首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PurposeBRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity.MethodsWe retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes.ResultsWe identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene–disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1.ConclusionWe report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.  相似文献   

3.
4.
5.
《Genetics in medicine》2023,25(11):100944
PurposeZellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD.MethodsWe performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies.ResultsWe identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients’ fibroblasts.ConclusionOur finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.  相似文献   

6.
《Genetics in medicine》2023,25(8):100885
PurposeMissense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability.MethodsBy international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro.ResultsIn accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well.ConclusionBy identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.  相似文献   

7.
《Genetics in medicine》2022,24(12):2464-2474
PurposeKLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20.MethodsPatients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed.ResultsWe studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type β-propeller domain of the KLHL20 protein, which shapes the substrate binding surface.ConclusionOur findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.  相似文献   

8.
《Genetics in medicine》2020,22(4):797-802
PurposeTo delineate the genotype–phenotype correlation in individuals with likely pathogenic variants in the CLTC gene.MethodsWe describe 13 individuals with de novo CLTC variants. Causality of variants was determined by using the tolerance landscape of CLTC and computer-assisted molecular modeling where applicable. Phenotypic abnormalities observed in the individuals identified with missense and in-frame variants were compared with those with nonsense or frameshift variants in CLTC.ResultsAll de novo variants were judged to be causal. Combining our data with that of 14 previously reported affected individuals (n = 27), all had intellectual disability (ID), ranging from mild to moderate/severe, with or without additional neurologic, behavioral, craniofacial, ophthalmologic, and gastrointestinal features. Microcephaly, hypoplasia of the corpus callosum, and epilepsy were more frequently observed in individuals with missense and in-frame variants than in those with nonsense and frameshift variants. However, this difference was not significant.ConclusionsThe wide phenotypic variability associated with likely pathogenic CLTC variants seems to be associated with allelic heterogeneity. The detailed clinical characterization of a larger cohort of individuals with pathogenic CLTC variants is warranted to support the hypothesis that missense and in-frame variants exert a dominant-negative effect, whereas the nonsense and frameshift variants would result in haploinsufficiency.  相似文献   

9.
《Genetics in medicine》2019,21(4):1021-1026
PurposeRAC3 is an underexamined member of the Rho GTPase gene family that is expressed in the developing brain and linked to key cellular functions. De novo missense variants in the homolog RAC1 were recently associated with developmental disorders. In the RAC subfamily, transforming missense changes at certain shared residues have been observed in human cancers and previously characterized in experimental studies. The purpose of this study was to determine whether constitutional dysregulation of RAC3 is associated with human disease.MethodsWe discovered a RAC3 variant in the index case using genome sequencing, and searched for additional variants using international data-sharing initiatives. Functional effects of the variants were assessed using a multifaceted approach generalizable to most clinical laboratory settings.ResultsWe rapidly identified five individuals with de novo monoallelic missense variants in RAC3, including one recurrent change. Every participant had severe intellectual disability and brain malformations. In silico protein modeling, and prior in vivo and in situ experiments, supported a transforming effect for each of the three different RAC3 variants. All variants were observed in databases of somatic variation in cancer.ConclusionsMissense variants in RAC3 cause a novel brain disorder, likely through a mechanism of constitutive protein activation.  相似文献   

10.
11.
PurposeThis study aimed to evaluate genetic contributions to sudden unexpected death in pediatrics (SUDP).MethodsWe phenotyped and performed exome sequencing for 352 SUDP cases. We analyzed variants in 294 "SUDP genes" with mechanisms plausibly related to sudden death. In a subset of 73 cases with parental data (trios), we performed exome-wide analyses and conducted cohort-wide burden analyses.ResultsIn total, we identified likely contributory variants in 37 of 352 probands (11%). Analysis of SUDP genes identified pathogenic/likely pathogenic variants in 12 of 352 cases (SCN1A, DEPDC5 [2], GABRG2, SCN5A [2], TTN [2], MYBPC3, PLN, TNNI3, and PDHA1) and variants of unknown significance–favor-pathogenic in 17 of 352 cases. Exome-wide analyses of the 73 cases with family data additionally identified 4 de novo pathogenic/likely pathogenic variants (SCN1A [2], ANKRD1, and BRPF1) and 4 de novo variants of unknown significance–favor-pathogenic. Comparing cases with controls, we demonstrated an excess burden of rare damaging SUDP gene variants (odds ratio, 2.94; 95% confidence interval, 2.37-4.21) and of exome-wide de novo variants in the subset of 73 with trio data (odds ratio, 3.13; 95% confidence interval, 1.91-5.16).ConclusionWe provide strong evidence for a role of genetic factors in SUDP, involving both candidate genes and novel genes for SUDP and expanding phenotypes of disease genes not previously associated with sudden death.  相似文献   

12.
《Genetics in medicine》2023,25(9):100893
PurposeDevelopmentally regulated Guanosine-5'-triphosphate-binding protein 1 (DRG1) is a highly conserved member of a class of GTPases implicated in translation. Although the expression of mammalian DRG1 is elevated in the central nervous system during development, and its function has been implicated in fundamental cellular processes, no pathogenic germline variants have yet been identified. Here, we characterize the clinical and biochemical consequences of DRG1 variants.MethodsWe collate clinical information of 4 individuals with germline DRG1 variants and use in silico, in vitro, and cell-based studies to study the pathogenicity of these alleles.ResultsWe identified private germline DRG1 variants, including 3 stop-gained p.Gly541, p.Arg1401, p.Lys2631, and a p.Asn248Phe missense variant. These alleles are recessively inherited in 4 affected individuals from 3 distinct families and cause a neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature, and craniofacial anomalies. We show that these loss-of-function variants (1) severely disrupt DRG1 messenger RNA/protein stability in patient-derived fibroblasts, (2) impair its GTPase activity, and (3) compromise its binding to partner protein ZC3H15. Consistent with the importance of DRG1 in humans, targeted inactivation of mouse Drg1 resulted in preweaning lethality.ConclusionOur work defines a new Mendelian disorder of DRG1 deficiency. This study highlights DRG1’s importance for normal mammalian development and underscores the significance of translation factor GTPases in human physiology and homeostasis.  相似文献   

13.
14.
15.
PurposeCommon diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed.MethodsWe characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome.ResultsComputational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted.ConclusionOur results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.  相似文献   

16.
《Genetics in medicine》2020,22(11):1759-1767
PurposeCongenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes.MethodsWe evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues.ResultsAmong the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism—two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature.ConclusionsWe identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.  相似文献   

17.
《Genetics in medicine》2019,21(7):1568-1575
PurposeVascular Ehlers–Danlos syndrome (vEDS) is a rare inherited autosomal dominant disorder caused by COL3A1 pathogenic variants. A high percentage of de novo cases has been suggested. Part of it could be due to parental mosaicism, but its frequency is unknown.MethodsThis retrospective study included a large series of COL3A1-confirmed vEDS probands with family information. The frequency of de novo cases was evaluated and the distribution of the type of variants was compared according to the mode of inheritance. The COL3A1 mosaicism was studied by deep targeted next- generation sequencing (NGS) from parental blood DNA.ResultsOut of 177 vEDS probands, 90 had a negative family history, suggesting a high rate (50.8%) of de novo pathogenic variants, enriched in the more severe COL3A1 variants (no null variant). Among those, both parental DNA were available in 36 cases and one parental DNA in 18 cases. NGS detected only one mosaicism from maternal blood DNA (allelic ratio 18%), which was confirmed in saliva (allelic ratio 22%).ConclusionvEDS is characterized by a high frequency of de novo pathogenic variants. Parental mosaicism is rare (2–3%), but should be systematically searched with targeted NGS, taking into account its importance in genetic counseling.  相似文献   

18.
《Genetics in medicine》2021,23(7):1305-1314
PurposeVariants in NUS1 are associated with a congenital disorder of glycosylation, developmental and epileptic encephalopathies, and are possible contributors to Parkinson disease pathogenesis. How the diverse functions of the NUS1-encoded Nogo B receptor (NgBR) relate to these different phenotypes is largely unknown. We present three patients with de novo heterozygous variants in NUS1 that cause a complex movement disorder, define pathogenic mechanisms in cells and zebrafish, and identify possible therapy.MethodsComprehensive functional studies were performed using patient fibroblasts, and a zebrafish model mimicking NUS1 haploinsufficiency.ResultsWe show that de novo NUS1 variants reduce NgBR and Niemann–Pick type C2 (NPC2) protein amount, impair dolichol biosynthesis, and cause lysosomal cholesterol accumulation. Reducing nus1 expression 50% in zebrafish embryos causes abnormal swim behaviors, cholesterol accumulation in the nervous system, and impaired turnover of lysosomal membrane proteins. Reduction of cholesterol buildup with 2-hydroxypropyl-ß-cyclodextrin significantly alleviates lysosomal proteolysis and motility defects.ConclusionOur results demonstrate that these NUS1 variants cause multiple lysosomal phenotypes in cells. We show that the movement deficits associated with nus1 reduction in zebrafish arise in part from defective efflux of cholesterol from lysosomes, suggesting that treatments targeting cholesterol accumulation could be therapeutic.  相似文献   

19.
SETD2 encodes an important protein for epigenetic modification of histones which plays an essential role in early development. Variants in SETD2 have been reported in neurodevelopmental disorders including autism spectrum disorder (ASD). However, most de novo SETD2 variants were reported in different large-cohort sequencing studies, mutation pattern and comprehensive genotype-phenotype correlations for SETD2 are still lacking. We have applied target sequencing to identify rare, clinical-relevant SETD2 variants and detected two novel de novo SETD2 variants, including a de novo splicing variant (NM_014159: c.4715+1G>A) and a de novo missense variant (c.3185C>T: p.P1062L) in two individuals with a diagnosis of ASD. To analyze the correlations between SETD2 mutations and corresponding phenotypes, we systematically review the reported individuals with de novo SETD2 variants, classify the pathogenicity, and analyze the detailed phenotypes. We subsequently manually curate 17 SETD2 de novo variants in 17 individuals from published literature. Individuals with de novo SETD2 variants present common phenotypes including speech and motor delay, intellectual disability, macrocephaly, ASD, overgrowth and recurrent otitis media. Our study reveals new SETD2 mutations and provided a relatively homozygous phenotype spectrum of SETD2-related neurodevelopmental disorders which will be beneficial for disease classification and diagnosis in clinical practice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号