic acid stimulations. On the contrary, preadipocytes from 1-month-old animals differentiated in the same conditions with no detectable,expression of UCP1. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists were necessary to induce UCP1 in these cells from older animals, a synergistic increase being noted in the presence of beta3-adrenergic agonists. In contrast to these results, preadipocytes from perirenal WAT stimulated by PPARgamma agonists never expressed UCPI. CONCLUSION: preadipocytes in the postnatal period are determined as brown or white preadipocytes. PPARgamma agonists induce UCP1 expression in brown postnatal preadipocytes, but they are unable to trigger the gene in white preadipocytes.  相似文献   

11.
人体内脂肪组织分为棕色脂肪组织(BAT)和白色脂肪组织(WAT).它们在组织形态和生理作用上存在较大差异,BAT主要在寒冷环境或交感神经兴奋下参与产热过程,而WAT主要以甘油三酯的形式储存多余能量.通过对BAT形成和作用机制的研究发现,两种脂肪组织的起源不同,并且揭示出部分细胞因子与BAT形成及活化之间的复杂关系,从而为肥胖及其相关疾病的防治提供了新的途径.  相似文献   

12.
There are indications that PRL may exert important metabolic actions on adipose tissue in different species. However, with the exception of birds, the receptor has not been identified in white adipose tissue. The present study was designed to examine the possible expression and regulation of the PRL receptor (PRLR) in mouse adipose tissue. The long PRLR messenger RNA (mRNA) splice form (L-PRLR) and two short splice forms (S2- and S3-PRLR) were detected in mouse adipose tissue by RT-PCR. Furthermore, L-PRLR mRNA was detected by ribonuclease protection assay. Immunoreactive PRLR with a relative molecular mass of 95,000 was revealed by immunoblotting. Furthermore, L-PRLR mRNA expression was demonstrated in primary isolated adipocytes. In mouse adipose tissue, the level of L-PRLR mRNA expression increased 2.3-fold during lactation compared with those in virgin and pregnant mice. In contrast, in the liver the expression of L-PRLR increased 3.4-fold during pregnancy compared with those in virgin and lactating mice. When comparing the levels of L-PRLR expression in virgin female and male mice, no difference was detected in adipose tissue. However, in virgin female liver the expression was 4.5-fold higher than that in male liver. As PRL up-regulates its own receptor in some tissues, we analyzed L-PRLR expression in PRL-transgenic female and male mice. In PRL-transgenic mice L-PRLR expression was significantly increased in both adipose tissue (1.4-fold in females and 2.4-fold in males) and liver (1.9-fold in females and 2.7-fold in males) compared with that in control mice. Furthermore, in female PRL-transgenic mice retroperitoneal adipose tissue was decreased in weight compared with that in control mice. However, no difference was detected when comparing the masses of parametrial adipose tissue. Our results suggest a direct role for PRL, mediated by PRLR, in modulating physiological events in adipose tissue.  相似文献   

13.
Thyroid hormones regulate adipogenic differentiation, lipogenic and lipolytic metabolism, and mitochondrial activity in adipose tissue. Triiodothyronine (T3) levels in tissues are regulated by the deiodinase enzymes. The objective was to study the activity and messenger RNA (mRNA) expression of the 5′ outer-ring deiodinases (type 1 [D1] and type 2 [D2] deiodinase) and thyroid hormone concentrations in rat white adipose tissue (WAT), where only D1 activity had been described. Control, thyroidectomized, and thyroid hormone-treated rats were used. Type 1 and type 2 deiodinase mRNAs were determined in WAT by quantitative real-time polymerase chain reaction using Taqman probes; D1 and D2 activities were determined using reverse T3 and thyroxine (T4) as substrates. Thyroxine and T3 were measured by radioimmunoassay in plasma, liver, and adipose tissue. Type 1 and type 2 deiodinase mRNAs are present in epididymal rat WAT with similar abundance, which is 7% of the D2 mRNA levels in brown adipose tissue and 1% of D1 in liver. The Michaelis-Menten constants in WAT are 40 nmol/L T4 for D2 and 0.35 μmol/L reverse T3 for D1. Both D1 and D2 are regulated in rat epididymal WAT by thyroidal status. Thyroxine and T3 concentrations in plasma, liver, and WAT decreased after thyroidectomy and recovered after treatment with T4 + T3. Both D1 and D2 mRNAs increased in WAT from thyroidectomy rats; and T4 + T3 treatment inhibited them, especially D2 mRNA. Type 1 deiodinase activity did not change with thyroidal status, whereas D2 activity was inhibited by T4 + T3. The presence of both deiodinases in WAT suggests important roles in regulating T3 bioavailability for adipose tissue function and regulation of lipid metabolism and thermogenesis.  相似文献   

14.
长链非编码RNAs(lncRNAs)是长度大于200个核苷酸而无蛋白编码能力的功能性RNA分子.近年来研究表明,lncRNAs可通过各种机制调控脂肪组织分化形成、功能结构维持及促进白色脂肪组织(WAT)棕色化,特别是对棕色脂肪组织(BAT)的分化成熟发挥重要作用.同时,lncRNAs与肥胖及代谢性疾病的发生、发展密切联系.  相似文献   

15.
16.
OBJECTIVE: To assess the effect of chronic treatment with CGP-12177 a beta3-adrenergic receptor (AR) agonist with beta2/beta1-AR antagonist action, on the expression of the leptin gene and of genes coding for uncoupling proteins (ucp1, ucp2 and ucp3) in brown and white adipose tissues. DESIGN: NMRI mice received a daily subcutaneous injection of CGP-12177 at a dose of 0.05, 0.2, 0.5 or 1 mg/kg for 15 days. The specific levels of the mRNAs of interest were analysed in interscapular brown adipose tissue (BAT) and in two white adipose tissue (WAT) depots, inguinal (IWAT) and epididymal (EWAT). RESULTS: No changes in food intake or body weight were detected at any dose of CGP-12177. In the two WAT depots, the treatment led to enhanced expression of ucp1 and ucp3, but not of ucp2. In BAT, low doses (0.05 and 0.2 mg/kg) led to a decreased expression of the three ucp genes, whereas a slight stimulatory effect on the three ucp genes was elicited with a high dose (1 mg/kg). Treated animals displayed increased expression of leptin in BAT and, to a lesser extent, in IWAT, but not in EWAT. CONCLUSION: The results reveal that simultaneous stimulation of the expression of certain ucp genes and the leptin gene can be achieved, and suggest that adrenergic regulation of the leptin gene and of genes of the ucp family in adipose tissues is the result of complex interactions between the different beta-AR pathways.  相似文献   

17.
Agonists for the retinoid X receptor (RXR), the rexinoids, and the peroxisome proliferator-activated receptor gamma (PPARgamma), the thiazolidinediones, are effective in the treatment of insulin resistance in rodent models by enhancing insulin action and improving glycemic control. In the present study, we compared the effects of rexinoids and a thiazolidinedione on body weight and mitochondrial uncoupling protein (UCP) isoform mRNA expression in the obese Zucker fa/fa rat. Long-term (2 weeks) oral treatment with the rexinoids LG100268 and LG100324 reduced food intake and body weight gain, whereas rosiglitazone (BRL49653) tended to increase both food intake and weight gain. LG100268 and LG100324 increased brown adipose tissue (BAT) UCP-1 mRNA content by 2.7-fold (P < .002) and 3.1-fold (P < .001), respectively, while BRL49653 had no effect on BAT UCP-1 mRNA content. Neither the rexinoids nor the thiazolidinedione had any effect on the level of mRNA encoding UCP-2 and the recently described PPARgamma coactivator-1 (PGC-1). LG100324 increased UCP-3 mRNA content by 3.6-fold (P < .0005) in muscle and 4.3-fold (P < .0002) in white adipose tissue (WAT). LG100268 increased UCP-3 mRNA content in WAT by 2-fold (P < .005) but was without any effect on muscle UCP-3. BRL49653 increased UCP-3 mRNA content by 2.1-fold (P < .005) in muscle and 2.7-fold (P < .003) in WAT. Thus, the rexinoids, but not the thiazolidinedione, have an antiobesity action by reducing food intake, and the increase in UCP-1 mRNA content in BAT may reflect a stimulation of BAT UCP-1 activity.  相似文献   

18.
OBJECTIVE: To test the hypothesis that nicotine not only activates uncoupling protein1 (UCP1) in brown adipose tissue (BAT), but also induces UCP1 in white adipose tissue (WAT), which contributes to the mitigation of obesity in obese mice. DESIGN: Weights of the whole body, the gastrocnemius muscle, interscapular BAT and subcutaneous and retroperitoneal WAT, food intake and the mRNA and protein of UCP1 in these tissues were measured and immunohistochemistry using antiserum against UCP1 was also performed in obese yellow KK mice treated with nicotine for 6 months and control mice treated with physiological saline. RESULTS: Obese mice treated with nicotine for 6 months, compared with those injected with saline, weighed significantly less (P < 0.01) and had smaller subcutaneous and retroperitoneal WAT pads (P < 0.01), while obese mice that received nicotine ate less (P < 0.05) than those injected with saline. In mice treated with nicotine, the mRNA and protein of UCP1 was detected not only in BAT, but also in subcutaneous and retroperitoneal WATs. Immunohistochemically, the BAT of obese mice contained large lipid droplets and appeared rather WAT-like, but changed to typical brown adipocytes after nicotine treatment. The fat pads of nicotine-treated mice contained many multilocular cells that were positive for UCP1. CONCLUSION: Nicotine not only activates UCP1 in BAT, but also induces UCP1 in WAT and decreases food intake, which contributes to the mitigation of obesity.  相似文献   

19.
The role of estrogen and estrogen receptor-alpha in male adipose tissue   总被引:3,自引:0,他引:3  
Males and females both express estrogen receptor (ER) in white adipose tissue (WAT), and estrogens appear to play an important role in regulating WAT in females. However, the role of ER in male WAT was unclear. In this review, we describe our work, which used wild type (WT) and ERalpha-knockout (alphaERKO) male and female mice to determine the role of ERalpha in regulating WAT and brown adipose tissue (BAT). There were progressive increases in WAT with advancing age in alphaERKO compared with WT males; weights of various WAT depots in alphaERKO males were increased by more than 100% compared with WT controls during adulthood. Conversely, BAT weight was similar in alphaERKO and WT males at all ages. Adipocyte areas and numbers were also increased in WAT from alphaERKO compared with WT males. Compared with WT controls, alphaERKO females also had increases in WAT. The alphaERKO mice also had insulin resistance and impaired glucose tolerance, similar to humans lacking ERalpha or aromatase. The obesity in alphaERKO males appeared to involve decreased energy expenditure rather than hyperphagia. In summary, ERalpha absence causes adipocyte hyperplasia and hypertrophy in WAT, but not BAT, and is accompanied by insulin resistance and glucose intolerance in both males and females. These results are the first evidence that the estrogen/ERalpha signaling system is critical in female and male WAT deposition, and may have clinical implications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号