首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we provided evidence for a directional distortion of the endpoints of movements to memorized target locations. This distortion was similar to a perceptual distortion in direction discrimination known as the oblique effect so we named it the “motor oblique effect”. In this report we analyzed the directional errors during the evolution of the movement trajectory in memory guided and visually guided pointing movements and compared them with directional errors in a perceptual experiment of arrow pointing. We observed that the motor oblique effect was present in the evolving trajectory of both memory and visually guided reaching movements. In memory guided pointing the motor oblique effect did not disappear during trajectory evolution while in visually guided pointing the motor oblique effect disappeared with decreasing distance from the target and was smaller in magnitude compared to the perceptual oblique effect and the memory motor oblique effect early on after movement initiation. The motor oblique effect in visually guided pointing increased when reaction time was small and disappeared with larger reaction times. The results are best explained using the hypothesis that a low level oblique effect is present for visually guided pointing movements and this effect is corrected by a mechanism that does not depend on visual feedback from the trajectory evolution and might even be completed during movement planning. A second cognitive oblique effect is added in the perceptual estimation of direction and affects the memory guided pointing movements. It is finally argued that the motor oblique effect can be a useful probe for the study of perception–action interaction.  相似文献   

2.
Irregularities in the velocity profile near the end of pointing movements have been interpreted as corrective submovements whose purpose is to provide accuracy of pointing to the target. The purpose of the present study was to investigate whether two additional factors related to biomechanical properties of the arm also cause submovements. First, motion termination and stabilization of the limb in the final position required by a discrete pointing task may contribute to submovements. Second, inaccurate regulation of interactive torque at the joints may also cause submovements. To investigate the contributions of these two biomechanical factors and the traditionally considered factor of pointing accuracy, the incidence of submovements was analyzed during three types of experimental manipulations. In addition to target size manipulations (small and large targets), conditions for motion termination were manipulated by examining discrete movements (which terminated at the target) and reciprocal movements (which reversed direction without dwelling on the target). Interaction torques were varied by using targets that require different shoulder–elbow coordination patterns. Submovements were detected in 41% of all analyzed movements. Data supported influences from the accuracy and motion termination factors but not from the interactive torque regulation factor on submovement incidence. Gross submovements were associated with motion termination; fine submovements primarily with accuracy demands. These findings and the analysis of temporal movement characteristics suggest that motion termination is an extra movement component that makes control of discrete movements different to control of reciprocal movements. Implications of the findings to a noise-related interpretation of Fitts law are discussed. The study emphasizes the influence of arm biomechanics on endpoint kinematics.  相似文献   

3.
This study investigated whether the execution of an accurate pointing response depends on a prior saccade orientation towards the target, independent of the vision of the limb. A comparison was made between the accuracy of sequential responses (in which the starting position of the hand is known and the eye centred on the target prior to the onset of the hand pointing movement) and synergetic responses (where both hand and gaze motions are simultaneously initiated on the basis of unique peripheral retinal information). The experiments were conducted in visual closed-loop (hand visible during the pointing movement) and in visual openloop conditions (vision of hand interrupted as the hand started to move). The latter condition eliminated the possibility of a direct visual evaluation of the error between hand and target during pointing. Three main observations were derived from the present work: (a) the timing of coordinated eye-head-hand pointing at visual targets can be modified, depending on the executed task, without a deterioration in the accuracy of hand pointing; (b) mechanical constraints or instructions such as preventing eye, head or trunk motion, which limit the redundancy of degrees of freedom, lead to a decrease in accuracy; (c) the synergetic movement of eye, head and hand for pointing at a visible target is not trivially the superposition of eye and head shifts added to hand pointing. Indeed, the strategy of such a coordinated action can modify the kinematics of the head in order to make the movements of both head and hand terminate at approximately the same time. The main conclusion is that eye-head coordination is carried out optimally by a parallel processing in which both gaze and hand motor responses are initiated on the basis of a poorly defined retinal signal. The accuracy in hand pointing is not conditioned by head movement per se and does not depend on the relative timing of eye, head and hand movements (synergetic vs sequential responses). However, a decrease in the accuracy of hand pointing was observed in the synergetic condition, when target fixation was not stabilised before the target was extinguished. This suggests that when the orienting saccade reaches the target before hand movement onset, visual updating of the hand motor control signal may occur. A rapid processing of this final input allows a sharper redefinition of the hand landing point.  相似文献   

4.
In previous studies we observed a pattern of systematic directional errors when humans pointed to memorized visual target locations in two-dimensional (2-D) space. This directional error was also observed in the initial direction of slow movements toward visual targets or movements to kinesthetically defined targets in 2-D space. In this study we used a perceptual experiment where subjects decide whether an arrow points in the direction of a visual target in 2-D space and observed a systematic distortion in direction discrimination known as the "oblique effect." More specifically, direction discrimination was better for cardinal directions than for oblique. We then used an equivalent measure of direction discrimination in a task where subjects pointed to memorized visual target locations and showed the presence of a motor oblique effect. We finally modeled the oblique effect in the perceptual and motor task using a quadratic function. The model successfully predicted the observed direction discrimination differences in both tasks and, furthermore, the parameter of the model that was related to the shape of the function was not different between the motor and the perceptual tasks. We conclude that a similarly distorted representation of target direction is present for memorized pointing movements and perceptual direction discrimination.  相似文献   

5.
Summary Some aspects of the manner in which the central nervous system uses sensory information for the guidance of eye and arm movements were investigated. When subjects experience apparent motion of their restrained forearm, induced by vibration of their biceps muscle in the dark, they are able to pursue with their eyes at least part of this motion and to point with their nonvibrated limb to the apparent location of the vibrated arm. The presence of a small target light on the vibrated hand limits the extent of illusory change in limb position and results in illusory motion of the target light in the same direction as the arm motion. When asked to indicate the spatial position of the light or hand, subjects still point with their nonvibrated arm to the apparent locations. Although visual pursuit of the illusory motion of the forearm can still be elicited in the presence of the target light on the hand, the subjects' eyes remain steadily fixating the stationary target light when they are instructed to track its illusory motion. These findings demonstrate that sensory and motor factors affecting the perception of visual direction and the guidance of arm and eye movements can be differentially employed at several levels of central nervous control.  相似文献   

6.
During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques-loads arising at one joint that depend on motion about other joints.  相似文献   

7.
Visually guided arm movements such as reaching or pointing are accompanied by saccadic eye movements that typically begin prior to motion of the arm. In the past, some degree of coupling between the oculomotor and limb motor systems has been demonstrated by assessing the relative onset times of eye and arm movement, and by the demonstration of a gap effect for arm movement reaction times. However, measures of limb movement onset time based on kinematics are affected by factors such as the relatively high inertia of the limb and neuromechanical delays. The goal of the present study was thus to assess the relative timing of rapid eye and arm movements made to visual targets by examining electromyographic (EMG) activity of limb muscles in conjunction with eye and arm position measures. The observation of a positive correlation between eye and limb EMG onset latencies, and the presence of a gap effect for limb EMG onset times (a reduction in reaction time when a temporal gap is introduced between the disappearance of a central fixation point and the appearance of a new target) both support the idea that eye and arm movement initiation are linked. However, limb EMG onset in most cases precedes saccade onset, and the magnitude of EMG activity prior to eye movement is correlated with both the direction and amplitude of the upcoming arm movement. This suggests that, for the rapid movements studied here, arm movement direction and distance are specified prior to the onset of saccades.  相似文献   

8.
No automatic pilot for visually guided aiming based on colour   总被引:5,自引:4,他引:1  
It has been claimed that visually guided limb movements are automatically corrected in response to a change in target location but not when the same change in target is cued through a colour switch (Pisella et al. 2000). These findings were based solely on limb endpoint data. Here we examine the kinematic trajectory of the hand during the entire movement. Participants pointed rapidly to a target object that could change position either by changing spatial location, or by switching colour with a second object. Participants performed in two instructional conditions: a "go" condition to index intentional movements and a "stop" condition in which failures to stop pointing indexed automatic limb guidance. Kinematic analysis indicated efficient intentional pointing in both location and colour change conditions. However, only targets that changed spatial location elicited involuntary limb modifications and these occurred within 150 ms of the change. This conclusion held even after baseline differences in the efficiency of processing colour-defined targets were taken into account, thereby strengthening the claim of a strongly automatic pilot for visually guided limb movements.  相似文献   

9.
Impairments in control of multi-joint arm movements in Parkinsons Disease (PD) were investigated. The PD patients and age-matched elderly participants performed cyclical arm movements, tracking templates of a large circle and four differentially oriented ovals on a horizontal table. The wrist was immobilized and the movements were performed with shoulder and elbow rotations. The task was performed with and without vision at a cycling frequency of 1.5 Hz. Traces of the arm endpoint, joint-motion parameters represented by range of motion and relative phase, and joint-control characteristics represented by amplitude and timing of muscle torque were analyzed. The PD patients provided deformations of the template shapes that were not observed in movements of elderly controls. The deformations were consistent for each shape but differed across the shapes, making quantification of impairments in the endpoint movement difficult. In contrast, the characteristics of joint control and motion demonstrated systematic changes across all shapes in movements of PD patients, although some of these changes were observed only without vision. A specification of the PD influence was observed at the level of joint control and it was not distinguishable in joint and endpoint motion, because of the property of multi-joint movements during which control at each joint influences motion at the other joints. The results suggest that inability of PD patients to provide fine muscle torque regulation coordinated across the joints contributes to the altered endpoint trajectories during multi-joint movements. The study emphasizes the importance of the torque analysis when deficits in multi-joint movements are investigated, because specific impairments that can be detected in joint-control characteristics are difficult to trace in characteristics of joint and endpoint kinematics, because of interactions between joint motions.  相似文献   

10.
In previous studies a systematic directional error (the “motor oblique effect”) was found in 2D memory pointing movements of healthy adults. In this study we extend these observations to observe that healthy children displayed the same motor oblique effect. In contrast other spatial and temporal movement parameters (mean amplitude error, square directional and amplitude error, latency and the time to maximum velocity) changed with increasing age. Memory delay increased the square directional and amplitude error independent of age. Finally failure of movement inhibition during the delay was more frequent in children compared to adults. These results favor the hypothesis that the motor oblique effect related to perceptual processing biases is constant from childhood while other movement parameters are modulated by age reflecting the continuing optimization of motor control from childhood to adulthood. The dissociation of memory and age effects suggests that motor working memory is already mature in young children.  相似文献   

11.
It has been shown that motion after-effects (MAE) may affect the perceived position of moving objects and, more recently, that MAE signals can also affect pursuit eye movements: smooth pursuit eye movements are favoured by the illusory motion percept that is caused by motion adaptation. Here we investigated the relationship between MAE and arm movements. The objective of our research was: (1) to analyze possible effects of MAE when the arm tracks the changing position of a moving object, and (2) to investigate the influence of MAE on pointing movements to both static and moving targets. Our results show that the (unseen) hand position was trailing the target much less when target and MAE direction was the same. At the end of manual pursuit, subjects caught up with the moving target. However, when target direction was opposite the MAE, subjects’ hands moved more slowly, causing larger lags between the target and the hand position (Experiment 1). In Experiment 2, we found a similar effect of motion signals when subjects pointed to a moving target but found no effect of MAE when pointing to a static object (Experiment 3). We conclude that the effect of motion signals is only revealed when we need to update the changing position of a target.  相似文献   

12.
Recent studies have shown that the hand-pointing movements within arm's reach remain invariant whether the trunk is recruited or not or its motion is unexpectedly prevented. This suggests the presence of compensatory arm-trunk coordination minimizing the deflections of the hand from the intended trajectory. It has been postulated that vestibular signals elicited by the trunk motion and transmitted to the arm motor system play a major role in the compensation. One prediction of this hypothesis is that vestibular stimulation should influence arm posture and movement during reaching. It has been demonstrated that galvanic vestibular stimulation (GVS) can influence the direction of pointing movements when body motion is restrained. In the present study, we analyzed the effects of GVS on trunk-assisted pointing movements. Subjects either moved the hand to a target or maintained a steady-state posture near the target, while moving the trunk forward with the eyes closed. When GVS was applied, the final position of the hand was deviated in the lateral and sagittal direction in both tasks. This was the result of two independent effects: a deviation of the trunk trajectory and a modification of the arm position relative to the trunk. Thus, the vestibular system might be directly involved not only in the control of trunk motion but also in the arm-trunk coordination during trunk-assisted reaching movements. Electronic Publication  相似文献   

13.
When submitted to a visuomotor rotation, subjects show rapid adaptation of visually guided arm reaching movements, indicated by a progressive reduction in reaching errors. In this study, we wanted to make a step forward by investigating to what extent this adaptation also implies changes into the motor plan. Up to now, classical visuomotor rotation paradigms have been performed on the horizontal plane, where the reaching motor plan in general requires the same kinematics (i.e., straight path and symmetric velocity profile). To overcome this limitation, we considered vertical and horizontal movement directions requiring specific velocity profiles. This way, a change in the motor plan due to the visuomotor conflict would be measurable in terms of a modification in the velocity profile of the reaching movement. Ten subjects performed horizontal and vertical reaching movements while observing a rotated visual feedback of their motion. We found that adaptation to a visuomotor rotation produces a significant change in the motor plan, i.e., changes to the symmetry of velocity profiles. This suggests that the central nervous system takes into account the visual information to plan a future motion, even if this causes the adoption of nonoptimal motor plans in terms of energy consumption. However, the influence of vision on arm movement planning is not fixed, but rather changes as a function of the visual orientation of the movement. Indeed, a clear influence on motion planning can be observed only when the movement is visually presented as oriented along the vertical direction. Thus vision contributes differently to the planning of arm pointing movements depending on motion orientation in space.  相似文献   

14.
The present study identifies the mechanics of planar reaching movements performed by monkeys (Macaca mulatta) wearing a robotic exoskeleton. This device maintained the limb in the horizontal plane such that hand motion was generated only by flexor and extensor motions at the shoulder and elbow. The study describes the kinematic and kinetic features of the shoulder, elbow, and hand during reaching movements from a central target to peripheral targets located on the circumference of a circle: the center-out task. While subjects made reaching movements with relatively straight smooth hand paths and little variation in peak hand velocity, there were large variations in joint motion, torque, and power for movements in different spatial directions. Unlike single-joint movements, joint kinematics and kinetics were not tightly coupled for these multijoint movements. For most movements, power generation was predominantly generated at only one of the two joints. The present analysis illustrates the complexities inherent in multijoint movements and forms the basis for understanding strategies used by the motor system to control reaching movements and for interpreting the response of neurons in different brain regions during this task.  相似文献   

15.
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement.  相似文献   

16.
Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit—in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.  相似文献   

17.
We investigated whether the order of gaze shifts affected spatial and temporal aspects of discrete bimanual pointing movements. Ten male participants concurrently executed bimanual pointing movements as quickly and accurately as possible to left and right lateral targets presented with the same and different amplitudes. They were asked to gaze initially at the left target and subsequently at the right target, or vice versa. Each hand showed less variable error and a faster reaction when the initial gaze shifted to the corresponding target than when the subsequent gaze shifted to it. For the same-amplitude targets, constant error (CE) was not influenced by the gaze order conditions. However, for the different-amplitude targets, CE for the short-amplitude target became larger when they initially gazed at the long-amplitude target than when they initially gazed at the short-amplitude target. The larger overshoot of the hand for the short-amplitude target occurred when the participants could not afford to foveate the target. Our results suggest that the order of gaze shifts determines whether asymmetric amplitude assimilation between the two hands occurs or not. Fast, consistent, and accurate bimanual pointing movements might be attributable to updating gaze-centered representations of target positions.  相似文献   

18.
The directional accuracy of pointing arm movements to remembered targets in conditions of increasing memory load was investigated using a modified version of the Sternbergs context-recall memory-scanning task. Series of 2, 3 or 4 targets (chosen randomly from a set of 16 targets around a central starting point in 2D space) were presented sequentially, followed by a cue target randomly selected from the series excluding the last one. The subject had to move to the location of the next target in the series. Correct movements were those that ended closer to the instructed target than any other target in the series while all other movements were considered as serial order errors. Increasing memory load resulted in a large decrease in the directional accuracy or equivalently in the directional information transmitted by the motor system. The constant directional error varied with target direction in a systematic fashion reproducing previous results and suggesting the same systematic distortion of the representation of direction in different memory delay tasks. The constant directional error was not altered by increasing memory load, contradicting our hypothesis that it might reflect a cognitive strategy for better remembering spatial locations in conditions of increasing uncertainty. Increasing memory load resulted in a linear increase of mean response time and variable directional error and a non-linear increase in the percentage of serial order errors. Also the percentage of serial order errors for the last presented target in the series was smaller (recency effect). The difference between serial order and directional spatial accuracy is supported by neurophysiological and functional anatomical evidence of working memory subsystems in the prefrontal cortex.This work was supported by internal funding from Aeginition University Hospital  相似文献   

19.
Kinematic abnormalities of fast multijoint movements in cerebellar ataxia include abnormally increased curvature of hand trajectories and an increased hand path and are thought to originate from an impairment in generating appropriate levels of muscle torques to support normal coordination between shoulder and elbow joints. Such a mechanism predicts that kinematic abnormalities are pronounced when fast movements are performed and large muscular torques are required. Experimental evidence that systematically explores the effects of increasing movement velocities on movement kinematics in cerebellar multijoint movements is limited and to some extent contradictory. We, therefore, investigated angular and hand kinematics of natural multijoint pointing movements in patients with cerebellar degenerative disorders and healthy controls. Subjects performed self-paced vertical pointing movements with their right arms at three different target velocities. Limb movements were recorded in three-dimensional space using a two-camera infrared tracking system. Differences between patients and healthy subjects were most prominent when the subjects performed fast movements. Peak hand acceleration and deceleration were similar to normals during slow and moderate velocity movements but were smaller for fast movements. While altering movement velocities had little or no effect on the length of the hand path and angular motion of elbow and shoulder joints in normal subjects, the patients exhibited overshooting motions (hypermetria) of the hand and at both joints as movement velocity increased. Hypermetria at one joint always accompanied hypermetria at the neighboring joint. Peak elbow angular deceleration was markedly delayed in patients compared with normals. Other temporal movement variables such as the relative timing of shoulder and elbow joint motion onsets were normal in patients. Kinematic abnormalities of multijoint arm movements in cerebellar ataxia include hypermetria at both the elbow and the shoulder joint and, as a consequence, irregular and enlarged paths of the hand, and they are marked with fast but not with slow movements. Our findings suggest that kinematic movement abnormalities that characterize cerebellar limb ataxia are related to an impairment in scaling movement variables such as joint acceleration and deceleration normally with movement speed. Most likely, increased hand paths and decomposition of movement during slow movements, as described earlier, result from compensatory mechanisms the patients may employ if maximum movement accuracy is required.  相似文献   

20.
The effects of short-term, constant practice on the kinematics of a multi-joint pointing movement were studied in the hemiparetic arm of 20 chronic patients with unilateral left cerebro-vascular accident (CVA) and in 10 age- and sex-matched healthy individuals. Practice consisted of a single session of 70 pointing movements made with the right arm. Movements were made from a target located beside the body to one in the contralateral workspace, in front of the body. Vision of the final hand position was allowed after every 5th trial. At the beginning of practice, stroke patients made slower, less precise and more segmented movements, characterised by smaller active ranges of elbow and shoulder motion, disrupted elbow–shoulder coordination, as well as greater trunk movement compared with healthy subjects. With practice, healthy subjects and some patients made faster and more precise movements. These tendencies were revealed only after many repetitions (up to 55 for those with severe hemiparesis), whereas changes in healthy individuals occurred after fewer trials (approximately 20). In addition, the patients decreased movement segmentation with practice. In healthy subjects, faster movement times may be attributed to better shoulder/elbow movement timing in the first half of the reach, whereas improvement of precision was not correlated with any changes in the movement variables. In patients, improvements were accomplished differently depending on arm motor severity. For some patients with mild-to-moderate clinical symptoms, practice resulted in better timing of shoulder/elbow movements with less trunk rotation in middle to late reach. Patients with more severe impairment also improved shoulder/elbow movement timing in mid-reach but used more compensatory trunk rotation. The results suggest that even one session of repetitive practice of a multi-joint pointing task leads to improvements in movement performance-based outcome measures, but the mechanisms of improvement may vary with the individual's level of motor impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号