首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The bioactive component of mildly oxidized low-density lipoproteins, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), activates tissue factor expression and monocyte adhesion to endothelial cells (EC) from systemic circulation, but blocks expression of inflammatory adhesion molecules (VCAM, E-selectin) and neutrophil adhesion associated with EC acute inflammatory response to bacterial lypopolysacharide (LPS). Due to constant exposure to oxygen free radicals, lipids in the injured lung are especially prone to oxidative modification and increased OxPAPC generation. In this study, we focused on OxPAPC-mediated intracellular signaling mechanisms that lead to physiological responses in pulmonary endothelial cells. Our results demonstrate that OxPAPC treatment activated in a time-dependent fashion protein kinase C (PKC), protein kinase A (PKA), Raf/MEK1,2/Erk-1,2 MAP kinase cascade, JNK MAP kinase and transient protein tyrosine phosphorylation in human pulmonary artery endothelial cells (HPAEC), whereas nonoxidized PAPC was without effect. Pharmacological inhibition of PKC and tyrosine kinases blocked activation of Erk-1,2 kinase cascade upstream of Raf. OxPAPC did not affect myosin light chain (MLC) phosphorylation, but increased phosphorylation of cofillin, a molecular regulator of actin polymerization. Finally, OxPAPC induced p60Src-dependent tyrosine phosphorylation of focal adhesion proteins paxillin and FAK. Our results suggest a critical involvement of PKC and tyrosine phosphorylation in OxPAPC-induced activation of Erk-1,2 MAP kinase cascade associated with regulation of specific gene expression, and demonstrate rapid phosphorylation of cytoskeletal proteins, which indicates OxPAPC-induced EC remodeling.  相似文献   

4.
Increased tissue or serum levels of oxidized phospholipids have been detected in a variety of chronic and acute pathological conditions such as hyperlipidemia, atherosclerosis, heart attack, cell apoptosis, acute inflammation and injury. We have recently described signaling cascades activated by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC)in the human pulmonary artery endothelial cells (EC) and reported potent barrier-protective effects of OxPAPC, which were mediated by small GTPases Rac and Cdc42. In this study we have further characterized signal transduction pathways involved in the OxPAPC-mediated endothelial barrier protection. Inhibitors of small GTPases, protein kinase A (PKA), protein kinase C (PKC), Src family kinases and general inhibitors of tyrosine kinases attenuated OxPAPC-induced barrier-protective response and EC cytoskeletal remodeling. In contrast, small GTPase Rho, Rho kinase, Erk-1,2 MAP kinase and p38 MAP kinase and PI3-kinase were not involved in the barrier-protective effects of OxPAPC. Inhibitors of PKA, PKC, tyrosine kinases and small GTPase inhibitor toxin B suppressed OxPAPC-induced Rac activation and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin. Barrier-protective effects of OxPAPC were not reproduced by platelet activating factor (PAF), which at high concentrations induced barrier dysfunction, but were partially attenuated by PAF receptor antagonist A85783. These results demonstrate for the first time upstream signaling cascades involved in the OxPAPC-induced Rac activation, cytoskeletal remodeling and barrier regulation and suggest PAF receptor-independent mechanisms of OxPAPC-mediated endothelial barrier protection.  相似文献   

5.
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.  相似文献   

6.
OBJECTIVE: Toll-like receptor (TLR)-4 signalling has been shown to accelerate atherosclerosis. As oxidised phospholipids are present in atherosclerotic plaque and have been shown to modulate TLR4 signalling, we investigated the role of oxidised 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the regulation of TLR 1, 2, 4 and 6 signalling. METHODS AND RESULTS: Unlike established TLR agonists, OxPAPC did not induce NF-kappaB-dependent gene expression in monocytic THP-1 cells, human aortic endothelial cells or TLR-deficient HEK-293 cells transfected with TLRs 1, 2, 4 or 6. OxPAPC induction of IL-8 was not blocked by the TLR4 specific antagonist Rhodobacter sphaeroides LPS in human aortic endothelial cells, though OxPAPC potently inhibited TLR4 mediated IL-8 induction in these cells. OxPAPC upregulated IL-8 production in TLR4 deficient HEK-293 cells and this was not increased following TLR4 overexpression. Lipids extracted from carotid atherectomy samples did not stimulate TLR 1, 2, 4 or 6 signalling in a HEK-293 transfection assay. CONCLUSIONS: TLR4 signalling does not contribute to OxPAPC induced IL-8 expression in human epithelial HEK-293, monocytic THP-1 or aortic endothelial cells. As lipids extracted from diseased human artery also induced no TLR signalling, it is likely that the TLR-activating materials contributing to atherosclerosis are not of endogenous lipid origin.  相似文献   

7.
8.
9.
10.
11.
Tissue factor (TF) is the principal trigger of the coagulation cascade and involved in arterial thrombus formation. Platelet-derived growth factor CC (PDGF-CC) is a recently discovered member of the PDGF family released upon platelet activation. This study assesses the impact of PDGF-CC on TF expression in human cells. PDGF-CC concentration-dependently induced TF expression by 2.5-fold in THP-1 cells, by 2.0-fold in human peripheral blood monocytes, by 1.4-fold in vascular smooth muscle cells, and by 2.6-fold in microvascular endothelial cells, but did not affect TF expression in aortic endothelial cells. A similar pattern was observed with PDGF-BB. In contrast, PDGF-AA did not alter TF expression in THP-1 cells. TF whole cell activity was induced following stimulation with PDGF-BB and PDGF-CC in THP-1 cells. Real-time polymerase chain reaction revealed that PDGF-CC induced TF mRNA. PDGF-CC transiently activated p42/44 MAP kinase [extracellular signal-regulated kinase (ERK)], while phosphorylation of the MAP kinases c-Jun NH2-terminal kinase (JNK) and p38 remained unaffected. PD98059, a specific inhibitor of ERK phosphorylation, but not the p38 inhibitor SB203580 or the JNK inhibitor SP600125 prevented PDGF-CC induced TF expression in a concentration-dependent manner. The effect of PDGF-CC was antagonized by both PDGF receptor α and PDGF receptor β neutralizing antibodies; in contrast, PDGF-BB was only inhibited by PDGF receptor β blocking antibody. PDGF receptor α and PDGF receptor β inhibition prevented PDGF-CC-induced ERK phosphorylation. PDGF-CC induces TF expression via activation of α/β receptor heterodimers and an ERK-dependent signal transduction pathway.  相似文献   

12.
In this study we aimed to investigate whether the therapeutic efficacy of anisodamine in the treatment of bacteraemic shock could--at least in part--be brought about by its direct interference with the lipopolysaccharide (LPS)-induced activation of endothelial cells. Thus, we investigated the effect of anisodamine on LPS-induced expression of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF), two major markers of endothelial activation. PAI-1 was measured in the conditioned media of human umbilical vein endothelial cells (HUVEC) by a specific enzyme-linked immunosorbent assay (ELISA) whereas TF activity was measured in the lysates of these cells by using a single step clotting assay. Results obtained in these assays were confirmed on the level of specific mRNA expression by Northern blotting using specific probes for human PAI-1 or TF. In order to evaluate a possible contribution of the NF-kappa B pathway on the effects observed, electrophoretic mobility shift assays (EMSA) were performed using nuclear extracts from HUVEC and NF-kappa B-binding oligonucleotides. When HUVEC were treated with 1 microg/ml LPS a significant increase in PAI-1 and TF activity was observed compared with cells incubated without LPS. Anisodamine dose-dependently inhibited this LPS-induced upregulation of PAI-1 and TF. Anisodamine alone had no effect on the constitutive expression of PAI-1 and TF in these cells. These effects were also confirmed on the level of specific PAI-1 and TF mRNA expression by Northern blotting. Furthermore, we could show by EMSA that anisodamine completely abolished LPS-induced NF-kappa B DNA binding activity in nuclear extracts from HUVEC treated with LPS together with anisodamine. Thus, we provide evidence that anisodamine counteracts endothelial cell activation by inhibiting LPS-induced PAI-1 and TF expression in these cells. Its interference with the NF-kappa B pathway might - at least in part - contribute to this effect. The ability of anisodamine to counteract LPS effects on endothelial cells might be one underlying mechanism explaining its efficacy in the treatment of bacteraemic shock.  相似文献   

13.
Chung CH  Wu WB  Huang TF 《Blood》2004,103(6):2105-2113
Aggretin, a collagen-like alpha 2 beta 1 agonist purified from Calloselasma rhodostoma venom, was shown to increase human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC migration toward immobilized aggretin was also increased. These effects were blocked by A2-IIE10, an antibody raised against integrin alpha 2. Aggretin bound to HUVECs in a dose-dependent and saturable manner, which was specifically inhibited by A2-IIE10, as examined by flow cytometry. Aggretin elicited significant angiogenic effects in both in vivo and in vitro angiogenesis assays, and incubation of HUVECs with aggretin activated phosphatidylinositol 3-kinase (PI3K), Akt, and extracellular-regulated kinase 1/2 (ERK1/2); these effects were blocked by A2-IIE10 or vascular endothelial growth factor (VEGF) monoclonal antibody (mAb). The angiogenic effect induced by aggretin may be via the production of VEGF because the VEGF level was elevated and VEGF mAb pretreatment inhibited Akt/ERK1/2 activation as well as the in vivo angiogenesis induced by aggretin. The VEGF production induced by aggretin can be blocked by A2-IIE10 mAb pretreatment. In conclusion, aggretin induces endothelial cell proliferation, migration, and angiogenesis by interacting with integrin alpha 2 beta 1 leading to activation of PI3K, Akt, and ERK1/2 pathways, and the increased expression of VEGF may be responsible for its angiogenic activity.  相似文献   

14.
15.
16.
17.
cAMP-binding protein Epac induces cardiomyocyte hypertrophy   总被引:1,自引:0,他引:1  
cAMP is one of the most important second messenger in the heart. The discovery of Epac as a guanine exchange factor (GEF), which is directly activated by cAMP, raises the question of the role of this protein in cardiac cells. Here we show that Epac activation leads to morphological changes and induces expression of cardiac hypertrophic markers. This process is associated with a Ca2+-dependent activation of the small GTPase, Rac. In addition, we found that Epac activates a prohypertrophic signaling pathway, which involves the Ca2+ sensitive phosphatase, calcineurin, and its primary downstream effector, NFAT. Rac is involved in Epac-induced NFAT dependent cardiomyocyte hypertrophy. Blockade of either calcineurin or Rac activity blunts the hypertrophic response elicited by Epac indicating these signaling molecules coordinately regulate cardiac gene expression and cellular growth. Our results thus open new insights into the signaling pathways by which cAMP may mediate its biological effects and identify Epac as a new positive regulator of cardiac growth.  相似文献   

18.
OBJECTIVE: Heme oxygenases (HO) are the rate-limiting enzymes in heme degradation, catalyzing the breakdown of heme to equimolar quantities of biliverdin (BV), carbon monoxide (CO), and ferrous iron. The inducible HO isoform, HO-1, confers protection against ischemia/reperfusion (I/R)-injury in the heart. We hypothesized that HO-1 and its catalytic by-products constitute an antihypertrophic signaling module in cardiac myocytes. METHODS AND RESULTS: The G protein-coupled receptor (GPCR) agonist endothelin-1 (ET-1) (30 nmol/l) stimulated a robust hypertrophic response in cardiac myocytes isolated from 1- to 3-day-old Sprague-Dawley rats, with increases in cell surface area (planimetry), sarcomere assembly (confocal laser scanning microscopy), and prepro-atrial natriuretic peptide (ANP) mRNA expression. Adenoviral overexpression of HO-1, but not beta-galactosidase, significantly inhibited ET-1 induced cardiac myocyte hypertrophy. The antihypertrophic effects of HO-1 were mimicked by BV (10 micromol/l) and the CO-releasing molecule [Ru(CO)3Cl2]2 (10 micromol/l), strongly suggesting a critical involvement of BV and CO in the antihypertrophic effects of HO-1. Both BV and CO suppressed extracellular signal-regulated kinases (ERK1/ERK2) and p38 mitogen-activated protein kinase (MAPK) activation by ET-1 stimulation. Moreover, BV and CO inhibited the prohypertrophic calcineurin/NFAT pathway. This inhibition occurred upstream from calcineurin because BV and CO inhibited NFAT activation in response to ET-1 stimulation but not in response to adenoviral expression of a constitutively active calcineurin mutant. Upstream-inhibition of the calcineurin/NFAT pathway by CO occurred independent from cGMP and cGMP-dependent protein kinase type I (PKG I). CONCLUSIONS: Heme oxygenase-1 and its catalytic by-products, BV and CO, constitute a novel antihypertrophic signaling pathway in cardiac myocytes. Biliverdin and CO inhibition of MAPKs and calcineurin/NFAT signaling provides a mechanistic framework how heme degradation products may promote their antihypertrophic effects.  相似文献   

19.
20.
目的探讨阿托伐他汀对内皮细胞微粒(EMPs)诱导人脐静脉内皮细胞(HUVECs)细胞间黏附分子-1(ICAM-1)表达的影响及其与ERKl/2信号通路的关系。方法将HUVECs分为不同浓度EMPs作用组与阿托伐他汀干预组。应用Western印迹检测磷酸化ERK1/2和ICAM-1蛋白的表达,实时荧光定量PCR(qRT-PCR)检测ICAM-1 mRNA的表达。结果 EMPs可诱导HUVECs ICAM-1 mRNA和蛋白及磷酸化ERK1/2蛋白表达增加,且具有浓度和时间依赖关系(均P<0.01);阿托伐他汀及ERK1/2特异性抑制剂PD98059显著抑制EMPs诱导的HUVECs ICAM-1 mRNA和蛋白及磷酸化ERK1/2蛋白的表达(均P<0.01)。结论阿托伐他汀通过ERK1/2信号通路抑制EMPs诱导HUVECs ICAM-1表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号