首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abnormal mitochondria are an increasingly recognized cause of neuromuscular disease. We have used phosphorus magnetic resonance spectroscopy to monitor noninvasively the metabolism of high-energy phosphates and the intracellular pH of human skeletal muscle in vivo in 12 patients with mitochondrial myopathy. At rest, an abnormality could be demonstrated in 11 of 12 patients. Ten patients had evidence of a reduced muscle energy state with at least one of the following abnormalities: low phosphorylation potential, low phosphocreatine concentration, high adenosine diphosphate concentration, or high inorganic phosphate concentration. Two patients had abnormal resting muscle intracellular pH. In some patients phosphocreatine concentration decreased to low values during exercise despite limited work output. This was not accompanied by particularly severe intracellular acidosis. Evidence of impaired rephosphorylation of adenosine diphosphate to adenosine triphosphate during recovery from exercise was found in approximately half the patients. Phosphorus magnetic resonance spectroscopy is useful in the noninvasive diagnosis of mitochondrial myopathies and in defining the pathophysiological basis of these disorders.  相似文献   

2.
3.
Z Argov  W J Bank  J Maris  P Peterson  B Chance 《Neurology》1987,37(2):257-262
Twelve adults with mitochondrial myopathies were studied by phosphorus magnetic resonance spectroscopy of muscle. All 12 had abnormal 31P-NMR findings; recovery from exercise was abnormal in 11 patients. At rest, the ratio of phosphocreatine to inorganic phosphate was reduced in 10. Exercise transfer characteristics were abnormal in all five patients who could exercise. Exercise-induced intracellular acidosis was subnormal in nine patients. The range of abnormalities indicates biochemical heterogeneity, with two possible groups: primary defects of energy metabolism with marked 31P-NMR abnormalities, and secondary, less specific 31P-NMR abnormalities.  相似文献   

4.
31P nuclear magnetic resonance studies of a patient with phosphofructokinase deficiency in muscle provided the following new findings: First, ATP metabolism is disturbed at rest and during exercise. At rest, ATP levels are lower than normal and continue to decline during exercise. Second, exercise kinetics are normal, suggesting a normal mitochondrial fuel supply although glycolysis is blocked. Third, no "phosphate trapping" is observed during prolonged low-level exercise. Fourth, postexercise recovery is abnormally prolonged by the slow dephosphorylation of sugar phosphates, which has an in vivo half-life of about nine minutes. These findings demonstrate how muscle tissue adapts to a block in a major bioenergetic pathway.  相似文献   

5.
We have previously demonstrated that patients with mitochondrial myopathies can benefit from short-term aerobic exercise training. In this study, we compared the responses to short-term aerobic training of patients with mitochondrial myopathies, patients with nonmetabolic myopathies, and sedentary normal subjects. Training consisted of 8 weeks of treadmill exercise at 70% to 85% of estimated maximum heart rate reserve. All groups showed significant improvements in estimated aerobic capacity as well as heart rate and blood lactate at submaximal exercise intensities. The increase in estimated aerobic capacity was greater in the mitochondrial myopathy patients than in the other two groups. Phosphorus magnetic resonance spectroscopy demonstrated increased oxidative capacity of muscle in patients with mitochondrial myopathies in response to this training but not in patients with other, nonmetabolic myopathies or sedentary control subjects. A self-assessed measurement of functional status (SF-36) suggested improved quality of life associated with the training. This study demonstrates that short-term aerobic training at low intensity can benefit patients with nonmetabolic myopathies but to a lesser extent than patients with mitochondrial myopathies.  相似文献   

6.
We have investigated the sensitivity and specificity of a rapid phosphorus magnetic resonance spectroscopy (MRS) protocol for detecting metabolic abnormalities in vivo in skeletal muscle of patients with mitochondrial disease. We examined 17 patients with mitochondrial myopathies. Sixteen had only mild or minimal myopathic signs and symptoms. Phosphorus magnetic resonance spectra from the resting gastrocnemius muscles showed an abnormal intracellular energy state (marked by an increased intracellular inorganic phosphate concentration) in 14/17. In 3/17, this was associated with a decreased phosphocreatine concentration. We also studied 20 patients with other diseases of muscle (inflammatory myopathies, metabolic myopathies, muscular dystrophies, and myasthenia gravis) that can present with similar clinical features. Spectra showed increased intracellular inorganic phosphate concentrations in 6/20. All of these muscle diseases were associated with evidence of muscle fiber necrosis. Abnormalities in the muscle energy state in these cases may be due to secondary mitochondrial dysfunction. Except for cases of polymyositis and dermatomyositis, these 6 other myopathies could be readily distinguished from the mitochondrial myopathies on the basis of the clinical examination and blood tests. We conclude that phosphorus MRS of resting muscle is practical in a clinical setting and has a useful sensitivity and specificity for mitochondrial myopathies when used in conjunction with standard noninvasive tests.  相似文献   

7.
In vivo phosphorus magnetic resonance spectroscopy was used to evaluate the changes in muscle bioenergetics in a patient with a partial glycolytic block. Phosphoglycerate mutase-deficient muscle showed the following evidence: Abnormal accumulation of sugar phosphates does occur, even when 6% enzyme activity is present. The elimination of sugar phosphates was faster than in complete glycolytic blocks. Mild intracellular acidosis occurred during ischemic exercise. The energy state was slightly low at rest but not during exercise. Postexercise recovery was mildly slowed. These findings suggest that phosphorus magnetic resonance spectroscopy can detect partial defects, as well as full glycolytic blocks, in muscle metabolism.  相似文献   

8.
Argov Z  Löfberg M  Arnold DL 《Muscle & nerve》2000,23(9):1316-1334
Phosphorus magnetic resonance spectroscopy (P-MRS) has now been used in the investigation of muscle energy metabolism in health and disease for over 15 years. The present review describes the basics of the metabolic observations made by P-MRS including the assumptions and problems associated with the use of this technique. Extramuscular factors, which may affect the P-MRS results, are detailed. The important P-MRS observations in patients with mitochondrial myopathies, including the monitoring of experimental therapies, are emphasized. The findings in other metabolic myopathies (those associated with glycolytic defects or endocrine disturbances) and in the destructive myopathies (the dystrophies and the inflammatory myopathies) are also described. Observations made in normal and abnormal fatigue, fibromyalgia, and malignant hyperthermia are considered. Finally, a summary of the possible diagnostic use of P-MRS in exercise intolerance is provided.  相似文献   

9.
Phosphorus magnetic resonance spectroscopy (MRS) was used to study muscle phosphates metabolism in several brain disorders. Those with primary mitochondrial encephalomyopathies showed the typical pattern of impaired oxidative metabolism at rest and during recovery after exercise. In migraine, Parkinson's disease and alternating hemiplegia muscle MRS observations lend support to a possible mitochondrial dysfunction. Similar observations in multiple sclerosis are probably the result of secondary deconditioning. In post polio syndrome and in some of the hereditary ataxias, elevated intracellular inorganic phosphates may be the result of another, yet unknown, metabolic impairment. Thus, muscle phosphate metabolism may be altered in various central nervous system (CNS) disorders by different metabolic impairments. All these possibilities should be taken into account when evaluating MRS results in brain diseases.
Sommario La risonanza magnetica spettroscopica del fosforo è usata per studiare il metabolismo dei fosfati del muscolo in molti disordini cerebrali. Le encefalomiopatie mitocondriali primitive evidenziano un pattern tipico di alterato metabolismo muscolare a riposo e durante il recupero dall'esercizio. Nelle cefalee, nella malattia di Parkinson e nell'emiplegia alternante le osservazioni di risonanza magnetica spettroscopica del muscolo supportano l'ipotesi di una possibile disfunzione mitocondriale in tali patologie. Simili risultati ottenuti in pazienti con sclerosi multipla sono probabilmente da mettere in relazione a un secondario decondizionamento muscolare. In pazienti con sindrome post poliomielitica e con alcune forme di atassia ereditaria, l'aumento del fosfato inorganico muscolare potrebbe essere dovuto ad un difetto metabolico ancora sconosciuto. In conclusione, in varie patologie del sistema nervoso centrale il metabolismo dei fosfati del muscolo scheletrico può essere alterato e tale alterazione può essere dovuta a differenti meccanismi patogenetici. Tutte le differenti possibilità dovrebbero essere prese in considerazione nel valutare i risultati della risonanza magnetica spettroscopica nelle malattie del sistema nervoso centrale.
  相似文献   

10.
Muscle phosphorus magnetic resonance spectroscopy was used to study oxidative metabolism at rest and during recovery from exercise in 7 patients with sporadic inclusion body myositis (s-IBM), compared with normal controls (n = 8) and mitochondrial myopathies (n = 20). At rest, 6/7 patients had elevated inorganic phosphates. Recovery parameters were not different from controls, in contrast with mitochondrial myopathies, who showed abnormal rest and recovery. The normal recovery suggests that mitochondrial oxidative capacity is not impaired in s-IBM. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21: 1523–1525, 1998  相似文献   

11.
Phosphorus magnetic resonance spectroscopy allows noninvasive measurement of the intracellular phosphate-containing metabolites and intracellular pH in localized volumes of human muscle and brain in vivo. This technique was used to study 8 patients with a mitochondrial cytopathy (myoclonus epilepsy with ragged red fibers). Phosphorus magnetic resonance spectroscopy of resting gastrocnemius muscle demonstrated significantly increased relative intracellular inorganic phosphate concentrations (p less than 0.0005) and decreased phosphocreatine to inorganic phosphate concentration ratios (p less than 0.01) in the patients, although only 3 had myopathic signs or symptoms. We propose, therefore, that phosphorus magnetic resonance spectroscopy of resting skeletal muscle is a useful clinical test in evaluation of progressive myoclonus epilepsy. In contrast to results from muscle, however, the relative phosphate metabolite concentrations and intracellular pH in central volumes of the brains of these patients were normal, despite evidence from our previous positron emission tomography studies suggesting that there is diffuse impairment of cerebral oxidative metabolism.  相似文献   

12.
In a double-blinded, placebo-controlled, crossover study in seven mitochondrial myopathy patients (MM), we investigated whether lowering of lactate with dichloroacetate (DCA) can improve exercise tolerance and oxidative capacity in MM. DCA lowered plasma lactate at rest and during exercise (from 10.5 +/- 2.0 to 5.0 +/- 1.6 mM; p = 0.005) but did not improve maximal work load or VO2 in cycle exercise or phosphorous magnetic resonance spectroscopy (31P-MRS)-assessed indices of muscle oxidative metabolism. This indicates that lactate acidosis is not the primary cause of exercise intolerance in MM.  相似文献   

13.
The purpose of this study was to assess the effect of physical deconditioning on skeletal muscle's oxidative metabolism as evaluated by phosphorus-31 magnetic resonance spectroscopy ((31)P MRS). Twenty-seven subjects without muscle disease, representing a wide range of fitness levels, were evaluated with (31)P MRS. Spectra were obtained at rest and during recovery from in-magnet exercise. The data show a significant correlation between maximum resting metabolic equivalent (MET) score and the following (31)P MRS recovery indices: adenosine diphosphate and phosphocreatine recovery half-time; initial phosphocreatine resynthesis rate; calculated estimation of mitochondrial capacity; pH at end of exercise; and phosphocreatine depletion. In addition, significant differences between the deconditioned and conditioned group were found for all of the aforementioned recovery indices. At rest, only the inorganic phosphate concentration was significantly different between the two groups. These data indicate that physical activity level should be taken into account when assessing patients' oxidative metabolism with (31)P MRS.  相似文献   

14.
Magnetic resonance spectroscopy and imaging of muscle and brain offers new possibilities for noninvasive diagnosis of metabolic myopathies. These functional techniques allow assessment of the pathophysiology of these disorders and also can be used for monitoring disease evolution and response to therapy. In this article, the authors review the magnetic resonance spectroscopy and imaging features of mitochondrial encephalomyopathies, glycolytic disorders, and hypothyroidism.  相似文献   

15.
Metabolic myopathies are inborn errors of intermediate muscle metabolism, presenting either by exercise intolerance, or by progressive muscle weakness. Growing knowledge concerning the pathophysiology of these rare disorders, and the development of new technologies, opens new avenues for the treatment of this group of myopathies. Recent studies showed improvement in exercise capacity after regular aerobic exercise training in patients with McArdle's disease and mitochondrial myopathies. In late-onset Pompe disease enzyme replacement therapy trials with recombinant acid alpha-glucosidase (Myozyme) are currently in progress, the first trials conducted in childhood onset Pompe disease having previously shown a clear improvement in life expectancy and cardiac function. The demonstration that fibrates can induce correction of carnitine palmitoyl-transferase II deficiency in patients cells, lead to the development of an open-labelled therapeutic trial with bezafibrate in patients with CPTII deficiency, which is actually ongoing.  相似文献   

16.
We studied in vivo muscle energy metabolism in patients with Huntington's disease (HD) and dentatorubropallidoluysian atrophy (DRPLA) using 31P magnetic resonance spectroscopy (MRS). Twelve gene-positive HP patients (4 presymptomatic patients) and 2 gene-positive DRPLA patients (1 presymptomatic patient) were studied. 31P-MRS at rest showed a reduced phosphocreatine-to-inorganic phosphate ratio in the symptomatic HD patients and DRPLA patient. Muscle adenosine triphosphate/(phosphocreatine + inorganic phosphate) at rest was significantly reduced in both groups of symptomatic and presymptomatic HD subjects and was below the normal range in the 2 DRPLA subjects. During recovery from exercise, the maximum rate of mitochondrial adenosine triphosphate production was reduced by 44% in symptomatic HD patients and by 35% in presymptomatic HD carriers. The maximum rate of mitochondrial adenosine triphosphate production in muscle was also reduced by around 46% in the 2 DRPLA subjects. Our findings show that HD and DRPLA share a deficit of in vivo mitochondrial oxidative metabolism, supporting a role for mitochondrial dysfunction as a factor involved in the pathogenesis of these polyglutamine repeat-mediated neurodegenerative disorders. The identification of 31P-MRS abnormalities may offer a surrogate biochemical marker by which to study disease progression and the effects of treatment in HD and DRPLA.  相似文献   

17.
A patient with mitochondrial myopathy due to complex III deficiency who was treated with vitamin K3 (menadiol sodium diphosphate, 40 mg daily) and vitamin C showed clinical improvement. A 1-year study with phosphorus 31 nuclear magnetic resonance (31P-NMR) monitoring has shown that clinical and metabolic improvement was maintained by this therapy; increasing the dose of vitamin K3 to 80 mg daily improved the bioenergetic state of the patient's muscles at rest; postexercise recovery was less responsive to the increased dose; and a higher dose of vitamin K3 (80 mg/day) did not produce side effects. The differential therapeutic effects of vitamin K3 at rest and during exercise recovery are probably due to the differential kinetics of each metabolic state. Monitoring muscle bioenergetics with 31P-NMR is valuable in documenting therapeutic improvements in mitochondrial myopathies.  相似文献   

18.
Muscle-type phosphofructokinase (M-PFK) deficiency causes an exertional myopathy and chronic hemolysis in affected humans and dogs, the only animal model available. Deficient individuals have impaired glycolytic metabolism, impaired oxidative metabolism, and increased hemoglobin-oxygen (HbO2) affinity as a result of low 2,3-diphosphoglycerate (2,3-DPG) levels. The purpose of this study was to determine if PFK-deficient muscle has abnormal oxygen saturation during exercise. Oxygen saturation of hemoglobin/myoglobin was measured noninvasively in skeletal muscle during progressive muscle activation using near-infrared spectroscopy (NIRS). Muscle metabolites were also measured using magnetic resonance spectroscopy (MRS). PFK-deficient and normal dogs were anesthetized and the cranial tibial muscles stimulated for 6 min at each of four different rates (1, 2, 4, and 8 Hz). With increasing stimulation, muscles from normal dogs showed progressive decrease in hemoglobin saturation. In contrast, PFK-deficient dogs exhibited either an increase in hemoglobin saturation or an initial decrease with no further change. PFK-deficient muscles accumulated 11.1 +/- 3.5 mmol/L of sugar phosphate which was not seen in normal muscle and had higher calculated [ADP] levels at each stimulation level, indicating impaired oxidative metabolism. These findings are consistent with the hypothesis that these animals have impaired oxidative metabolism and impaired muscle O2 extraction from hemoglobin due to increased HbO2 affinity. NIRS appears to be a useful noninvasive method of monitoring tissue oxygen saturation in normal or disease conditions.  相似文献   

19.
Studies on a 27-year-old man with a 3-year history of exercise-induced muscle pain, passage of red urine and elevated serum creatine kinase are described. Histological examination of a biopsy from quadriceps revealed non-specific myopathic changes with occasional clusters of subsarcolemmal mitochondria. The phosphorylase stain was normal. Phosphorous nuclear magnetic resonance (NMR) spectroscopy studies of gastrocnemius and flexor digitorum superficialis muscles showed no abnormalities at rest. During aerobic exercise there was an abnormally rapid decrease in phosphocreatine concentration but the pH remained within the normal range. There was a build-up of phosphomonoester (probably glucose 6-phosphate), usually indicative of a block in glycolysis. However, a primary defect in the glycolytic pathway seemed unlikely because muscle acidified normally during ischaemic exercise. Recovery from exercise was unusual in that phosphocreatine resynthesis and inorganic phosphate disappearance followed similar prolonged time courses (in control subjects the rate of inorganic phosphate disappearance was about twice as fast as the rate of phosphocreatine resynthesis). The transport of inorganic phosphate into the mitochondria appeared to be delayed. These slow recovery data suggested that oxidative metabolism was impaired. However, with all substrates tested, isolated muscle mitochondria had rates of oxygen uptake that were similar to control values, thereby ruling out a primary defect in mitochondrial respiration. A system involving several mitochondrial transport systems, the malate-aspartate shuttle, was measured. The activity in the patient's isolated mitochondria was less than 20% of the activity present in samples from control subjects. This patient is the only one so far reported with a defect involving the malate-aspartate shuttle system.  相似文献   

20.
A late-onset, myopathic variant of phosphofructokinase (PFK) deficiency has been previously described in two patients of Ashkenazic descent. We report here on a non-Ashkenazic woman with the onset, at the age of 48 years, of a progressive limb girdle myopathy that was not preceded by a history of exercise intolerance. Muscle biopsy findings at the age of 58 years showed deposition of amylopectin-like material in muscle fibers and the absence of histochemical PFK activity. Enzymatic PFK activity in vitro was only 4% of normal. Since the forearm ischemic exercise test induced a sub-normal production of serum lactate, the patient underwent phosphorus magnetic resonance spectroscopy (31P-MRS), a non-invasive method that allows in vivo assessment of the functional status of the glycolytic pathway and mitochondrial oxidative metabolism by measuring the high-energy phosphates and cytosolic pH. In vivo, 31P-MRS disclosed a residual glycolytic flux and a normal rate of ATP production both at rest and during exercise. These results suggest that, in some patients, muscle PFK deficiency may be partial in vivo, and more severe in vitro, possibly due to protein or mRNA instability rather than absence. The presence of these findings in a patient with the late-onset myopathic form is compatible with a distinct pathogenetic mechanism, relying on progressive polysaccharide accumulation, rather than on acute energetic shortage in muscle fibers. Received: 4 May 1995 / Revised, accepted: 28 September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号