首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
目的 评价手术患者内嵌Schnider药代动力参数异丙酚TCI系统的准确性.方法择期腹腔镜下妇科手术患者40例,ASA分级Ⅰ或Ⅱ级,年龄25~45岁,体重指数20~25 kg/m2.麻醉诱导:TCI异丙酚(血浆靶浓度3μg/ml)和瑞芬太尼(血浆靶浓度4 ng/ml),意识消失后静脉注射罗库溴铵0.6 mg/kg,气管内插管后行机械通气,调整通气参数,维持PETCO2 30~40mm Hg.麻醉维持:TCI瑞芬太尼(血浆靶浓度4 ng/ml),调节异丙酚血浆靶浓度3~5μg/ml,维持BIS值40~45,间断静脉注射阿曲库铵0.2 mg/kg.于建立气腹后15、30、45、60 min时采集静脉血样,采用高效液相色谱-荧光法测定异丙酚血药浓度,计算TCI系统的执行误差、偏离度、精确度、分散度和摆动度.结果 TCI系统的执行误差为21%(13%),偏离度为6.7%(37.4%),精确度为19%(18%),分散度为-0.65%/h(0.82%/h),摆动度为16.3%(15.2%).结论 手术患者内嵌Schnider药代动力参数异丙酚TCI系统的准确性较高,可满足临床要求.
Abstract:
Objective To evaluate the predictive performance of propofol target-controlled infusion (TCI) system incorporating the Schnider pharmacokinetic parameters in Chinese patients. Methods Forty ASA Ⅰ or Ⅱ patients, aged 25-45 yr, with body mass index 20-25 kg/m2 , scheduled for gynecological laparoscopic surgery un der general anesthesia, were enrolled in this study. Anesthesia was induced with TCI of propofol (target plasma concentration (Cp) 3 μg/ml) and remifentanil (Cp 4 ng/ml) . Propofol was infused by Orchestra TCI system incorporating the Schnider pharmacokinetic parameters. Tracheal intubation was facilitated with rocuronium 0.6 mg/kgafter the patients lost consciousness. The patients were mechanically ventilated. PETCO2 was maintained at 30-40 mm Hg. Anesthesia was maintained with TCI of remifentanil (Cp 4 ng/ml) and propofol (Cp 3-5 μg/ml) and intermittent iv boluses of atracurium 0.2 mg/kg. BIS value was maintained at 40-45. Venous blood samples were obtained at 15, 30, 45 and 60 min after pneumoperitoneum for measurement of blood propofol concentrations by high performance liquid chromatography with fluorescence detector. Performance error, median prediction performance error, median absolute performance error, wobble and divergence of propofol TCI system were calculated. Results The value for performance error was 21 % (13%), for median prediction performance error 6.7 % (37.4%),for median absolute performance error 19% (18%), for divergence - 0.65%/h (0.82%/h) and for wobble 16.3% (15.2% ) . Conclusion The accuracy of propofol TCI system incorporating the Schnider pharmacokinetic parameters is high in Chinese patients and its predictive performance is acceptable clinically.  相似文献   

2.
兔异丙酚靶控输注的药代动力学   总被引:2,自引:0,他引:2  
目的测定兔靶控输注(TCI)异丙酚药代动力学参数及引起不同麻醉深度所需的异丙酚血浆靶浓度。方法日本大耳兔20只,耳缘静脉注射10 mg·kg~(-1)异丙酚,抽取静脉注射后1、2、5、8、10、15、20、30、45、60 min动脉血各2 ml,通过高效液相色谱法测定异丙酚血药浓度,应用3P87药代动力学程序分析兔异丙酚药代动力学房室模型结构;随后将药代动力学参数代入TCI控制程序Stelpump中,以咀嚼反射消失作为浅麻醉标志,以夹尾后无体动反应为深麻醉标志,确定达到不同麻醉深度所需的异丙酚血浆靶浓度。结果兔异丙酚药代动力学模型为两室模型,中央室表观分布容积为(0.331±0.007)L·kg~(-1),中央室消除速率常数为(0.263±0.019)min~(-1),室间分布速率常数K_(12)、K_(21)分别为0.083±0.004、(0.060±0.009)min~(-1)。浅麻醉状态及深麻醉状态所需异丙酚血浆靶浓度分别为9.25±0.12、(11.63±0.29)μg·ml~(-1)。结论本研究确定了兔TCI异丙酚的药代动力学参数及维持不同麻醉水平血浆靶浓度。  相似文献   

3.
梗阻性黄疸病人靶控输注异丙酚的药代动力学   总被引:1,自引:0,他引:1  
目的 探讨梗阻性黄疸病人靶控输注(TCI)异丙酚的药代动力学。方法 择期手术病人24例,ASAI或Ⅱ级,按胆红素水平分成3组(n=8),对照组:血清总胆红素(sTBL)〈17.1μmol/L;轻度梗阻性黄疸组(B组):17.1/μmol/L≤sTBL≤171.1μmol/L;中重度梗阻性黄疸组(C组):sTBL〉171.1μmol/L。三组均以血浆靶浓度3.0μg/ml TCI异丙酚直至手术结束。分别于以下时点取桡动脉血:TCI开始后0.5、1、2、4、6、8min、麻醉维持过程中每隔15min、停止TCI后即刻、2、4、6、8、10、20、30、40、50、60、90、120、180、240、300、360min,用高效液相色谱荧光法测定血浆异丙酚浓度,用NONMEM软件分析药代动力学参数。结果 TCI异丙酚的群体药代动力学大部分(18/24)最适合用三室模型来描述,小部分(6/24)最适合用二室模型来描述。三组间异丙酚的药代动力学参数比较差异无统计学意义(P〉0.05)。结论 TCI异丙酚药代动力学绝大部分适合用三室模型,小部分适合用二室模型来描述;梗阻性黄疸对异丙酚的药代动力学没有影响。  相似文献   

4.
小儿异丙酚靶控输注系统准确性的评价   总被引:7,自引:0,他引:7  
目的建立小儿异丙酚药代学参数的靶控输注(TCI)系统,评价系统的准确性。方法 24例ASA Ⅰ级择期手术小儿,分为2组(n=12),A组:≥3岁且<5岁;B组:≥5岁且<10岁,应用连庆泉等报道的小儿异丙酚药代动力学参数以及Stanpump软件,微机连接Graseby 3500输液泵。恒定血浆靶浓度3μg·ml-1变速输注持续1 h,间断采集动脉血持续1.5 h。用高效液相法测定异丙酚血浆药物浓度,并计算系统的执行误差中位数(MDPE)、不含TCI开始5 min的执行误差中位数(MDPE1)、执行误差绝对值的中位数(MDAPE)、分散度和摆动度。结果两组异丙酚的实测浓度在TCI开始40 min内均高于靶浓度(P<0.05),后渐接近靶浓度,至TCI 50 min时与靶浓度差异无统计学意义。停止 TCI后实测浓度比预测浓度低(P<0.01)。A、B组TCI期间系统的MDPE分别为27%和26%、MDPE1 分别为7%和12%、MDAPE分别为27%和26%、分散度分别为-0.75%·h-1和-0.80%·h-1、摆动度分别为23%和24%,停止TCI后系统的MDPE分别为-30%和-25%,MDAPE分别为30%和25%,摆动度分别为9%和9%,分散度分别为0.31%·h-1和0.38%·h-1。结论本研究中小儿TCI输注系统的偏离性较小,精确度较高且分散度小,能维持稳定的血药浓度,符合临床要求。  相似文献   

5.
目的探讨急性等容血液稀释(ANH)状态下靶控输注(TCI)异丙酚药代动力学的变化。方法择期行髋关节置换术病人35例,ASA Ⅰ或Ⅱ级,预计出血量在1 000 ml,随机分为稀释组(n= 17,ANH平稳后10 min行TCI)和对照组(n=18,未实施ANH直接行TCI)。麻醉诱导后10 min实施 ANH,目标红细胞压积(Hct)为0.26,平稳10 min后以血浆靶浓度(3μg·ml-1)输注异丙酚60 min,间断采血180 min,用气相色谱-质谱法测定异丙酚血药浓度。运用NONMEM软件估算异丙酚TCI药代动力学参数。结果两组一般情况和异丙酚输注总量差异无统计学意义(P>0.05);与对照组比较,稀释组TCI期间异丙酚血药浓度降低,各房室间分布速率常数(K21)减慢,中央室分布容积、周边室分布容积增加(P<0.05),异丙酚药代动力学特征符合二室开放型模型。结论 ANH使TCI异丙酚的中央室和周边室分布容积增加,周边室向中央室的转运速率减慢。  相似文献   

6.
体外循环下异丙酚靶控输注系统的准确性   总被引:1,自引:0,他引:1  
目的 评价体外循环下异丙酚靶控输注系统的准确性.方法 择期体外循环下行心脏瓣膜置换术患者20例,ASAⅡ或Ⅲ级,年龄25~64岁,体重50~70 kg.静脉注射咪达唑仑、芬太尼和维库溴铵行麻醉诱导,气管插管后机械通气.麻醉维持采用嵌入Tackley药代动力学参数的靶控输注系统输注异丙酚至术毕,血浆靶浓度为1μ/ml.于体外循环前(T1)、体外循环开始后1、5、10、20、40、60 min(T2-7)、体外循环结束后5、10 min(T8,9)时采集桡动脉血样3 ml,采用反相高效液相色谱法测定血浆异丙酚浓度,计算异丙酚靶控输注系统的偏离度、精确度、摆动度及分散度.结果 T1时异丙酚实测浓度高于血浆靶浓度(P<0.05),T2-4时异丙酚实测浓度与血浆靶浓度差异无统计学意义(P>0.05),T5-9时异丙酚实测浓度高于血浆靶浓度(P<0.05).异丙酚靶控输注系统的偏离度为21%、精确度为29%、摆动度为21%及分散度为-0.06%/h.结论 心脏手术患者体外循环时,采用嵌入Tackley药代动力学参数的异丙酚靶控输注系统的准确性超出临床可接受范围.  相似文献   

7.
急性超容性血液稀释对靶控输注异丙酚药代动力学的影响   总被引:12,自引:2,他引:10  
目的 探讨急性超容性血液稀释(AHHD)对靶控输注(TCI)异丙酚药代动力学的影响。方法36例ASAⅠ-Ⅱ级并符合纳入标准的择期手术病人,随机分为2组,每组18例。稀释组按10ml·kg-1输入复方乳酸林格氏液补充生理需要量后,行异丙酚TCI,TCI 10 min时开始AHHD(在30 min内输入6%羟乙基淀粉20 ml·kg-1)。TCI以恒定靶血浆药物浓度(3μg·ml-1)变速输注60 min。对照组仅输入复方乳酸林格氏液10 ml·kg-1并以相同方式行TCI,但不实施AHHD。分时点间断采动脉血90min,应用气相色谱-质谱(GC-MS)法测定异丙酚血药浓度。间断测定血浆总蛋白(TPP)、白蛋白(AIb)、血红蛋白(Hb)及红细胞压积(Hct)判断AHHD程度。采用非线性混合效应模型(NONMEM)软件分析与计算药代动力学参数。结果 AHHD对TCI异丙酚药代动力学的影响可用二室指数开放型药代动力学模型描述。与对照组比较,稀释组病人的中央室分布容积(V1)和周边室分布容积增大,隔室间的转运速率和清除率加快。AHHD后Hb与Hct较AHHD前分别降低31.0%、31.3%;TPP与AIb分别较AHHD前降低30.1%、25.7%。结论 AHHD后异丙酚TCI所需的靶血浆药物浓度可能相对增加,药物作用时间可能相对缩短。  相似文献   

8.
靶控输注芬太尼对异丙酚药代动力学的影响   总被引:9,自引:2,他引:7  
目的 探讨靶控输注芬太尼对异丙酚药代动力学的影响。方法 24例行结肠或直肠癌根治术患者,AsAⅠ-Ⅱ级,随机分为异丙酚复合硬膜外组(A组,n=8),异丙酚复合2 ng·ml-1芬太尼组(B组,n=8),异丙酚复合4 ng·ml-1芬太尼组(C组,n=8),三组患者均采用靶控方式输注芬太尼与异丙酚,异丙酚靶浓度均为3μg·ml-1。测定靶控输注中及停止输注后异丙酚的血浆浓度,并拟合得到各项药代动力学参数。结果 异丙酚药代动力学模型符合三室开放模型。药代动力学参数:快速分布半衰期(t1/2α)、慢速分布半衰期(t1/2β)、消除半衰期(t1/2γ)、浓度-时间曲线下面积(AUC)、清除率(CL)及中央室容积(Vc),各组间比较差异无显著性(P>0.05)。结论 靶控输注临床剂量的芬太尼(2ng·ml-1与4 ng·ml-1)并不影响异丙酚的药代动力学特性。  相似文献   

9.
靶控输注异丙酚的临床应用和准确性评价   总被引:26,自引:6,他引:26  
目的 评估内嵌Marsh等报道的药代学参数的TCI系统的准确性。方法 22例ASAⅠ-Ⅱ级择期手术患者,<65岁(Y组)和>65岁(E组)各11例,异丙酚靶浓度从2μg/ml开始以1μg/ml递增直至意识消失,分析血浆浓度。计算每个样本的百分比预测误差(%PE),稳定误差(%CE)和组间个体内中位数预测误差(MDPE),中位数绝对误差(MDAPE),中位稳定误差(MDCE),中位数绝对稳定误差(MDACE)。结果 升高靶浓度时系统产生明显的超射。E组异丙酚血浆浓度的PE和绝对值PE分别是63.3%和66.2%,Y组则分别是62.1%和62.7%。E组CE和绝对值CE分别是-0.3%和12.7%,Y组则分别是0.6%和13.5%,组间无差异(P>0.05)。E组和Y组中位数MDPE(=中位数MDAPE)分别为78.1%和66.1%,MDCE分别是-0.2%和0.8%,MDACE分别是12.5%和13.5%。实测浓度和预测浓度呈显著直线相关(P<0.01)。结论 Marsh参数用于国人靶控输注,实测浓度和预测浓度的差异性较大,但系统能够维持稳定的血浆浓度。  相似文献   

10.
国人靶控输注异丙酚的群体药代动力学   总被引:15,自引:2,他引:13  
目的 运用非线性混合效应模型(NONMEM)软件计算国人异丙酚靶控输注(TCI)群体药代动力学参数并分析药代动力学特点。方法 61例行择期手术患者,ASAⅠ~Ⅱ级,男26例,女35例,年龄18~64岁,体重41~83kg。采用Tackley药代动力学参数,恒定靶血浆药物浓度(3μg·ml~(-1))变速输注60min,间断采血90min,共976个血标本,用气相色谱-质谱法测定异丙酚的血浆药物浓度。运用NONMEM软件估算异丙酚TCI群体药代动力学参数并分析药代动力学变化特点。结果 国人异丙酚TCI可用二室开放型药代动力学模型进行描述。最终药代动力学参数:K_(10)、K_(12)、K_(21)分别为0.111、0.064、0.023min~(-1);V_1、V_2分别为0.205、0.404L·kg~(-1);CL_1、CL_2分别为22.76、13.24ml·min~(-1)·kg~(-1)。最终回归模型中异丙酚血药浓度估算值与实测浓度间线性关系良好。在固定效应参数中,体重影响V_1、CL_1,年龄影响K_(21),性别对参数无影响。结论 国人异丙酚TCI的药代动力学特点为可用二室指数开放模型进行描述,中央室分布容积明显小于欧美人群,药物从中央室向外周室转运和消除速率较快。  相似文献   

11.
国人应用异丙酚靶控输注系统准确性的评价   总被引:2,自引:1,他引:1  
目的 评价 Diprifusor-靶控输注(TCI)系统的临床执行情况。方法 择期行腹部手术的患者27例,使用 Diprifusor-TCI 系统 Graseby 3500泵异丙酚 TCI,采用高效液相色谱荧光法检测血浆异丙酚浓度;采用执行误差(PE)的中位数(MDPE)、PE 绝对中位数(MDAPE)、分散度和摆动度作为评价执行情况的指标。结果 MDPE、MDAPE、分散度和摆动度的中位数(最小值~最大值)分别为14.9%(-21.6%~42.9%),23.3%(6.9%~62.5%),-1.9%·h~(-1)(-32.7%·h~(-1)~23.0%·h~(-1))和18.9%(4.2%~59.6%)。PE 不随用药时间的改变而增加,但随着靶浓度的增加而增加。结论 所有患者术中麻醉效果满意,系统的偏离性较小,精密度较高且分散度小,但系统的 Wobble 偏大。此输注系统的药物动力学参数用于中国人需要进一步优化。  相似文献   

12.
13.

Background

One major criticism of prolonged propofol-based total i.v. anaesthesia (TIVA) in children is the prolonged recovery time. As target-controlled infusion (TCI) obviates the need to manually calculate the infusion rate, the use of TCI may better match clinical requirements, reduce propofol dose, and shorten recovery time.

Methods

Children of ASA grade 1, aged 1–12 yr, were recruited and randomly assigned to TCI or manual infusion. Children in the TCI group had propofol delivered by TCI. Children for manual infusion had a loading dose of 2.5 mg kg?1 with subsequent infusion rates of 15, 13, 11, 10, and 9 mg kg?1 h?1. Attending anaesthesiologists adjusted the propofol dosage to keep the Bispectral Index? (BIS) between 40 and 60.

Results

Seventy-four children completed the study. The time taken to extubate the trachea after cessation of propofol was 15.1 (5.5) and 16.2 (6.1) min for children who had TCI and manual infusion, respectively (P=0.42). The mean propofol infusion rate was 16.7 [standard deviation (sd) 4.2] mg kg?1 h?1 in the TCI group and 14.6 (3.1) mg kg?1 h?1 in the manual infusion group (P=0.036). The percentage of time when BIS was >60 was significantly lower in the TCI than the manual infusion group [10.2% (18.4%) vs 23.2% (26.3%), P=0.016].

Discussion

Use of TCI led to higher propofol doses but not prolonged recovery time in children compared with manual infusion. It was associated with a greater percentage of time when the BIS was in the desired range and it may be an easier method for titration of propofol administration during anaesthesia or sedation.

Clinical trial registration

ChiCTR-IOD-16010147.  相似文献   

14.
目的比较丙泊酚靶控输注Marsh模式和Schnider模式在宫腔镜手术中的应用效果。方法选取2017年1月至2018年6月于中山大学孙逸仙纪念医院择期行宫腔镜手术患者60例,年龄20~60岁,BMI 18~30,ASA分级Ⅰ~Ⅱ级,分为两组,Marsh组(M组),n=30和Schnider组(S组),n=30。两组分别以Marsh模式和Schnider模式靶控输注丙泊酚进行麻醉,并用Narcotrend监测麻醉深度。记录手术时间、丙泊酚用量、术中体动次数、调整TCI参数次数、术中低血压次数、窦性心动过缓次数、辅助呼吸次数。采集基础状态(T_0)、意识消失(T_1)、扩张宫颈(T_2)、麻醉结束(T_3)时的NTI。并记录苏醒时间、恶心呕吐和寒战例数。结果M组和S组两组患者ASA分级、年龄、BMI、手术时间比较差异无统计学意义(P0.05);M组单位时间丙泊酚用量少于S组,差异有统计学意义(P0.01);M组患者术中体动次数多于S组,差异有统计学意义(P0.05),术中调整TCI参数次数也多于S组,差异有统计学意义(P0.01),但两组术中低血压、窦性心动过缓和辅助呼吸次数差异无统计学意义(P0.05);基础状态(T_0)时,M组和S组两组NTI比较差异无统计学意义(P0.05);在意识消失(T_1)和扩张宫颈(T_2)时,M组NTI高于S组,差异有统计学意义(P0.01);在麻醉结束(T_3)时,M组和S组两组NTI比较差异无统计学意义(P0.05);M组和S组两组患者苏醒时间、恶心呕吐和寒战例数比较差异无统计学意义(P0.05)。结论宫腔镜手术中,丙泊酚Schnider靶控输注模式优于Marsh模式。  相似文献   

15.
16.
下腹部手术老年患者异丙酚靶控输注系统的效能   总被引:3,自引:1,他引:2  
目的 评估异丙酚靶控输注系统应用于老年患者的可行性。方法 16例拟行下腹部手术的老年患者,ASA Ⅰ-Ⅱ级,年龄为65-75岁。靶控输注(以血浆浓度为靶浓度)异丙酚(3μg·ml1)与芬太尼(2 ng·ml-1)。异丙酚靶控输注采用Marsh的药代动力学参数,芬太尼采用Shafer的药代动力学参数。分别于靶控输注异丙酚5、10、15、20、30、45、60、90、120 min,经桡动脉取血,并用反相高效液相色谱-荧光检测法测定异丙酚的血浆浓度。结果 异丙酚靶控输注系统的偏离性为6%,精确度为14%。结论 以Marsh的药代动力学参数设定的异丙酚靶控输注系统可以有效地应用于老年患者的临床麻醉。  相似文献   

17.
18.
BACKGROUND: Diprifusor TCI is a newly developed target-controlled system for the infusion of propofol. Purpose of this study is to evaluate the acceptability, efficacy and safety of Diprifusor TCI in comparison with the manually controlled technique. METHODS: This multicentre, randomised, parallel group study was carried out in 160 patients undergoing surgical procedures of 10 min to 4 h duration in 8 centres. In each centre 20 male or female patients, aged > or = 18 years, ASA I-III were randomised to treatment with either Diprifusor TCI (TCI group--80 patients) or manually controlled infusion (MI group--80 patients). Assessments included hemodynamics; adverse events, including accidents, actual or possible; recovery times; anesthetist ratings of quality of induction and maintenance, and of ease of control and use of technique. Ratings were summed up in a global quality score (study end-point). RESULTS: Induction doses were significantly lower (median values 1.4 vs 1.9 mg/kg) and maintenance infusion rate significantly higher (median values 10.2 vs 8.8 mg/kg/h) in the TCI group; anesthetists ratings obtained maximum scores in most patients of either group, but more frequently in the TCI group, with significant differences for ease of control (good 91.2% TCI vs 74.7% IM; adequate 8.8 vs 21.5%; poor 0 vs 3.8%), and of use of technique (good 91.2% TCI vs 60.8% IM; adequate 8.8 vs 39.2%); the global quality score showed a significant advantage for the TCI system (median value 12 vs 11). CONCLUSIONS: The TCI technique is effective and safe, and has a better acceptability than the manually controlled infusion technique.  相似文献   

19.
Remifentanil concentration during target-controlled infusion of propofol   总被引:1,自引:0,他引:1  
After institutional approval and with written informed consent, eight surgical patients were infused intravenously with remifentanil at 250 ngkg lean body mass (LBM)(-1) x min(-1) for 30 min. Cardiovascular and respiratory parameters were recorded and arterial blood samples were taken at regular intervals. In each patient, the same protocol was repeated 40 min later during propofol infused to a target concentration of 3.0 microg x ml(-1). Blood concentrations of remifentanil and propofol were assayed using capillary gas chromatography and high performance liquid chromatography techniques respectively. The number of subjects enrolled was determined by testing the successive areas under the remifentanil time-concentration curve (AUC) for significant difference or non-difference using sequential analysis. The median measured propofol concentration was 3.5 (range: 2.6-4.5) microg x ml(-1) which did not change significantly during the second remifentanil infusion. The median AUC during propofol infusion was greater than control in all subjects, although there was considerable variation of 94.4 (64.3-129.6) versus 64.6 (34.8-126.9) ng x ml(-1) x min; P=0.008, n=8. After 30 min, there was no significant difference in remifentanil concentration during propofol infusion when compared with remifentanil alone of 4.6 (3.2-5.7) versus 3.8 (1.6-4.9) ng x ml(-1); P=0.73, n=8. Co-administration of propofol and remifentanil may result in greater remifentanil concentrations than when remifentanil is infused alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号