首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The bed nucleus of the stria terminalis (BST) plays a prominent role in brain integration of acute responses to stressful stimuli. This study tests the hypothesis that the BST plays a complementary role in regulation of physiological changes associated with chronic stress exposure. Male Sprague-Dawley rats received bilateral ibotenate lesions or sham lesions of the posterior medial region of the BST (BSTpm), an area known to be involved in inhibition of HPA axis responses to acute stress. Chronic stress was induced by 14-day exposure to twice daily stressors in an unpredictable sequence (chronic variable stress, CVS). In the morning after the end of CVS, stressed and non-stressed controls were exposed to a novel restraint stress challenge. As previously documented, CVS caused adrenal hypertrophy, thymic involution, and attenuated body weight gain. None of these endpoints were affected by BSTpm lesions. Chronic stress exposure facilitated plasma corticosterone responses to the novel restraint stress and elevated CRH mRNA. Lesions of the BSTpm increased novel stressor-induced plasma ACTH and corticosterone secretion and enhanced c-fos mRNA induction in the paraventricular nucleus of the hypothalamus (PVN). In addition, lesion of the BSTpm resulted in an additive increase in CVS-induced facilitation of corticosterone responses and PVN CRH expression. Collectively these data confirm that the BSTpm markedly inhibits HPA responses to acute stress, but do not strongly support an additional role for this region in limiting HPA axis responses to chronic drive. The data further suggest that acute versus chronic stress integration are subserved by different brain circuitry.  相似文献   

2.
Stress pathologies such as depression and eating disorders (i.e. anorexia nervosa) are associated with amygdalar dysfunction, which are linked with hypothalamic-pituitary-adrenal axis (HPA) axis hyperactivity. The medial amygdaloid nucleus (MeA), a key output nucleus of the amygdaloid complex, promotes HPA axis activation to acute psychogenic stress and is in a prime position to mediate the deleterious effects of chronic stress on physiology and behaviour. The present study tests the hypothesis that the MeA is necessary for the development of maladaptive physiological changes caused by prolonged stress exposure. Male rats received bilateral ibotenate or sham lesions targeting the MeA and one half underwent 2 weeks of chronic variable stress (CVS) or served as home cage controls. Sixteen hours post CVS, all animals were exposed to an acute restraint challenge. CVS induced thymic involution, adrenal hypertrophy, and attenuated body weight gain and up-regulation of hypothalamic corticotrophin-releasing hormone mRNA expression. Consistent with previous literature, lesions of the MeA dampened stress-induced increases in corticosterone after 30 min of exposure to acute restraint stress. However, this effect was independent of CVS exposure, suggesting that the MeA may not be critical for modulating neuroendocrine responses after chronic HPA axis drive. Interestingly, lesion of the MeA modestly exaggerated the stress-induced attenuation of weight gain. Overall, the data obtained suggest that the MeA modulates the neuroendocrine responses to acute but not chronic stress. In addition, the data suggest that the MeA may be an important neural component for the control of body weight in the face of chronic stress.  相似文献   

3.
Accumulating evidence implicates the dorsomedial hypothalamic nucleus (DMH) in the regulation of autonomic and neuroendocrine stress responses. However, although projections from the DMH to the paraventricular hypothalamic nucleus (PVN), which is the critical site of the neuroendocrine stress axis, have been described, the impact of DMH neurones in the modulation of hypothalamic‐pituitary‐adrenal (HPA) axis activation during stress is not fully understood. The present study aimed to investigate the role of the DMH in HPA axis responses to different types of stimuli. Male Sprague–Dawley rats fitted with a chronic jugular venous catheter were exposed to either an emotional stressor (elevated platform‐exposure) or immune challenge (systemic interleukin‐1β administration). Bilateral electrolytic lesions of the DMH disinhibited HPA axis responses to the emotional stressor, as indicated by higher plasma adrenocorticotrophic hormone levels during and after elevated platform exposure in lesioned animals compared to sham‐lesioned controls. Moreover, DMH‐lesioned animals showed increased neuronal activation in the PVN, as indicated by a higher c‐Fos expression after elevated‐platform exposure compared to controls. By contrast, DMH‐lesions had no effects on HPA axis responses to immune challenge. Taken together, our data suggest an inhibitory role of DMH neurones on stress‐induced HPA axis activation that is dependent upon the nature of the stimulus being important in response to an emotional stressor but not to immune challenge.  相似文献   

4.
Although the glucocorticoid response to acute short-term stress is an adaptive physiological mechanism that aids in the response to and survival of noxious stimuli, chronic stress is associated with a negative impact on health. In wild-caught European starlings ( Sturnus vulgaris ), chronic stress alters the responsiveness of hypothalamic-pituitary-adrenal (HPA) axis as measured by the acute corticosterone response. In the present study, we investigated potential underlying neuroendocrine mechanisms by comparing glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the brains of chronically and nonchronically-stressed starlings. Hypothalamic paraventricular nucleus, but not hippocampal, glucocorticoid receptor mRNA expression in chronically-stressed birds was significantly lower compared to controls, suggesting changes in the efficacy of corticosterone negative feedback. In addition, chronically-stressed birds showed a significant decrease in hippocampal MR mRNA expression. Together, these results suggest that chronic stress changes the brain physiology of wild birds and provides important information for the understanding of the underlying mechanisms that result in dysregulation of the HPA axis in wild animals by chronic stress.  相似文献   

5.
Arginine vasopressin and corticotrophin-releasing hormone synthesised and released from the hypothalamic paraventricular nucleus are the prime mediators of the hypothalamic-pituitary-adrenal (HPA) axis response to stress. These neurohormones act synergistically to stimulate adrenocorticotophin (ACTH) secretion from the anterior pituitary, culminating in an increase in circulating glucocorticoids. Arginine vasopressin mediates this action at the arginine vasopressin 1b receptor (Avpr1b) located on pituitary corticotrophs. Arginine vasopressin is regarded as a minor ACTH secretagogue in rodents but evidence suggests that it has a role in mediating the neuroendocrine response to some acute and chronic stressors. To investigate the role of the Avpr1b in the HPA axis response to an acute and chronic (repeated) stress, we measured the plasma ACTH and corticosterone concentrations in three stress paradigms in both Avpr1b knockout and wild-type mice. Single acute exposure to restraint, forced swim and change in environment stressors elevated both plasma ACTH and corticosterone concentrations in wild-type animals. Conversely, the ACTH response to the acute stressors was significantly attenuated in Avpr1b knockout mice compared to their wild-type counterparts. Plasma corticosterone concentrations were reduced in Avpr1b knockout mice in response to change in environment but not to mild restraint or forced swim stress. Irrespective of genotype, there was no difference in the plasma ACTH or corticosterone concentrations in response to acute and repeated stressors. The data show that a functional Avpr1b is required for an intact pituitary ACTH response to the acute and chronic stressors used in this study. Furthermore, the normal corticosterone response to repeated exposure to change in environment stress also requires the Avpr1b to drive HPA axis responsiveness.  相似文献   

6.
7.
We examined the role of the posterior division of the paraventricular nucleus of the thalamus (pPVTh) in habituation of hypothalamic-pituitary-adrenal (HPA) responses to repeated restraint. Habituation refers to the decrement in HPA activity that occurs with repeated exposure to the same or homotypic stressor. To date, the pPVTh has been shown to inhibit the enhanced or facilitated HPA responses to novel, heterotypic restraint in previously chronically cold stressed rats. We hypothesized that the pPVTh also inhibits HPA activity under conditions of habituation. In the first experiment, we lesioned the pPVTh and examined adrenocorticotropic hormone (ACTH) and corticosterone responses to the first or eighth restraint exposure. In sham-lesioned rats, we found lower ACTH and corticosterone responses to the eighth period of 30 min restraint compared to the first exposure, evidence for habituation. In pPVTh-lesioned rats, there was no difference in ACTH and corticosterone responses to the eighth compared to the first restraint exposure. Therefore, pPVTh lesions prevented the habituation of HPA responses to repeated restraint. In the second experiment, we examined whether habituation to restraint is observable in response to an acute, single restraint on day 28 in sham and pPVTh lesioned rats that were exposed to restraint only on days 1 through 8. In this experiment, we replicated the results from the first experiment, and found evidence that habituation to restraint can be observed weeks after chronic stress has been terminated. Furthermore, pPVTh lesions had no additional effects on HPA responses to acute stress on day 28. In summary, pPVTh lesions inhibit habituation of HPA activity to a homotypic stressor, without altering HPA responses to the first restraint. Thus, the intact pPVTh inhibits HPA activity under conditions of habituation, as well as facilitation, and represents an important regulator of HPA activity under conditions of chronic stress.  相似文献   

8.
Inflammation consists in secretion of cytokines that stimulate the hypothalamo-pituitary-adrenal (HPA) axis to release the anti-inflammatory corticosterone. Upstream in this axis are corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) whose multipeptidergic phenotype changes: both corticotropin-releasing hormone mRNAs and neurotensin mRNAs are up-regulated. Combining in situ hybridization with a retrograde neuronal marker, we demonstrated that neurotensin-containing neurons in the paraventricular nucleus project to the median eminence.  相似文献   

9.
10.
The hypothalamic-pituitary-adrenal axis is hyporesponsive to stress in late pregnancy, exemplified as reduced adrenocorticotropic hormone (ACTH) and corticosterone responses to restraint, but the mechanisms are unknown. We investigated forward drive and negative feedback upon the hypothalamic-pituitary-adrenal axis in pregnant rats. Corticotropin-releasing hormone (CRH) and vasopressin mRNA expression in the parvocellular paraventricular nucleus and mineralocorticoid and glucocorticoid receptor expression in the paraventricular nucleus and hippocampus were quantified with in situ hybridization. Because it can enhance the corticosterone negative feedback signal, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) bioactivity in these brain regions and anterior pituitary was measured in vitro, and ACTH and corticosterone stress responses were measured after intracerebroventricular glycyrrhetinic acid, an 11beta-HSD inhibitor. Changes in corticosterone feedback on ACTH secretion were examined after pharmacological adrenalectomy by metyrapone and aminoglutethimide. Parvocellular paraventricular nucleus CRH mRNA content was reduced on day 21 and the CRH mRNA : vasopressin mRNA ratio was unaltered, indicating decreased production of both CRH and vasopressin. An increase in glucocorticoid receptor mRNA expression in the dentate gyrus (mineralocorticoid receptor mRNA expression was unaltered) and increased 11beta-HSD1 activity in the paraventricular nucleus and anterior pituitary suggest an increase in slow negative feedback mechanisms in pregnancy, but glycyrrhetinic acid did not modify the stress response. After metyrapone/aminoglutethimide treatment, corticosterone decreased ACTH secretion more slowly in pregnancy, indicating a decrease in rapid feedback sensitivity. Thus, reduced forward drive rather than increased effectiveness of glucocorticoid negative feedback may underlie stress hyporesponsiveness of the hypothalamic-pituitary-adrenal axis in pregnancy.  相似文献   

11.
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) stress axis and disturbances in serotonin (5-HT) neurotransmission have been implicated in the pathogenesis of depressive disorder. Repeated social defeat of male NMRI mice has been shown to induce increases in core body temperature and corticosterone, indicative of a state of chronic stress in subordinate animals. The present study further characterised the HPA axis response to social defeat stress, and also examined hippocampal extracellular 5-HT release during the stress. Exposure to an acute social defeat elicits increases in plasma adrenocorticotrophic hormone and corticosterone levels, peaking at 15 and 30 min, respectively, and enhances corticotrophin-releasing factor (CRF) mRNA, but not arginine vasopressin (AVP) mRNA within the medial parvocellular division of the hypothalamic paraventricular nucleus. A concomitant increase in hippocampal corticosterone and 5-HT levels is observed. By contrast, although chronic social defeat is associated with greatly elevated corticosterone levels, the predominant drive appears to be via parvocellular AVP rather than CRF. Furthermore, subordinate animals allowed to recover for 9 days after chronic social defeat display an increase in immobility in the forced swimming model of depression, indicating that animals previously exposed to the homotypic defeat stress are sensitised to the behavioural effects of a novel stressor. These results demonstrate that social defeat induces prolonged activation of the HPA axis and alterations in 5-HT neurotransmission that could be of relevance to some of the pathological abnormalities observed in clinical depression.  相似文献   

12.
The effects of chronic immune challenge on cytokine expression and hypothalamic-pituitary-adrenal axis (HPA) axis responses to stress were studied in Wistar rats after administration of increasing doses of lipopolysaccharide (LPS). Repeated LPS (R-LPS) decreased body weight and increased adrenal weight and pituitary pro-opiomelanocortin mRNA levels. LPS injection increased plasma adrenocorticotropic hormone (ACTH) and corticosterone but the effect was attenuated in R-LPS. Plasma corticosterone but not ACTH responses to restraint were also reduced in R-LPS. Basal and restraint-stimulated corticotropin releasing hormone (CRH) mRNA levels were lower in R-LPS, but responses to a new LPS injection were similar to controls. In contrast, type 1 CRH receptor (CRH-R1) mRNA responses to both LPS and restraint were blunted in R-LPS. Vasopressin mRNA levels in parvocellular neurones were higher in R-LPS, and increased further after restraint but not after a new LPS injection. Glucocorticoid receptor (GR) levels in the paraventricular nucleus (PVN) increased after a single LPS or R-LPS (24 h after the last injection) but declined after a new injection in R-LPS. Interleukin (IL)-1beta and IL-6 mRNAs increased in the pituitary, spleen and circumventricular organs after single or R-LPS, suggesting that cytokines may contribute to the activation of the HPA axis though pathways from the circumventricular organs as well as paracrine effects in the pituitary. The data show that (i) adaptation of the HPA axis during repeated LPS injection involves increases in vasopressin : CRH expression ratios in parvocellular neurones; (ii) that hypothalamic CRH and vasopressin responses to acute stimulation are independent of CRH-R1 expression in the PVN; and (iii) there is a dissociation between pituitary and adrenal responses to acute stress suggesting a decrease of adrenal sensitivity to ACTH.  相似文献   

13.
Clinical studies link disruption of the neuroendocrine stress system with alcoholism, but remaining unknown is whether functional differences in the hypothalamic-pituitary-adrenal (HPA) axis precede alcohol abuse and dependence or result from chronic exposure to this drug. Using an operant self-administration animal model of alcohol dependence and serial blood sampling, we show that longterm exposure to alcohol causes significant impairment of HPA function in adult male Wistar rats. Acute alcohol (voluntary self-administration or experimenter-administered) stimulated the release of corticosterone and its upstream regulator, adrenocorticotropic hormone, but chronic exposure sufficient to produce dependence led to a dampened neuroendocrine state. HPA responses to alcohol were most robust in 'low-responding' non-dependent animals (averaging < 0.2 mg/kg/session), intermediate in nondependent animals (averaging approximately 0.4 mg/kg/session), and most blunted in dependent animals (averaging approximately 1.0 mg/kg/session) following several weeks of daily 30-min self-administration sessions, suggesting that neuroendocrine tolerance can be initiated prior to dependence and relates to the amount of alcohol consumed. Decreased expression of corticotropin-releasing factor (CRF) mRNA expression in the paraventricular nucleus of the hypothalamus and reduced sensitivity of the pituitary to CRF may contribute to, but do not completely explain, neuroendocrine tolerance. The present results, combined with previous studies, suggest that multiple adaptations to stress regulatory systems may be brought about by excessive drinking, including a compromised hormonal response and a sensitized brain stress response that together contribute to dependence.  相似文献   

14.
Oxytocin is a classic reproductive neuropeptide in the female mammal, but its functions in the brain of the male have been less well studied. As stress induces intracerebral oxytocin release independently of gender, we postulated that central oxytocin may play a role in the control of stress responses. In both male and virgin female rats, oxytocin receptor blockade in the brain by intracerebral infusion of a selective oxytocin antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)2, Thr4] OVT; 0.75 microgram/5 microliter increased the activity of the hypothalamo-pituitary-adrenal (HPA) axis as indicated by a significantly enhanced basal and stress-induced (exposure to the elevated plus-maze, forced swimming) secretion of corticotropin (ACTH) and corticosterone into blood. The anxiety-related behaviour on the plus-maze was not altered by the antagonist in either males or females. Infusion of the oxytocin antagonist into the hypothalamic paraventricular nucleus by reversed microdialysis resulted in a significant increase in basal release of ACTH in both male and virgin female rats. These results demonstrate a novel, gender-independent physiological function of endogenous brain oxytocin in the regulation of neuroendocrine stress responses. Under basal conditions, the inhibition of the HPA axis occurs, at least in part, within the paraventricular nucleus.  相似文献   

15.
The amygdala plays a pivotal role in the generation of appropriate responses to emotional stimuli. In the case of emotional stressors, these responses include activation of the hypothalamic-pituitary-adrenal (HPA) axis. This effect is generally held to depend upon the central nucleus of the amygdala, but recent evidence suggests a role for the medial nucleus. In the present study, c-fos expression, amygdala lesion and retrograde tracing experiments were performed on adult rats in order to re-evaluate the role of the central as opposed to the medial amygdala in generating neuroendocrine responses to an emotional stressor. Brief restraint (15 min) was used as a representative emotional stressor and was found to elicit c-fos expression much more strongly in the medial than central nucleus of the amygdala; relatively few Fos-positive cells were seen in other amygdala nuclei. Subsequent experiments showed that ibotenic acid lesions of the medial amygdala, but not the central amygdala, greatly reduced restraint-induced activation of cells of the medial paraventricular nucleus, the site of the tuberoinfundibular corticotropin-releasing factor cells that constitute the apex of the HPA axis. Medial amygdala lesions also reduced the activation of supraoptic and paraventricular nucleus oxytocinergic neurosecretory cells that commonly accompanies stress-induced HPA axis activation in rodents. To assess whether the role of the medial amygdala in the control of neuroendocrine cell responses to emotional stress might involve a direct projection to such cells, retrograde tracing of amygdala projections to the paraventricular nucleus was performed in combination with Fos immunolabelling. This showed that although some medial amygdala cells activated by exposure to an emotional stressor project directly to the paraventricular nucleus, the number is very small. These findings provide the first direct evidence that it is the medial rather than the central amygdala that is critical to hypothalamic neuroendocrine cell responses during an emotional response, and also provide the first evidence that the amygdala governs oxytocin as well as HPA axis responses to an emotional stressor.  相似文献   

16.
In the adult, corticotropin-releasing hormone (CRH) is the key mediator for the behavioural and neuroendocrine response to stress. It has also been hypothesized that, during postnatal development of the stress system, CRH controls the activity of the HPA axis and mediates the effects of early disturbances, e.g. 24 h of maternal deprivation. In the current study we investigated the function of specific brain corticotropin-releasing hormone receptor type 1 (CRHR1) subpopulations in the control of the HPA axis during postnatal development under basal conditions as well as after 24 h of maternal deprivation. We used two conditional CRHR1-deficient mouse lines which lack this receptor, either specifically in forebrain and limbic structures (Cam-CRHR1) or in all neurons (Nes-CRHR1). Basal circulating corticosterone was increased in Nes-CRHR1 mice compared to controls. Corticosterone response to maternal deprivation was significantly increased in both CRHR1-deficient lines. In the paraventricular nucleus, Cam-CRHR1 animals displayed enhanced CRH and decreased vasopressin expression levels. In contrast, gene expression in Nes-CRHR1 pups was strikingly similar to that in maternally deprived control pups. Furthermore, maternal deprivation resulted in an enhanced response of Cam-CRHR1 pups in the brain, while expression levels in Nes-CRHR1 mouse pups were mostly unchanged. Our results demonstrate that brainstem and/or hypothalamic CRHR1 contribute to the suppression of basal corticosterone secretion in the neonate, while limbic and/or forebrain CRHR1 dampen the activation of the neonatal HPA axis induced by maternal deprivation.  相似文献   

17.
Mammals respond to challenging situations with characteristic changes in their behaviour as well as in autonomic and neuroendocrine parameters aimed at reinstating their disturbed homeostasis. Among such so-called coping strategies, alterations of the hypothalamic-pituitary-adrenal (HPA) axis play a crucial role. Today it is generally accepted that parvocellular neurones of the hypothalamic paraventricular nucleus control the secretion of corticotropin and corticosterone by synthesising and releasing both the corticotropin-releasing hormone and vasopressin (AVP). Recent evidence supports and embellishes the old hypothesis that AVP and the structurally related neuropeptide, oxytocin, originating from the hypothalamic-neurohypophysial system (HNS) might directly affect HPA axis activity. This review presents data supporting the concept of HNS effects on HPA axis activity and outlines their possible impact on some aspects of behavioural regulation and psychopathology.  相似文献   

18.
Lesioning the ventral hippocampal formation (vHF) in the neonatal rat with an excitotoxin replicates several features of schizophrenia. Similar lesions in the adult rat disrupt the normal constraint of neuroendocrine responses to environmental stressors, which is of potential interest because the enhanced HPA axis and antidiuretic hormone activity in schizophrenia is linked to acute stress and hippocampal formation (HF) pathology. In the current study, we investigated the effects of neonatal ventral hippocampal formation lesions (NVHFL) on plasma adrenocorticotropin hormone (ACTH) and arginine vasopressin (AVP) responses following a 2-min acoustic stressor in the adult rat. Levels of the two hormones did not differ between SHAM-operated and NVHFL animals in their home cages. ACTH levels doubled in SHAM-operated animals immediately following stress, but increased more than six-fold in the NVHFL group. AVP levels were halved immediately following stress in SHAM-operated animals, but did not change significantly in NVHFL. Findings could not be attributed to intervening factors known to influence neuroendocrine activity. Thus, NVHFL appear to disrupt the HF-mediated constraint of neuroendocrine responses to stress, and model the neuroendocrine dysfunction seen in schizophrenia. We posit that clarification of how NVHFL alters relatively “simple”, well characterized, and phylogenetically preserved systems, such as the neuroendocrine system, may provide insight into the mechanism of hippocampal pathology in schizophrenia.  相似文献   

19.
There has been little research on effects of chronic stressors on neuroendocrine function in adolescence despite increasing evidence of enduring effects of stressors during this period on behaviour in adulthood. We previously reported that social stress (SS: daily 1 h isolation and new cage partner for 16 days) in adolescence altered locomotor responses to psychostimulants in adulthood. Here, we investigated neuroendocrine responses over the duration of the procedure that may underlie the enduring effects of SS. SS rats were compared to rats undergoing daily isolation only (ISO) and controls (CTL) to determine responses to acute and repeated isolation with and without social instability. At 30 days of age (first isolation), higher plasma corticosterone and corticotrophin-releasing hormone (CRH) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus and in the central nucleus of the amygdala (CeA) were found in males caged with a new partner (SS) after isolation than those returned to their original partner (ISO). On day 45, SS males and females showed less habituation (higher bioactive levels of corticosterone based on plasma corticosterone and corticosteroid binding globulin levels) to the 16th episode of isolation than did ISO. SS and ISO had higher baseline expression of CRH mRNA in the PVN on day 45 than did CTL, and only CTL had increased levels after isolation. CRH mRNA expression in the CeA increased to a first isolation in CTL and to a 16th isolation in SS but not in ISO males. Modest differences in social interactions were observed between SS and ISO when returned to their cages after isolation. The results suggest that mild social stressors in adolescence impede neuroendocrine adaptation to homotypic stressors. The resultant increase in exposure to glucocorticoids over adolescence may alter ongoing brain development and increase vulnerability to psychopathology.  相似文献   

20.
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised both by an ultradian pulsatile pattern of glucocorticoid secretion and an endogenous diurnal rhythm. Glucocorticoid feedback plays a major role in regulating HPA axis activity and this mechanism occurs via two different receptors: mineralocorticoid (MR) and glucocorticoid receptors (GR). In the present study, the effects of both acute and subchronic treatment with the GR antagonist Org 34850 on basal and stress-induced HPA axis activity in male rats were evaluated. To investigate the effect of Org 34850 on basal diurnal corticosterone rhythm over the 24-h cycle, an automated blood sampling system collected samples every 10 min. Acute injection of Org 34850 (10 mg/kg, s.c.) did not affect basal or stress-induced corticosterone secretion, but was able to antagonise the inhibitory effect of the glucocorticoid agonist methylprednisolone on stress-induced corticosterone secretion. However, 5 days of treatment with Org 34850 (10 mg/kg, s.c., two times a day), compared to rats treated with vehicle (5% mulgofen in 0.9% saline, 1 ml/kg, s.c.), increased corticosterone secretion over the 24-h cycle and resulted in changes in the pulsatile pattern of hormone release, but had no significant effect on adrenocorticotrophic hormone secretion or on stress-induced corticosterone secretion. Subchronic treatment with Org 34850 did not alter GR mRNA expression in the hippocampus, paraventricular nucleus of the hypothalamus or anterior-pituitary, or MR mRNA expression in the hippocampus. Our data suggest that a prolonged blockade of GRs is required to increase basal HPA axis activity. The changes observed here with ORG 34850 are consistent with inhibition of GR-mediated negative feedback of the HPA axis. In light of the evidence showing an involvement of dysfunctional HPA axis in the pathophysiology of depression, Org 34850 could be a potential treatment for mood disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号