首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Lines of evidence have indicated that cyclooxygenase 2 plays a role in the pathophysiology of neuropathic pain. However, the site and mechanism of its action are still unclear. Spinal glia has also been reported to mediate pathologic pain states. The authors evaluated the effect of continuous intrathecal or systemic cyclooxygenase-2 inhibitor on the development and maintenance of neuropathic pain and glial activation in a spinal nerve ligation model of rats. METHODS: Continuous intrathecal infusion of meloxicam (32 or 320 mug . kg . day) or saline was started immediately after L5-L6 spinal nerve ligation. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively. Spinal astrocytic activation was evaluated with glial fibrially acidic protein immunoreactivity on day 7. In other groups of rats, continuous intrathecal meloxicam was started 7 days after spinal nerve ligation, and effects on established neuropathic pain and glial activation were evaluated. Last, effects of continuous systemic meloxicam (16 mg . kg . day) on existing neuropathic pain and glial activation were examined. RESULTS: Intrathecal meloxicam prevented the development of mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation. It also inhibited spinal glial activation responses. In contrast, when started 7 days after the nerve ligation, intrathecal meloxicam did not reverse established neuropathic pain and glial activation. Systemic meloxicam started 7 days after ligation partially reversed neuropathic behaviors but not glial activation. CONCLUSIONS: Spinal cyclooxygenase 2 mediates the development but not the maintenance of neuropathic pain and glial activation in rats. Peripheral cyclooxygenase 2 plays a part in the maintenance of neuropathic pain.  相似文献   

2.
Background: Lines of evidence have indicated that cyclooxygenase 2 plays a role in the pathophysiology of neuropathic pain. However, the site and mechanism of its action are still unclear. Spinal glia has also been reported to mediate pathologic pain states. The authors evaluated the effect of continuous intrathecal or systemic cyclooxygenase-2 inhibitor on the development and maintenance of neuropathic pain and glial activation in a spinal nerve ligation model of rats.

Methods: Continuous intrathecal infusion of meloxicam (32 or 320 [mu]g [middle dot] kg-1 [middle dot] day-1) or saline was started immediately after L5-L6 spinal nerve ligation. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively. Spinal astrocytic activation was evaluated with glial fibrially acidic protein immunoreactivity on day 7. In other groups of rats, continuous intrathecal meloxicam was started 7 days after spinal nerve ligation, and effects on established neuropathic pain and glial activation were evaluated. Last, effects of continuous systemic meloxicam (16 mg [middle dot] kg-1 [middle dot] day-1) on existing neuropathic pain and glial activation were examined.

Results: Intrathecal meloxicam prevented the development of mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation. It also inhibited spinal glial activation responses. In contrast, when started 7 days after the nerve ligation, intrathecal meloxicam did not reverse established neuropathic pain and glial activation. Systemic meloxicam started 7 days after ligation partially reversed neuropathic behaviors but not glial activation.  相似文献   


3.
BACKGROUND: Basic data are lacking regarding the efficacy and mechanisms of action of corticosteroids in neuropathic pain. Because recent studies indicate that spinal glial activation mediates the pathologic pain states, the authors sought to determine the effects of systemic and intrathecal methylprednisolone on the development and maintenance of neuropathic pain and spinal glial activation in a rat model. METHODS: Rats were anesthetized, and L5 and L6 spinal nerves were tightly ligated. Then, continuous infusion of systemic (4 mg x kg(-1) x day(-1)) or intrathecal (80 microg x kg(-1) x day(-1)) methylprednisolone or saline was started. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively with von Frey and Hargreaves tests, respectively. Spinal astrocytic activation was evaluated with glial fibrillary acidic protein immunoreactivity on day 7. In other groups of rats, continuous 3-day treatment with intrathecal methylprednisolone or saline was started 7 days after spinal nerve ligation, when neuropathic pain had already developed. Behavioral tests and immunostaining were performed up to 3 weeks after the treatment. RESULTS: Spinal nerve ligation induced mechanical allodynia and thermal hyperalgesia on days 4 and 7 postoperatively. Glial fibrillary acidic protein immunoreactivity was remarkably enhanced on day 7. Both systemic and intrathecal methylprednisolone inhibited the development of neuropathic pain states and glial activation. Three-day treatment with intrathecal methylprednisolone reversed existing neuropathic pain state and glial activation up to 3 weeks after the treatment. CONCLUSION:: Systemic and intrathecal methylprednisolone inhibited spinal glial activation and the development and maintenance of a neuropathic pain state in a rat model of spinal nerve ligation.  相似文献   

4.
Chen SR  Khan GM  Pan HL 《Anesthesiology》2001,95(4):1007-1012
BACKGROUND: Intrathecal administration of acetylcholinesterase inhibitors produces antinociception in both animals and humans, but their effect on diabetic neuropathic pain has not been studied. In the current study, we determined the antiallodynic effect of intrathecal injection of an acetylcholinesterase inhibitor, neostigmine, in a rat model of diabetic neuropathic pain. In addition, since acetylcholine can increase release of nitric oxide in the spinal cord, we studied the role of spinal endogenous nitric oxide in the action of intrathecal neostigmine in diabetic neuropathic pain. METHODS: Rats were rendered diabetic with an intraperitoneal 50-mg/kg injection of streptozotocin. Intrathecal catheters were inserted, with tips in the lumbar intrathecal space. Mechanical allodynia was determined by application of von Frey filaments to the hind paw. We first determined the dose-dependent effect of intrathecal neostigmine on allodynia. The role of spinal nitric oxide in the action of intrathecal neostigmine was then examined through intrathecal treatments with a neuronal nitric oxide synthase inhibitor (TRIM), a nitric oxide scavenger (PTIO), L-arginine, or D-arginine. RESULTS: The diabetic rats developed a sustained tactile allodynia within 4 weeks after streptozotocin injection. Intrathecal injection of 0.1-0.5 microg neostigmine dose-dependently increased the withdrawal threshold in response to application of von Frey filaments. Intrathecal pretreatment with 30 microg TRIM or 30 microg PTIO abolished the antiallodynic effect of intrathecal neostigmine. Furthermore, the inhibitory effect of TRIM on the action of intrathecal neostigmine was reversed by intrathecal injection of 100 microg L-arginine but not D-arginine. CONCLUSIONS: Intrathecal neostigmine produces a profound analgesic effect in a rat model of diabetic neuropathic pain. Spinal endogenous nitric oxide contributes to the analgesic action of intrathecal neostigmine in this rat model of diabetic neuropathic pain.  相似文献   

5.
Zhao C  Tall JM  Meyer RA  Raja SN 《Anesthesiology》2004,100(4):905-911
BACKGROUND: The efficacy of opioids for neuropathic pain remains controversial. The effects of morphine on pain behavior were investigated in two animal models of neuropathic pain: the spared nerve injury (SNI) model and the spinal nerve ligation (SNL) model. METHODS: Nerve injuries were created in rats either by tight ligation and section of the left tibial and common peroneal nerves (SNI) or by unilateral ligation of L5 and L6 spinal nerves (SNL). Paw withdrawal threshold to mechanical stimuli was measured using the up-down method in the hairy and glabrous skin territories of the sural nerve for SNI rats or in the mid-plantar paw of SNL rats. RESULTS: Before SNI, the median paw withdrawal thresholds in hairy and glabrous skin were similar (26 g [25%, 75% quartiles: 26, 26 g]). The paw withdrawal threshold decreased after SNI in both hairy and glabrous skin (P < 0.001). Thirty days after the SNI, the threshold in hairy skin (0.3 g) was significantly lower than in glabrous skin (1.9 g; P < 0.001). In blinded experiments, both subcutaneous and intrathecal morphine (0.1-10 microg) dose-dependently attenuated mechanical allodynia induced by SNI measured in the hairy skin, an effect that was naloxone reversible. The ED50 for the intrathecal morphine was 0.52 microg (95% confidence interval, 0.31-0.90 microg). Morphine (1 microg intrathecal) attenuated SNI-induced mechanical allodynia in glabrous skin with potency similar to that in hairy skin. In SNL rats, morphine (30 microg intrathecal) almost completely reversed the SNL-induced mechanical allodynia. CONCLUSIONS: (1) SNI-induced mechanical allodynia is characterized by a lower paw withdrawal threshold in hairy versus glabrous skin; (2) systemic and intrathecal morphine reverse SNI-induced mechanical allodynia in a dose-dependent fashion; and (3) intrathecal morphine also reverses SNL-induced mechanical allodynia. These results suggest that intrathecal opioids are likely to be effective in the treatment of neuropathic pain.  相似文献   

6.
Malan TP  Mata HP  Porreca F 《Anesthesiology》2002,96(5):1161-1167
BACKGROUND: This study tests the hypothesis that loss of spinal activity of gamma-aminobutyric acid (GABA) contributes to the allodynia and hyperalgesia observed after peripheral nerve injury. METHODS: Intrathecal catheters were implanted in male Sprague-Dawley rats. Antinociception was assessed by measuring withdrawal latency to immersion of the tail in a 52 degrees C water bath. Nerve injury was produced by ligation of the L5 and L6 spinal nerves. Testing was performed 4-14 days after spinal nerve ligation, when tactile allodynia and thermal hyperalgesia were established. Tactile allodynia was quantitated using the threshold to withdrawal of the hind paw on probing with von Frey filaments. Thermal hyperalgesia was quantitated using the latency to withdrawal of the hind paw from radiant heat. Motor function was tested using a rotarod apparatus. RESULTS: Spinal administration of the GABAA receptor antagonist bicuculline or the GABAB receptor antagonist phaclofen produced tactile allodynia and thermal hyperalgesia in normal rats. The GABAB receptor agonist baclofen, administered spinally, produced antinociception in the tail-flick test, whereas the GABAA receptor agonist isoguvacine did not. Isoguvacine and baclofen each reversed tactile allodynia and thermal hyperalgesia produced by spinal nerve ligation. Baclofen but not isoguvacine prolonged thermal withdrawal latency in nerve-injured rats beyond preoperative values. Baclofen but not isoguvacine impaired motor function. CONCLUSIONS: Pharmacologic inhibition of intrinsic GABA tone in normal rats resulted in tactile allodynia and thermal hyperalgesia, consistent with the hypothesis being tested. Exogenous administration of GABA agonists reversed spinal nerve ligation-induced allodynia and hyperalgesia, also consistent with this hypothesis. Isoguvacine produced specific antihyperalgesic and antiallodynic effects, whereas assessment of the effects of baclofen was complicated by motor dysfunction. Spinal GABAA agonists may provide a specific therapy for neuropathic pain.  相似文献   

7.
Background: Basic data are lacking regarding the efficacy and mechanisms of action of corticosteroids in neuropathic pain. Because recent studies indicate that spinal glial activation mediates the pathologic pain states, the authors sought to determine the effects of systemic and intrathecal methylprednisolone on the development and maintenance of neuropathic pain and spinal glial activation in a rat model.

Methods: Rats were anesthetized, and L5 and L6 spinal nerves were tightly ligated. Then, continuous infusion of systemic (4 mg [middle dot] kg-1 [middle dot] day-1) or intrathecal (80 [mu]g [middle dot] kg-1 [middle dot] day-1) methylprednisolone or saline was started. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively with von Frey and Hargreaves tests, respectively. Spinal astrocytic activation was evaluated with glial fibrillary acidic protein immunoreactivity on day 7. In other groups of rats, continuous 3-day treatment with intrathecal methylprednisolone or saline was started 7 days after spinal nerve ligation, when neuropathic pain had already developed. Behavioral tests and immunostaining were performed up to 3 weeks after the treatment.

Results: Spinal nerve ligation induced mechanical allodynia and thermal hyperalgesia on days 4 and 7 postoperatively. Glial fibrillary acidic protein immunoreactivity was remarkably enhanced on day 7. Both systemic and intrathecal methylprednisolone inhibited the development of neuropathic pain states and glial activation. Three-day treatment with intrathecal methylprednisolone reversed existing neuropathic pain state and glial activation up to 3 weeks after the treatment.  相似文献   


8.
BACKGROUND: Glutamate and non-N-methyl-D-aspartate (NMDA) receptors have been implicated in the development of neuroplasticity in the spinal cord in neuropathic pain. The spinal cord has been identified as one of the sites of the analgesic action of gabapentin. In the current study, the authors determined the antiallodynic effect of intrathecal 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in a rat model of neuropathic pain. Also tested was a hypothesis that intrathecal injection of CNQX and gabapentin produces a synergistic effect on allodynia in neuropathic rats. METHODS: Allodynia was produced in rats by ligation of the left L5 and L6 spinal nerves. Allodynia was determined by application of von Frey filaments to the left hind paw. Through an implanted intrathecal catheter, 10-100 microg gabapentin or 0.5-8 microg CNQX disodium (a water-soluble formulation of CNQX) was injected in conscious rats. Isobolographic analysis was performed comparing the interaction of intrathecal gabapentin and CNQX using the ED50 dose ratio of 15:1. RESULTS: Intrathecal treatment with gabapentin or CNQX produced a dose-dependent increase in the withdrawal threshold to mechanical stimulation. The ED50 for gabapentin and CNQX was 45.9+/-4.65 and 3.4+/-0.22 microg, respectively. Intrathecal injection of a combination of CNQX and gabapentin produced a strong synergistic antiallodynic effect in neuropathic rats. CONCLUSIONS: This study shows that intrathecal administration of CNQX exhibits an antiallodynic effect in this rat model of neuropathic pain. Furthermore, CNQX and gabapentin, when combined intrathecally, produce a potent synergistic antiallodynic effect on neuropathic pain in spinal nerve-ligated rats.  相似文献   

9.
BACKGROUND: The degree to which intrathecally administered morphine can alleviate hypersensitivity in animals after peripheral nerve injury is controversial, and the mechanisms by which morphine works in these circumstances are uncertain. In normal animals, morphine induces adenosine release, and in vitro data suggest that this link is disrupted after peripheral nerve injury. Therefore, using a controlled, blinded study design, the authors tested intrathecal morphine efficacy in rats with peripheral nerve injury and the role of spinal A1 adenosine receptors in the action of morphine. METHODS: Male rats underwent intrathecal catheter implantation and lumbar spinal nerve ligation, resulting in hypersensitivity to tactile stimulation of the paw. Intrathecal morphine alone or with naloxone or the specific A1 adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentyxanthine (DPCPX), was administered, and withdrawal threshold to von Frey filament application to the hind paw was determined. RESULTS: Intrathecal morphine (0.25-30 microg) dose-dependently reversed mechanical hypersensitivity after spinal nerve ligation, with an ED50 of 0.79 microg. The effect of morphine was blocked by intrathecal naloxone. Intrathecal DPCPX alone had no effect on withdrawal threshold after spinal nerve ligation but completely reversed the effect of morphine, with an ID50 of 5.6 microg. CONCLUSIONS: This study is in accord with two recent reports that support short-term efficacy of intrathecal morphine to reverse hypersensitivity to mechanical stimuli in animal models of neuropathic pain. Despite previous studies demonstrating that morphine releases less adenosine after peripheral nerve injury, the current study suggests that the antihypersensitivity effect of morphine in these conditions is totally reliant on A1 adenosine receptor activation.  相似文献   

10.
Background: This study tests the hypothesis that loss of spinal activity of [gamma]-aminobutyric acid (GABA) contributes to the allodynia and hyperalgesia observed after peripheral nerve injury.

Methods: Intrathecal catheters were implanted in male Sprague-Dawley rats. Antinociception was assessed by measuring withdrawal latency to immersion of the tail in a 52[degrees]C water bath. Nerve injury was produced by ligation of the L5 and L6 spinal nerves. Testing was performed 4-14 days after spinal nerve ligation, when tactile allodynia and thermal hyperalgesia were established. Tactile allodynia was quantitated using the threshold to withdrawal of the hind paw on probing with von Frey filaments. Thermal hyperalgesia was quantitated using the latency to withdrawal of the hind paw from radiant heat. Motor function was tested using a rotarod apparatus.

Results: Spinal administration of the GABAA receptor antagonist bicuculline or the GABAB receptor antagonist phaclofen produced tactile allodynia and thermal hyperalgesia in normal rats. The GABAB receptor agonist baclofen, administered spinally, produced antinociception in the tail-flick test, whereas the GABAA receptor agonist isoguvacine did not. Isoguvacine and baclofen each reversed tactile allodynia and thermal hyperalgesia produced by spinal nerve ligation. Baclofen but not isoguvacine prolonged thermal withdrawal latency in nerve-injured rats beyond preoperative values. Baclofen but not isoguvacine impaired motor function.  相似文献   


11.
Xu M  Kontinen VK  Kalso E 《Anesthesiology》2000,93(2):473-481
BACKGROUND: Intrathecally administered alpha2-adrenoceptor agonists produce effective antinociception, but sedation is an important adverse effect. Radolmidine is a novel alpha2-adrenoceptor agonist with a different pharmacokinetic profile compared with the well-researched dexmedetomidine. This study determined the antinociceptive and sedative effects of radolmidine in different models of acute and chronic pain. Dexmedetomidine and saline served as controls. METHODS: Male Sprague-Dawley rats were studied in acute pain (tail flick), carrageenan inflammation, and the spinal nerve ligation model of neuropathic pain. Mechanical allodynia was assessed with von Frey filaments, cold allodynia with the acetone test, and thermal hyperalgesia with the paw flick test. Locomotor activity-vigilance was assessed in a dark field. Dexmedetomidine and radolmidine were administered intrathecally in doses of 0.25 microg, 2.5 microg, 5 microg, and 10 microg. RESULTS: In the tail flick test, radolmidine showed a dose-dependent antinociceptive effect, being equipotent compared with dexmedetomidine. In carrageenan inflammation, intrathecal doses of 2.5 microg or 5 microg of dexmedetomidine/radolmidine produced significant antinociception compared with saline (P < 0.01). The two drugs were equianalgesic. In the neuropathic pain model, an intrathecal dose of 5 microg dexmedetomidine-radolmidine had a significant antiallodynic effect compared with saline (P < 0.01). The two drugs were equipotent. Intrathecal administration of both dexmedetomidine and radolmidine dose dependently decreased spontaneous locomotor acitivity-vigilance, but this effect was significantly smaller after intrathecal administration of radolmidine than after intrathecal dexmedetomidine. CONCLUSIONS: Radolmidine and dexmedetomidine had equipotent antinociceptive effects in all tests studied. However, radolmidine caused significantly less sedation than dexmedetomidine, probably because of a different pharmacokinetic profile.  相似文献   

12.
BACKGROUND: Increased response to mechanical or cold stimulation of hind paws was observed in rats with partial sciatic nerve injury as a result of photochemically induced ischemia. The present study examined the effects of intrathecal morphine, clonidine and baclofen on the allodynia-like responses. METHODS: The left sciatic nerves of rats were irradiated for 2 min with an argon ion laser under chloral hydrate anesthesia. The threshold of paw withdrawal to mechanical stimulation was determined with a series of monofilaments (von Frey hairs). The response to cold stimulation was tested by spraying ethyl chloride on the plantar surface of the paw. When rats were exhibiting stable mechanical and cold allodynia-like behaviors after nerve injury, the effects of i.t. morphine (1, 2, 7 microg), clonidine (1, 2, 7 microg) and baclofen (0.1, 0.2, 0.7, 9 microg) in a cumulative dose regime were investigated. RESULTS: Intrathecal morphine dose-dependently alleviated the mechanical and cold allodynia without inducing motor impairment or sedation. Intrathecal clonidine did not alter the response of hind paws to mechanical stimulation, but reduced the cold allodynia. Intrathecal baclofen reduced the responses of rats to mechanical stimulation only at doses that also induced profound motor deficits. CONCLUSIONS: The present data suggest that intrathecal morphine, and to some extent clonidine, but not baclofen, alleviated the abnormal pain-related behaviors in this new rat model of partial peripheral nerve injury. Differences in the pharmacological profile between the present model and other models of peripheral nerve injury are discussed.  相似文献   

13.
Intrathecal neostigmine reverses mechanical allodynia in humans and animals. The efficacy of morphine in a neuropathic pain state is still controversial. This study examines the antiallodynic interaction between morphine and neostigmine in a rat model of neuropathic pain. Rats were prepared with tight ligation of left L5-6 (fifth and sixth lumbar) spinal nerves and chronic intrathecal catheter implantation. Mechanical allodynia was measured by using application of von Frey hairs to the left hindpaw. Morphine (1, 3, 10, and 30 microg) and neostigmine (0.3, 1, 3, and 10 microg) were administered intrathecally to obtain the dose-response curves and the 50% effective dose (ED(50)) for each drug. ED(50) values and fractions of the ED(50) values (1/2, 1/4, and 1/8) were administered intrathecally in an equal dose ratio to establish the ED(50). Isobolographic and fractional analyses for the drug interaction were performed. Intrathecal morphine produced a moderate antagonism of the tactile allodynia. A morphine-neostigmine combination produced a dose-dependent increase in withdrawal threshold of the lesioned hind paw with reduced side effects. Both analyses revealed a synergistic interaction after the coadministration of morphine and neostigmine. These experiments suggest that the antiallodynic action of a morphine-neostigmine combination is synergistic at the spinal level. IMPLICATIONS: This study indicates that, by using both isobolographic and fractional analyses, the antiallodynic effect of intrathecal morphine and neostigmine is synergistic when coadministered intrathecally. In a rat model of neuropathic pain, the intrathecal morphine produced a moderate antagonism on touch-evoked allodynia at the spinal level.  相似文献   

14.
Background: Glutamate and non-N-methyl-D-aspartate (NMDA) receptors have been implicated in the development of neuroplasticity in the spinal cord in neuropathic pain. The spinal cord has been identified as one of the sites of the analgesic action of gabapentin. In the current study, the authors determined the antiallodynic effect of intrathecal 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in a rat model of neuropathic pain. Also tested was a hypothesis that intrathecal injection of CNQX and gabapentin produces a synergistic effect on allodynia in neuropathic rats.

Methods: Allodynia was produced in rats by ligation of the left L5 and L6 spinal nerves. Allodynia was determined by application of von Frey filaments to the left hind paw. Through an implanted intrathecal catheter, 10-100 [mu]g gabapentin or 0.5-8 [mu]g CNQX disodium (a water-soluble formulation of CNQX) was injected in conscious rats. Isobolographic analysis was performed comparing the interaction of intrathecal gabapentin and CNQX using the ED50 dose ratio of 15:1.

Results: Intrathecal treatment with gabapentin or CNQX produced a dose-dependent increase in the withdrawal threshold to mechanical stimulation. The ED50 for gabapentin and CNQX was 45.9 +/- 4.65 and 3.4 +/- 0.22 [mu]g, respectively. Intrathecal injection of a combination of CNQX and gabapentin produced a strong synergistic antiallodynic effect in neuropathic rats.  相似文献   


15.
Obata H  Li X  Eisenach JC 《Anesthesiology》2004,100(5):1258-1262
BACKGROUND: Intrathecal adenosine has antinociceptive effects under conditions of hypersensitivity. T62 (2-amino-3-(4-chlorobenzoyl)-5,6,7,8-tetrahydrobenzothiophen) is an allosteric adenosine receptor modulator that enhances adenosine binding to the A1 receptor. Intrathecal T62 reduces hypersensitivity to mechanical stimuli in a rat model of neuropathic pain by a circuit that totally relies on activation of alpha2 adrenoceptors. Here, the authors tested whether this same dependence was present in the acute setting of hypersensitivity after surgery. METHODS: Intrathecal catheters were inserted in male Sprague-Dawley rats. An incision of the plantar aspect of the hind paw resulted 24 h later in hypersensitivity, as measured by applying von Frey filaments to the paw. At this time, rats received intrathecal T62, clonidine, or the combination in a blinded, isobolographic design. The effect of the alpha2-adrenoceptor antagonist idazoxan on T62 was also tested. RESULTS: Intrathecal T62 produced a dose-dependent antihypersensitivity effect, with no effect on ambulation or activity level. Clonidine also produced a dose-dependent antihypersensitivity effect. The ED40 (95% confidence interval) for T62 was 0.77 (0.63-0.91) microg, and that for clonidine was 1.23 (0.56-1.9) microg. Isobolographic analysis indicated synergism between T62 and clonidine. Intrathecal pretreatment with idazoxan only partially inhibited the antihypersensitivity effect of T62. CONCLUSIONS: Intrathecal T62 is effective for postoperative hypersensitivity. The synergy of T62 with clonidine and its only partial antagonism by idazoxan suggest that T62 does not rely entirely on activation of alpha2 adrenoceptors. These results indicate that, after surgery, T62 acts via a mechanism different from that of spinal nerve ligation, a model of chronic neuropathic pain.  相似文献   

16.
BACKGROUND: MPV-2426 is a novel alpha2-adrenoceptor agonist developed for spinal pain therapy. It has proved to be effective in physiologic and neuropathic conditions. In the current study its effectiveness on mechanical hyperalgesia was assessed in a rat model of postoperative pain. METHODS: Rats with intrathecal catheters were anesthetized with pentobarbital, and a 1-cm incision was made in the plantar aspect of the foot and closed. During postoperative days 1 and 2 the antihyperalgesic effects induced by intrathecal MPV-2426, clonidine, and dexmedetomidine were determined by assessing the hind limb withdrawal threshold to calibrated von Frey hairs applied to the skin of the hind paw adjacent to the wound. RESULTS: MPV-2426 administered into the lumbar spinal cord produced a dose-dependent (0.3-10 microg) attenuation of the mechanical hyperalgesia, and this antihyperalgesic effect was completely reversed by yohimbine (1 mg/kg, subcutaneous), an alpha2-adrenoceptor antagonist. Dexmedetomidine (1-3 microg) produced an equipotent antihyperalgesic effect, whereas the effect of clonidine (1-10 microg) was markedly weaker. MPV-2426 (10 microg in 20 microl) administered adjacent to the wound did not produce any effect. Preoperative treatment with an antihyperalgesic dose of MPV-2426 did not prevent the development of hyperalgesia. CONCLUSIONS: Intrathecal MPV-2426 dose-dependently attenuates postoperative hyperalgesia to mechanical stimulation because of an action on alpha2 adrenoceptors. Its antihyperalgesic action is as effective as that produced by dexmedetomidine and is considerably stronger than that produced by clonidine. However, preoperative treatment with MPV-2426 does not prevent the development of postoperative hyperalgesia.  相似文献   

17.
Injury to, or dysfunction of, the nervous system can lead to spontaneous pain, hyperalgesia, and/or allodynia. It is believed that the number and activity of GABAergic neurons gradually decreases over the dorsal horn. Glutamic acid decarboxylase (GAD) immunocompetence has been demonstrated on spinal progenitor cells (SPCs) cultivated in vitro. The intrathecal implantation of these cultivated progenitor cells may provide a means of alleviating neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve was used to induce chronic neuropathic pain in the hind paw of rats. SPCs (1 x 10(6)) were implanted intrathecally on the third day after the CCI surgery. The behavioral response to thermal hyperalgesia was observed and recorded during the 14 days postsurgery. Various techniques were utilized to trace the progenitor cells, confirm the differentiation, and identify the neurotransmitters involved. GAD immunoactivity was revealed for 65% of the cultivated spinal progenitor cells in our study. We also determined that transplanted cells could survive more than 3 weeks postintrathecal implantation. Significant reductions were demonstrated for responses to thermal stimuli for the CCI rats that had received intrathecal SPC transplantation. A novel intrathecal delivery with SPCs reduced CCI-induced neuropathic pain.  相似文献   

18.
Cheng JK  Pan HL  Eisenach JC 《Anesthesiology》2000,92(4):1126-1131
BACKGROUND: Systemic administration of gabapentin was shown previously to attenuate mechanical allodynia in a rat model of postoperative pain. Because intrathecal administration of gabapentin is effective in other hypersensitivity states, the authors tested its effect in the postoperative model, its interaction with another antiallodynic agent (clonidine), and a possible mechanism of gabapentin action (entry into sites of action via an L-amino acid transporter). METHODS: Male Sprague-Dawley rats were anesthetized with halothane, and an incision of the plantaris muscle of right hind paw induced punctate mechanical allodynia. Withdrawal threshold to von Frey filament application near the incision site was determined before and 2 h after surgery. Then, an intrathecal injection was performed and thresholds were determined every 30 min for 3 h thereafter. RESULTS: Paw incision induced a mechanical hypersensitivity (mechanical threshold > 25 g before incision and < 5 g after). Intrathecal gabapentin dose-dependently (10-100 microg) reduced mechanical allodynia. Intrathecal injection of an inhibitor of L-amino acid transporters or a competitor for this transporter, L-leucine, did not reverse the intrathecal effect of gabapentin. The ED50 of intrathecal gabapentin, clonidine, and their combination were 51, 31, and 9 microg, respectively, and isobolographic analysis showed synergy between gabapentin and clonidine. CONCLUSIONS: Intrathecal gabapentin is effective against tactile allodynia that occurs after paw incision, and interacts synergistically with clonidine. Unlike results in vitro, gabapentin does not obligatorily need to enter cells via the L-amino acid transporter mechanism to achieve its effects in vivo.  相似文献   

19.
Background: After a focal thermal injury to the heel of a rat, thermal hyperalgesia appears at the injury site (primary thermal hyperalgesia), and tactile allodynia appears at the off-injury site (secondary tactile allodynia). The pharmacology of spinal glutamatergic receptors in the initiation and maintenance of secondary tactile allodynia was examined.

Methods: In rats prepared with chronic intrathecal catheters, the heel of one hind paw was exposed to a 52[degrees]C surface for 45 s, resulting in a local erythema without blistering. Intrathecal N-methyl-d-aspartate (NMDA) receptor antagonists (MK-801, AP5) and [alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-kainate (AMPA-KA) receptor antagonists (CNQX, NBQX, NS257, etc.) were administered either before (pretreatment) or after (posttreatment) the induction of the injury. Tactile withdrawal thresholds and thermal paw withdrawal latencies were assessed.

Results: Pretreatment and posttreatment with AMPA-KA antagonists produced a dose-dependent blockade of secondary tactile allodynia. However, NMDA antagonists, in doses that effectively block other models of facilitated states, showed little or no effect. Primary thermal hyperalgesia was blocked only by high-dose AMPA-KA antagonists.  相似文献   


20.
OBJECTIVE: In the present study, we sought to develop/characterize the pain profile of a rat model of surgically induced osteoarthritis (OA). METHODS: OA was surgically induced in male Lewis rats (200-225 g) by transection of the medial collateral ligament and medial meniscus of the femoro-tibial joint. In order to characterize the pain profile, animals were assessed for a change in hind paw weight distribution (HPWD), development of mechanical allodynia, and the presence of thermal and mechanical hyperalgesia. Rofecoxib and gabapentin were examined for their ability to decrease change in weight distribution and tactile allodynia. RESULTS: Transection of the medial collateral ligament and medial meniscus of male Lewis rats resulted in rapid (<3 days) changes in hind paw weight bearing and the development of tactile allodynia (secondary hyperalgesia). There was, however, no appreciable effect on thermal hyperalgesia or mechanical hyperalgesia. Treatment with a single dose of rofecoxib (10 mg/kg, PO, day 21 post surgery) or gabapentin (100mg/kg, PO, day 21 post surgery) significantly attenuated the change in HPWD, however, only gabapentin significantly decreased tactile allodynia. CONCLUSION: The rat medial meniscal tear (MMT) model mimics both nociceptive and neuropathic OA pain and is responsive to both a selective cylooxygenase-2 (COX-2) inhibitor commonly utilized for OA pain (rofecoxib) and a widely prescribed drug for neuropathic pain (gabapentin). The rat MMT model may therefore represent a predictive tool for the development of pharmacologic interventions for the treatment of the symptoms associated with OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号