首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Afferent projections to the dorsal pons of the rat have been studied using the horseradish peroxidase (HRP) technique. HRP injections were made in each of the following regions: the vicinity of the locus coeruleus (LC); the periventncular gray, medial to the LC; the medial parabrachial region, lateral to the LC; the ventral cerebellum, dorsal to the LC; and the pontine reticular formation, ventral to the LC. Because intracranial self-stimulation (ICSS) has been obtained in these regions, the afferents have been discussed in terms of their possible contributions to that behavior. Previous ICSS studies of the dorsal pons have focussed on the LC as playing a central role. Presently identified inputs to the LC include: the dorsal raphe nucleus: the ventrolateral periaqueductal gray: the pontine reticular formation: the areas that contain the pontine and medullary noradrenergic and adrenergic cell groups: the lateral hypothalamic area: the contralateral LC: the deep cerebellar nuclei: the ventrolateral and parafascicular thalamic nuclei: and the parabrachial regions of the pons and midbrain.  相似文献   

2.
The rostral pons of the cat and rhesus monkey were examined for the presence of labeled cells following injections of horseradish peroxidase (HRP) into the lumbar spinal cord. Labeled cells were found in the ipsilateral dorsolateral pontine tegmentum and in the contralateral ventrolateral pontine reticular formation. In both the cat and monkey, labeled cells were located in the nucleus locus coeruleus, nucleus subcoeruleus, in or near the Kölliker-Fuse nucleus, and in the ventral part of the lateral parabrachial nucleus. There is a striking similarity between the distribution of HRP-labeled cells in the dorsolateral pontine tegmentum of the cat and monkey and that of catecholamine-containing cells observed in this area in previous studies.  相似文献   

3.
Connections of the habenular complex to the nuclei of the midline in the midbrain (interpeduncularis, medianus raphe, and dorsalis raphe) have been studied classically by anterograde degeneration in the monkey, the cat, and marsupials. Passing fibers from the medial septal nucleus and lateral preoptic area, however, have also been demonstrated which can complicate interpretation of these results. In this paper the habenular projections were studied in the rat by the retrograde axonal transport of horseradish peroxidase (HRP). After HRP injections in the medianus raphe nucleus labelled neurons appeared in the lateral habenular nucleus and parafascicular nucleus. Labelled neurons were also found in the lateral habenular nucleus after injections in either the dorsalis raphe nucleus or the caudal central gray substance. The habenular projections were always bilateral. There were no labelled neurons in the medial habenular nucleus after HRP injections in the medianus raphe nucleus, dorsalis raphe nucleus, or central gray. These data stress the lateral habenular influences upon the raphe nuclei, especially on the dorsalis raphe neurons which have usually been thought of as functionally related to other brainstem structures. The present results suggest also that in the rat the lateral habenular nucleus might be the link between basal forbrain inputs and the limbic midbrain area. Thus, the raphe nuclei of the midbrain appear to be crucial regions for integrating two descending circuits: first, a limbic (through septum) circuit, and, second, a basal forebrain (through lateral habenular-preoptic area) circuit.  相似文献   

4.
We report robust correlations between concentrations of the neurotransmitters norepinephrine and serotonin in the locus coeruleus and the dorsal raphe nucleus of the brainstem in rats analyzed at 7 different time points over 24 h. We found similar circadian rhythmicities for both monoamines with acrophases just before the onset of the dark period. The monoamine concentrations diminished and the significant intercorrelation between norepinephrine and serotonin in the locus coeruleus disappeared during the night suggestive of a noradrenergic stimulation of dorsal raphe serotonin during the day. Timing of experiments is crucially important in studies on brain monoaminergic indices and their interrelationships.  相似文献   

5.
Single unit activity of serotonergic (5-HT) neurons in the nucleus raphe dorsalis (NRD) and of noradrenergic (NE) neurons in the locus coeruleus (LC) was recorded in relation to the cardiac cycle in awake, freely moving cats. The discharge of NRD-5-HT neurons showed no relationship to the cardiac cycle, while LC-NE neurons displayed a cardiac periodicity such that the units were most likely to fire from 80 to 180 ms after the peak of the cardiac r-wave (diastole), and least likely to fire during the period from 40 ms before to 60 ms after the r-wave (systole). The strength of this periodicity was inversely related to the discharge rate of individual cells. Exposure to a noxious environmental stimulus (15 min of 100 dB white noise) greatly attenuated the cardiac relationship of LC-NE neurons. A blood volume expansion of approximately 15% (9.0 ml/kg b. wt.) decreased unit rate by about 25%, but did not alter either the timing or the magnitude of the LC-NE cardiac relationship. These data are discussed in terms of the participation of NRD-5-HT and LC-NE neurons in cardiovascular function, and the possible role of LC-NE neurons in short-and long-term volume homeostasis.  相似文献   

6.
7.
The microiontophoretic administration of horseradish peroxidase (HRP) to the olfactory bulb (OB) or olfactory tubercle (OT) in cats and rats yielded similar results in both species. After an OB HRP-injection ipsilateral and contralateral labelled neurons were seen in the piriform cortex, polymorphic layer of OT, magnocellular preoptic region, lateral hypothalamus, ventromedial hypothalamic nucleus and locus coeruleus (LC). In both species more labelled structures were found after an OT HRP-injection than after an OB HRP-injection. The substantia nigra in rats was more abundantly labelled after an OT injection than after an OB one. In cats the dorsal and the ventral raphe were also labelled. In either species, OT HRP-injections resulted in a higher frequency of LC labelled neurons than after OB injections. These results favor the hypothesis that the OT plays an important role as a relay station for efferent inflow from the brain stem en route to the OB.  相似文献   

8.
Previously brain norepinephrine (NE) neurons in the locus coeruleus (LC) have been shown to respond profoundly to external, environmental stimuli and are thought to be involved in behavioral functions such as vigilance, alarm and anxiety reactions to novel and, especially, threatening stimuli. Here we have used electrophysiological techniques to show that distension of the urinary bladder, the distal colon, rectum or the stomach causes pronounced activation responses of brain NE-LC neurons of the rat essentially without concomitant responses in splanchnic, sympathetic nerve activity (NE-SNA), thus indicating the non-noxious character of these internal stimuli. Our findings directly implicate the LC in micturition and, probably, defecation and we suggest that a high NE-LC activity may facilitate these phasic, vegetative events. In addition, the results implicate the LC as a pivotal system by which autonomic or visceral functions can affect behavior and, conversely, by which environmental stress can affect autonomic functions, for example in the opiate withdrawal syndrome.  相似文献   

9.
Electrophysiological studies were performed to elucidate the effect of 5-hydroxytryptamine (5-HT) originating in the dorsal raphe nucleus (DR) on neuronal activity in the lateral vestibular nucleus (LVN) neurons, using cats anesthetized with alpha-chloralose. LVN neurons were classified into monosynaptic and polysynaptic neurons according to their responses to vestibular nerve stimulation. Conditioning stimuli applied to the DR inhibited orthodromic spikes elicited by vestibular nerve stimulation predominantly in polysynaptic neurons of the LVN. The iontophoretic application of 5-HT also inhibited orthodromic spikes of the LVN neurons. A close correlation was observed between the effects of DR conditioning stimulation and iontophoretically applied 5-HT in the same neurons. These inhibitions with both treatments were antagonized during the application of methysergide, a 5-HT antagonist. In the majority of LVN polysynaptic neurons that responded to antidromic stimulation of the ipsilateral or contralateral abducens nucleus, orthodromic spikes elicited by vestibular nerve stimulation were inhibited by DR conditioning stimulation and the iontophoretic application of 5-HT. In contrast, LVN neurons that responded to antidromic stimulation of the vestibulospinal tract were rarely affected by these treatments. These results indicate that 5-HT derived from the DR inhibits the synaptic transmission of LVN polysynaptic neurons ascending to the abducens nucleus, and suggest that 5-HT derived from the DR is involved in the regulation of the vestibulo-ocular reflex.  相似文献   

10.
Mih  ly Haj  s  Trevor Sharp 《Brain research》1996,740(1-2):162-168
We recently reported raphe neurones which frequently fired spikes in short bursts. However, the action potentials were broad and the neurones fired in a slow and regular pattern, suggesting they were an unusual type of 5-hydroxytryptamine (5-HT) neurone. In the present study, we investigated whether these putative burst-firing 5-HT neurones project to the forebrain and whether all spikes fired in bursts propagate along the axon. In anaesthetised rats, electrical stimulation of the medial forebrain bundle evoked antidromic spikes in both burst-firing neurones and in single-spiking, classical 5-HT neurones recorded in the dorsal raphe nucleus. Although the antidromic spike latency of the single-spiking and burst-firing neurones showed a clear overlap, burst-firing neurones had a significantly shorter latency than single-spiking neurones. For both burst-firing neurones and classical 5-HT neurones, antidromic spikes made collisions with spontaneously occurring spikes. Furthermore, in all burst-firing neurones tested, first, second and third order spikes in a burst could be made to collide with an antidromic spike. Interestingly, in a small number of burst-firing neurones, antidromic stimulation evoked spike doublets, similar to those recorded spontaneously. From these data we conclude that burst-tiring neurones in the dorsal raphe nucleus project to the forebrain, and each spike generated by the burst propagates along the axon and could thereby release transmitter (5-HT).  相似文献   

11.
Afferent neurons projecting to the clitoris of the cat were identified by WGA-HRP tracing in the S1 and S2 dorsal root ganglia. An average of 433 cells were identified on each side of the animal. 85% and 15% of the labeled cells were located in the S1 and S2 dorsal root ganglia, respectively. The average cross sectional area of clitoral afferent neuron profiles was1, 479±627 μm2. Unilateral transection of the pudendal nerve reduced the number of labeled cells to 1% of that on the control side. Central projections of clitoral afferents were identified in the lumbo-sacral segments (L7-S3) of the spinal cord. HRP labeled fibers were located in the marginal zone on the medial side of dorsal horn and extended into the dorsal half of the dorsal gray commissure. Electrophysiological recordings detected axonal volleys in the pudendal nerve and S1 dorsal root in response to electrical stimulation (threshold, 1–4 V) of the clitoral surface. Estimated axonal conduction velocities ar the two sites ranged from 7–27 m/s and 0.6–30 m/s, respectively. Multi-unit recordings from dorsal roots in the lumbo-sacral segments revealed that non-noxious pressure stimulation of the clitoris evoked discharges in the S1 dorsal root. Small increases were also detected in the S2 and L7 roots. Single unit discharges recorded from S1 dorsal roots were activated by electrical stimulation of the clitoral surface at thresholds of 0.6–1.2 V and latencies of 1.5–1.8 ms (estimated conduction velocities of 24–30 m/s). Light constant pressure on the clitoris produced an initial burst of single unit firing (maximum frequencies 170–255 Hz) followed by rapid adaptation and a sustained firing (maximum 40 Hz) which was maintained during the stimulation. Tonic firing increased to an average maximum of 145 Hz at 6–8 g/mm2 pressure. These results indicate that the clitoris is innervated by mechano-sensitive myelinated afferent fibers in the pudental nerve which project centrally to the region of the dorsal commissure in the L7-S1 spinal cord.  相似文献   

12.
Anatomical evidence indicates the presence of projections from the lateral hypothalamus to serotonergic (5-hydroxytryptamine, 5-HT) neurons of the dorsal raphe nucleus (DR). Using dual probe microdialysis and extracellular recordings in the DR, we show that the application of GABAergic agents in the lateral hypothalamus modulates the activity of 5-HT neurons in the DR. GABA and bicuculline or baclofen, applied in the lateral hypothalamus significantly reduced and increased, respectively, the 5-HT output in the DR. Likewise, the intrahypothalamic application of GABA and bicuculline reduced (14/20 neurons) and increased (8/12 neurons), respectively, the firing rate of 5-HT neurons in the DR. A smaller percentage of neurons, however, were excited by GABA (3/20) and inhibited by bicuculline (1/12). Application of tetrodotoxin in the lateral hypothalamus suppressed the local 5-HT output and reduced that in the DR. The 5-HT output in the DR increased transiently soon after darkness. The hypothalamic application of GABA attenuated and that of bicuculline potentiated this spontaneous change with an efficacy similar to that seen in light conditions. These results indicate that the lateral hypothalamus is involved in the control of 5-HT activity in the DR, possibly through excitatory (major) and inhibitory (minor) inputs.  相似文献   

13.
The alpha 7 nicotinic acetylcholine receptor (nAChR) subunit can be assembled to form a homomeric-pentamer with high permeability to calcium. Although the expression of the alpha 7-nAChR has been demonstrated throughout the CNS, the neurochemical phenotype of neurons expressing alpha 7 remains to a large extent unknown. Using an antibody against the alpha 7 nAChR subunit, immunohistochemical staining was observed in rat dorsal raphe nucleus (DRN) and locus coeruleus (LC), serotonergic and noradrenergic brainstem nuclei, respectively. In both the DRN and LC, there appeared to be two histologically distinct alpha 7-expressing cell types as distinguished by size, i.e. large versus small diameter. In rats treated with either a serotonergic (5,7-dihydroxytryptamine) or noradrenergic (anti-dopamine-beta-hydroxylase saporin) neurotoxin, tryptophan hydroxylase and tyrosine hydroxylase immunostaining was abolished, respectively. Similarly, the alpha 7-positive large-diameter cells were no longer detectable, suggesting that these cells were serotonergic DRN and noradrenergic LC neurons. Indeed, double-labeling experiments revealed in the large cell types coexpression of alpha 7 with tryptophan hydroxylase in the DRN and with tyrosine hydroxylase in the LC of saline-treated rats. In contrast to the large-diameter cells, the alpha 7-positive small-diameter cells were neither serotonergic nor adrenergic, and were still detected in both the DRN and LC of lesioned rats. Moreover, cell counts revealed an increase number of these cells in lesioned rats with expression of alpha 7 in somal processes not seen in non-lesioned controls. Double labeling revealed coexpression of alpha 7 and GABA within the majority, but not all, of the toxin-resistant cells. The results of these studies suggest that both serotonergic and noradrenergic neurons express alpha 7 nAChRs. In addition, there appears to be a small-diameter cell-type in both the DRN and LC, possibly a GABAergic interneuron, expressing alpha 7 that may be regulated by neurotoxic injury.  相似文献   

14.
Neurochemical imbalance between noradrenergic and serotonergic systems has been postulated to underlie the pathophysiology of psychiatric illnesses involving mood disorders. The present study was designed to examined the possibility that serotonergic innervation of the locus coeruleus (LC) is abnormal in major depression, by measuring two proteins expressed by serotonergic neurons, but not by noradrenergic neurons, in the region of the LC. The specific binding of [(3)H]paroxetine to serotonin transporter (SERT) and of [(3)H]lazabemide to monoamine oxidase (MAO-B) were measured autoradiographically in tissue sections cut transversely at multiple levels along the rostro-caudal extent of the LC, as well as in the caudal portion of the dorsal raphe nucleus, from psychiatrically normal subjects and age-matched subjects with major depression. Under the conditions of the assays, [(3)H]paroxetine binding in the LC was specific for the SERT, based on the rank order of affinity of compounds for inhibiting [(3)H]paroxetine binding in the LC, i.e. citalopram > imipramine > desipramine > mazindol. The binding of [(3)H]paroxetine to SERT and [(3)H]lazabemide to MAO-B were higher in the raphe nuclei than in the LC. Comparison of control subjects to major depressive subjects revealed no differences in the amount of [(3)H]paroxetine binding to SERT and [(3)H]lazabemide to MAO-B in the LC, as well as in the raphe nuclei. These findings imply that serotonergic innervation of the LC is intact in major depression.  相似文献   

15.
IGARASHI, S., M. SASA AND S. TAKAORI. Feedback loop between locus coeruleus and spinal trigeminal nucleusneurons responding to tooth pulp stimulation in the rat. BRAIN RES. BULL. 4(1) 75–83, 1979.—Studies were performed to elucidate reciprocal relationships between locus coeruleus (LC) and spinal trigeminal nucleus (STN) neurons responding to tooth pulp (TP) stimulation using rats anesthetized with α-chloralose. LC conditioning stimulation inhibited STN field potential as well as orthodromic spike generation of STN neurons produced by ipsilateral TP stimulation, confirming the previous findings in cats that LC neurons played an inhibitory role in the orthodromic transmission in STN neurons. Forty-one out of 56 LC neurons were activated by ipsilateral TP stimulation and 12 neurons by stimulation of both ipsi- and contralateral TP. STN stimulation usually excited LC neurons with a significantly shorter latency than did TP stimulation, including three LC neurons with a latency of less than 2.0 msec. These results indicate the existence of input from TP to LC neurons via multisynapses. In addition, neurons antidromically activated by STN stimulation were found in LC. It is highly probable, therefore, that there is a feedback loop between LC and STN, which might control input from TP to STN.  相似文献   

16.
The purpose of this project was to investigate ethanol influence on the development of serotonin-containing (5-HT) neurons of the dorsal raphe nucleus in rat. Fetal tissue of embryonic day 17 from the dorsal brainstem was grafted to the anterior chamber of the eye of adult albino rats. The experimental group was exposed to 16% ethanol in the drinking water, and the control group received water ad libitum. After 4 weeks, morphological and electrophysiological evaluations were performed. Immunohistochemical analysis showed that 5-HT-immunoreactive fibers from ethanol-treated transplants had a disturbed outgrowth pattern into the host iris as compared to the control group. Furthermore, the outgrowth area and axon bundle formation was significantly greater in the control group than in the ethanol group. Electrophysiological recordings revealed a dose-dependent biphasic effect of locally applied ethanol on transplanted monoaminergic neurons. Low doses of ethanol (0.5-3 mM) induced an increase in basal firing rate of control neurons, while higher doses (10-100 mM) caused inhibition. However, monoaminergic neurons in the ethanol group showed a decreased neuronal sensitivity to locally applied ethanol. The same dose of locally applied ethanol which produced an excitation of neuronal activity in the ethanol transplants produced an inhibition in the control grafts. The dose-response curve was shifted to the right. The present results suggest that chronic ethanol exposure during early development leads to altered axonal outgrowth from brainstem 5-HT neurons, as well as decreased sensitivity of these neurons to locally applied ethanol.  相似文献   

17.
Li YQ  Li H  Kaneko T  Mizuno N 《Brain research》2001,900(1):1866-118
The morphology and electrophysiological properties of serotonergic and non-serotonergic projection neurons in the dorsal raphe nucleus (DRN) of the rat were examined in frontal brain slices. Biocytin was injected intracellularly into the intracellularly recorded neurons. Then the morphology of the recorded neurons was observed after histochemical visualization of biocytin. The recorded neurons extending their main axons outside the DRN were considered as projection neurons. Subsequently, serotonergic nature of the neurons was examined by serotonin (5-HT) immunohistochemistry. The general form of the dendritic trees is radiant and poorly branching in both 5-HT- and non-5-HT neurons. However, the dendrites of the 5-HT neurons were spiny, whereas those of the non-5-HT neurons were aspiny. The main axons of both 5-HT- and non-5-HT neurons were observed to send richly branching axon collaterals to the DRN, ventrolateral part of the periaqueductal gray and the midbrain tegmentum. In response to weak, long depolarizing current pulses, the 5-HT neurons displayed a slow and regular firing activity. The non-5-HT neurons fired at higher frequencies even when stronger current was injected. Some other differences in electrophysiological properties were also observed between the 5-HT-immunoreactive spiny projection neurons and the 5-HT-immunonegative aspiny projection neurons.  相似文献   

18.
By a double-labeling method combining the retrograde tracing of horseradish peroxidase and the immunocytochemical technique, serotonin-like immunoreactive neurons in the midbrain periaqueductal gray (PAG) and nucleus raphe dorsalis (DR) of the rat were observed to send projection fibers to the nucleus parafascicularis of the thalamus bilaterally with an ipsilateral dominance. These serotonin-containing projecting neurons were observed mainly at the middle-caudal levels of the ventrolateral subdivision of the PAG and less at the middle-rostral levels of the DR.  相似文献   

19.
The objective of the present study was to determine how c-fos gene expression in brainstem structures after a brief episode of social defeat stress is related to behavioral sensitization to cocaine challenge. Social stress was defined as defeat in a brief confrontation with an aggressive resident mouse and subsequent 20-min exposure to the resident's threats behind a protective screen. Mice were treated with cocaine (40 mg/kg, i.p.) immediately or 1 week after social defeat stress. Fos-like immunoreactive (Fos-LI) cell nuclei were analyzed in the ventral tegmental area (VTA), dorsal raphe nucleus (DR), periaqueductal grey area (PAG) and locus coeruleus (LC). One episode of social stress induced behavioral sensitization to cocaine as indicated by an augmented locomotor response to a challenge injection 7 days after a single defeat. In naive mice, social stress markedly increased the number of Fos-LI nuclei in the DR, PAG and LC, but not in the VTA. Similarly, cocaine administration resulted in a significantly increased number of Fos-LI nuclei in the same areas. Administration of cocaine immediately following social defeat significantly reduced the number of Fos-LI nuclei in the DR, PAG and LC. Cocaine-induced Fos expression returned in the PAG and DR, but not in the LC, 1 week after social stress. In conclusion, the present results suggest that the presence of brainstem Fos be related to the ability to express stress-induced behavioral sensitization to cocaine.  相似文献   

20.

Introduction

Alzheimer's disease (AD) progression follows a specific spreading pattern, emphasizing the need to characterize those brain areas that degenerate first. The brainstem's locus coeruleus (LC) is the first area to develop neurofibrillary changes (neurofibrillary tangles [NFTs]).

Methods

The methods include unbiased stereological analyses in human brainstems to estimate LC volume and neuronal population in controls and individuals across all AD stages.

Results

As the Braak stage increases by 1 unit, the LC volume decreases by 8.4%. Neuronal loss started only midway through AD progression. Age-related changes spare the LC.

Discussion

The long gap between NFT accumulation and neuronal loss suggests that a second trigger may be necessary to induce neuronal death in AD. Imaging studies should determine whether LC volumetry can replicate the stage-wise atrophy observed here and how these changes are specific to AD. LC volumetry may develop into a screening biomarker for selecting high-yield candidates to undergo expensive and less accessible positron emission tomography scans and to monitor AD progression from presymptomatic stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号