首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
2.

Context:

Quadriceps dysfunction is a common consequence of knee joint injury and disease, yet its causes remain elusive.

Objective:

To determine the effects of pain on quadriceps strength and activation and to learn if simultaneous pain and knee joint effusion affect the magnitude of quadriceps dysfunction.

Design:

Crossover study.

Setting:

University research laboratory.

Patients or Other Participants:

Fourteen (8 men, 6 women; age = 23.6 ± 4.8 years, height = 170.3 ± 9.16 cm, mass = 72.9 ± 11.84 kg) healthy volunteers.

Intervention(s):

All participants were tested under 4 randomized conditions: normal knee, effused knee, painful knee, and effused and painful knee.

Main Outcome Measure(s):

Quadriceps strength (Nm/kg) and activation (central activation ratio) were assessed after each condition was induced.

Results:

Quadriceps strength and activation were highest under the normal knee condition and differed from the 3 experimental knee conditions (P < .05). No differences were noted among the 3 experimental knee conditions for either variable (P > .05).

Conclusions:

Both pain and effusion led to quadriceps dysfunction, but the interaction of the 2 stimuli did not increase the magnitude of the strength or activation deficits. Therefore, pain and effusion can be considered equally potent in eliciting quadriceps inhibition. Given that pain and effusion accompany numerous knee conditions, the prevalence of quadriceps dysfunction is likely high.Key Words: arthrogenic muscle inhibition, central activation failure, voluntary activation, muscles

Key Points

  • Knee pain and effusion resulted in arthrogenic muscle inhibition and weakness of the quadriceps.
  • The simultaneous presence of pain and effusion did not increase the magnitude of quadriceps dysfunction.
  • To reduce arthrogenic muscle inhibition and improve muscle strength, clinicians should employ interventions that target removing both pain and effusion.
Quadriceps weakness is a common consequence of traumatic knee joint injury1,2 and chronic degenerative knee joint conditions.3,4 Arthrogenic muscle inhibition (AMI), a neurologic decline in muscle activation, results in quadriceps weakness and hinders rehabilitation by preventing gains in strength.5 The inability to reverse AMI and restore muscle function can lead to decreased physical abilities,6 biomechanical deficits,7 and possibly reinjury.5 Furthermore, researchers8,9 have suggested that quadriceps weakness resulting from AMI may place patients at risk for developing osteoarthritis in the knee. In light of the substantial influence of quadriceps AMI on these clinically relevant outcomes, we need to improve our understanding of the factors that contribute to this neurologic decline in muscle activity so efforts to target and reverse it can be implemented and gains in strength can be achieved more easily.Joint injury and disease are accompanied by numerous sequelae (ie, pain, swelling, tissue damage, inflammation), so ascertaining which one ultimately leads to neurologic muscle dysfunction is difficult. Whereas a joint effusion can result in AMI,1012 the effects of pain are less understood despite many clinicians attributing AMI to pain. Using techniques that introduce knee pain without accompanying injury may provide insights into the role of pain in eliciting AMI.The degree of knee joint damage may play a role in the quantity of AMI that manifests. Hurley et al13,14 demonstrated that quadriceps AMI, measured using an interpolated-twitch technique, was greater in patients with extensive traumatic knee injury (eg, fractured tibial plateau, ruptured medial collateral ligament, and medial meniscectomy) than patients with isolated joint trauma (ie, isolated anterior cruciate ligament [ACL] rupture). Similarly, patients with more knee joint symptoms (ie, greater number of symptoms and increased severity of symptoms) may present with greater magnitudes of quadriceps inhibition. Recently, investigators15 have suggested that patients with more pain display less quadriceps strength, supporting this tenet. Given that effusion and pain often present simultaneously with joint injuries and diseases, such as ACL injury and osteoarthritis, examining both the isolated and cumulative effects of these sequelae appears warranted to determine if they influence the magnitude of muscle inhibition.Experimental joint-effusion and pain models are safe and effective experimental methods that allow for the isolated examination of their effects on muscle function. The effusion model, whereby sterile saline is injected directly into the knee joint capsule,7 produces a clinically relevant magnitude of the joint effusion that may be present with traumatic injury. Effusion is thought to activate group II afferents responding to stretch or pressure,1618 which in turn may facilitate group Ib interneurons and result in quadriceps AMI.5 The pain model involves injecting hypertonic saline into the infrapatellar fat pad to produce anteromedial knee pain similar to that described in patients with patellofemoral pain syndrome.19 Pain is considered to initiate AMI through activation of group III and IV afferents that act as nocioceptors to signal damage or potential damage to joint structures.1618 The firing of these afferents then may lead to facilitation of group Ib interneurons, the flexion reflex, or the gamma loop, ultimately resulting in quadriceps inhibition.20 Thus, these models allow us to create symptoms that are associated with knee injury and have the added benefit of providing a way to examine their effects in isolation.Therefore, the purpose of our study was to determine the effects of pain on quadriceps strength and activation and to learn if simultaneous pain and knee joint effusion would affect the magnitude of quadriceps dysfunction. We hypothesized that pain alone would result in quadriceps inhibition and that the magnitude of inhibition would be greater when effusion and pain were present simultaneously.  相似文献   

3.
即早基因c-fos与脑血管病及学习记忆   总被引:6,自引:1,他引:5  
即早基因c-fos是广泛存在于原核细胞和真核细胞的高度保守基因.在正常情况下,c-fos基因参与细胞生长、分化、信息传递、学习和记忆等生理过程,而在病理情况下c-fos基因表达及调控变化与多种疾病的发生和发展有关.C-fos在中枢神经系统的某些部位可有基础水平的表达,但表达很低,当受到如脑缺血、脑出血、痫性发作、应激等刺激后,其在数十分钟内做出反应,在对外界刺激-转录耦联的信忠传递过程中起着核内第三信使的重要作用.  相似文献   

4.
5.
6.
7.
8.
9.
<正>人体解剖学与组织学胚胎学是高职护理及助产专业的学生接触最早而又重要的医学基础核心课程。鉴于目前高职护理及助产专业的教学内容多,课时少等难题,教与学的矛盾日益突出。因此,如何在有限的时间内既保证教学体系的完整性,又能解决时间与内容冲突的矛盾,从而使医学生对所学内容真正达到"必须、够用",是授课教师面临的严峻挑战。同时,顺应医学终身教育发展的需求,提高医学生自主学习的能力,  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号