首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cancer TTC (Threshold of Toxicological Concern) concept is currently employed as an aid to risk assessment of potentially mutagenic impurities (PMIs) in food, cosmetics and other sectors. Within the pharmaceutical industry the use of one default cancer TTC limit of 1.5 μg/day for PMIs is being increasingly questioned. Its derivation, originally in the context of foodstuffs, can be broken down into five key elements: dataset composition; determination of carcinogenicity/mutagenicity status and carcinogenic potency (based on TD50s) of compounds in the dataset; linear extrapolation of carcinogenic potencies; evaluation of the more potent compounds in each structural category, and presence of representative structural alerts amongst the more potent compounds. A detailed evaluation reveals that the derivation process is distorted by the use of the lowest statistically significant TD50s (which can produce a false-carcinogen phenomenon) and by employing linear extrapolation for non-mutagenic carcinogens. By correcting for these two factors, it is concluded that only around 50% of conventional structural-alert categories were adequately addressed and that limits higher than the default value appear to be justified in many cases. Using similar criteria for PMIs in pharmaceuticals, four distinct potency categories of conventional structural alerts can be distinguished, ranging from alerts with questionable validity to those with high potency, which are considered to provide a range of flexible and pragmatic limits for such impurities.  相似文献   

2.
Potentially mutagenic impurities in new pharmaceuticals are controlled to levels with negligible risk, the TTC (threshold of toxicological concern, 1.5 μg/day for a lifetime). The TTC was based on the more potent rodent carcinogens, excluding the highly potent “cohort of concern” (COC; for mutagenic carcinogens these are N-nitroso, Aflatoxin-like, and azoxy structures). We compared molecules with DEREK “structural alerts” for mutagenicity used in drug syntheses with the mutagenic carcinogens in the Gold Carcinogenicity Potency Database. Data from 108 diverse synthetic routes from 13 companies confirm that many “alerting” or mutagenic chemicals are in structural classes with lower carcinogenic potency than those used to derive the TTC. Acceptable daily intakes can be established that are higher than the default TTC for many structural classes (e.g., mono-functional alkyl halides and certain aromatic amines). Examples of ADIs for lifetime and shorter-term exposure are given for chemicals of various potencies. The percentage of chemicals with DEREK alerts that proved mutagenic in the Ames test ranged from 36% to 83%, depending on structural class, demonstrating that such SAR analysis to “flag” potential mutagens is conservative. We also note that aromatic azoxy compounds need not be classed as COC, which was based on alkyl azoxy chemicals.  相似文献   

3.
The threshold of toxicological concern (TTC) has been used for the safety assessment of packaging migrants and flavouring agents that occur in food. The approach compares the estimated oral intake with a TTC value derived from chronic oral toxicity data for structurally-related compounds. Application of the TTC approach to cosmetic ingredients and impurities requires consideration of whether route-dependent differences in first-pass metabolism could affect the applicability of TTC values derived from oral data to the topical route. The physicochemical characteristics of the chemical and the pattern of cosmetic use would affect the long-term average internal dose that is compared with the relevant TTC value. Analysis has shown that the oral TTC values are valid for topical exposures and that the relationship between the external topical dose and the internal dose can be taken into account by conservative default adjustment factors. The TTC approach relates to systemic effects, and use of the proposed procedure would not provide an assessment of any local effects at the site of application. Overall the TTC approach provides a useful additional tool for the safety evaluation of cosmetic ingredients and impurities of known chemical structure in the absence of chemical-specific toxicology data.  相似文献   

4.
The current risk assessment approach for addressing the safety of very small concentrations of genotoxic impurities (GTIs) in drug substances is the threshold of toxicological concern (TTC). The TTC is based on several conservative assumptions because of the uncertainty associated with deriving an excess cancer risk when no carcinogenicity data are available for the impurity. It is a default approach derived from a distribution of carcinogens and does not take into account the properties of a specific chemical. The purpose of the study was to use in silico tools to predict the cancer potency (TD50) of a compound based on its structure. Structure activity relationship (SAR) models (classification/regression) were developed from the carcinogenicity potency database using MultiCASE and VISDOM. The MultiCASE classification models allowed the prediction of carcinogenic potency class, while the VISDOM regression models predicted a numerical TD50. A step-wise approach is proposed to calculate predicted numerical TD50 values for compounds categorized as not potent. This approach for non-potent compounds can be used to establish safe levels greater than the TTC for GTIs in a drug substance.  相似文献   

5.
Controlling the quality of medicines is just as important as demonstrating efficacy. The International Conference on Harmonisation has published general guidance on the quality and safety assessment of impurities in pharmaceutical drug substances and drug products. More recently, the European Medicines Evaluation Agency has published a guideline focusing on limits for genotoxic impurities. This is based on a Threshold of Toxicological Concern (TTC) derived from animal carcinogenicity data using multiple worst case assumptions to estimate a daily dose (1.5 microg/day) associated with a lifetime cancer risk of 1 in 100,000, a risk level considered acceptable for genotoxic impurities in human medicines. Based on these assumptions, presentation of the TTC as a single figure infers an unwarranted level of precision and supports the adoption of a more flexible approach by regulatory authorities when evaluating new drug products; a range within fivefold of the TTC limit would seem sensible. Furthermore, the limit is based on 70 years continuous daily exposure, a scenario that is uncommon for most medicines and irrelevant to the preregistration clinical development phase. To address this latter point, a staged TTC has been developed that proposes limits based on shorter durations of treatment, e.g., up to 1 year. Based on recent history, this approach has been acceptable to some authorities but not to others, and it is imperative that steps are taken to reach a common agreement between the pharmaceutical industry and regulatory authorities globally in order that new medicines can continue to be developed and delivered to benefit patients in a safe and timely manner.  相似文献   

6.
The synthesis of pharmaceutical products frequently involves the use of reactive reagents and the formation of intermediates and by-products. Low levels of some of these may be present in the final drug substance and drug product as impurities. Such chemically reactive impurities may have at the same time the potential for unwanted toxicities including genotoxicity and carcinogenicity and hence can have an impact on product risk assessment. This paper outlines a procedure for testing, classification, qualification, toxicological risk assessment, and control of impurities possessing genotoxic potential in pharmaceutical products. Referencing accepted principles of cancer risk assessment, this document proposes a staged threshold of toxicological concern (TTC) approach for the intake of genotoxic impurities over various periods of exposure. This staged TTC is based on knowledge about tumorigenic potency of a wide range of genotoxic carcinogens and can be used for genotoxic compounds, for which cancer data are limited or not available. The delineated acceptable daily intake values of between approximately 1.5 microg/day for approximately lifetime intake and approximately 120 microg/day for < or = 1 month are virtually safe doses. Based on sound scientific reasoning, these virtually safe intake values do not pose an unacceptable risk to either human volunteers or patients at any stage of clinical development and marketing of a pharmaceutical product. The intake levels are estimated to give an excess cancer risk of 1 in 100,000 to 1 in a million over a lifetime, and are extremely conservative given the current lifetime cancer risk in the population of over 1 in 4 (http://seer.cancer.gov/statfacts/html.all.html). The proposals in this document apply to all clinical routes of administration and to compounds at all stages of clinical development. It is important to note that certain types of products, such as those for life-threatening indications for which there are no safer alternatives, allow for special considerations using adaptations of the principles outlined in this paper.  相似文献   

7.
The Threshold of Toxicological Concern (TTC) is a level of exposure to a genotoxic impurity that is considered to represent a negligible risk to humans. The TTC was derived from the results of rodent carcinogenicity TD50 values that are a measure of carcinogenic potency. The TTC currently sets a default limit of 1.5 μg/day in food contact substances and pharmaceuticals for all genotoxic impurities without carcinogenicity data. Bercu et al. (2010) used the QSAR predicted TD50 to calculate a risk specific dose (RSD) which is a carcinogenic potency adjusted TTC for genotoxic impurities. This promising approach is currently limited by the software used, a combination of MC4PC (www.multicase.com) and a Lilly Inc. in-house software (VISDOM) that is not available to the public. In this report the TD50 and RSD were predicted using a commercially available software, SciQSAR (formally MDL-QSAR, www.scimatics.com) employing the same TD50 training data set and external validation test set that was used by Bercu et al. (2010). The results demonstrate the general applicability of QSAR predicted TD50 values to determine the RSDs for genotoxic impurities and the improved performance of SciQSAR for predicting TD50 values.  相似文献   

8.
The thresholds of toxicological concern (TTCs) define limit values for substances of unknown toxicity below which dietary intake is considered to be of no concern to human health. The TTC concept has already been used for risk assessment of e.g. food contaminants or flavoring substances and is in discussion to be applied to other classes of compounds such as cosmetic ingredients, household products, non-relevant metabolites in drinking water, and impurities in pharmaceuticals. The present publication aimed to evaluate whether the current TTC concept can also be applied to define limit values for inhalation exposure, using a data set of 203 industrial chemicals from the database RepDose.  相似文献   

9.
药品中遗传毒性杂质的评估和控制   总被引:2,自引:2,他引:0  
目的 综述药品遗传毒性杂质控制相关指南和法规,为制药企业执行国际标准和准则提供一些建议和思路。方法 通过查找数据库如Pubmed、Medline及欧洲药品管理局(European Medicines Agency,EMA)、美国食品药品监督管理局(US Food and Drug Administratio,U.S.FDA)、人用药品注册技术要求国际协调会议(ICH)等网站,比较各指南法规关于遗传毒性控制限度和控制措施的异同点,为遗传毒性杂质的控制提供一个可行性步骤。结果 通过比较发现,EMA、U.S.FDA和即将出版的ICH M7指南在关键原则的应用方面如毒理学关注阈值(threshold of toxicological concern,TTC)、风险评估步骤、杂质5分类法等基本相同,但现行EMA和U.S.FDA法规存在分歧,不利于其有效执行,而ICH M7将为遗传毒性杂质的控制提供一个可行框架。结论 目前还缺乏完善有效的遗传毒性控制指南,ICH M7将解决U.S.FDA 和EMA 指南间分歧,更好地指导制药企业遗传毒性杂质的控制。  相似文献   

10.
The threshold of toxicological concern (TTC) is a pragmatic risk assessment tool that is based on the principle of establishing a human exposure threshold value for all chemicals, below which there is a very low probability of an appreciable risk to human health. The concept that there are levels of exposure that do not cause adverse effects is inherent in setting acceptable daily intakes (ADIs) for chemicals with known toxicological profiles. The TTC principle extends this concept by proposing that a de minimis value can be identified for many chemicals, in the absence of a full toxicity database, based on their chemical structures and the known toxicity of chemicals which share similar structural characteristics. The establishment and application of widely accepted TTC values would benefit consumers, industry and regulators. By avoiding unnecessary toxicity testing and safety evaluations when human intakes are below such a threshold, application of the TTC approach would focus limited resources of time, cost, animal use and expertise on the testing and evaluation of substances with the greatest potential to pose risks to human health and thereby contribute to a reduction in the use of animals. An Expert Group of the European branch of the International Life Sciences Institute-ILSI Europe-has examined the TTC principle for its wider applicability in food safety evaluation. The Expert Group examined metabolism and accumulation, structural alerts, endocrine disrupting chemicals and specific endpoints, such as neurotoxicity, teratogenicity, developmental toxicity, allergenicity and immunotoxicity, and determined whether such properties or endpoints had to be taken into consideration specifically in a step-wise approach. The Expert Group concluded that the TTC principle can be applied for low concentrations in food of chemicals that lack toxicity data, provided that there is a sound intake estimate. The use of a decision tree to apply the TTC principle is proposed, and this paper describes the step-wise process in detail. Proteins, heavy metals and polyhalogenated-dibenzodioxins and related compounds were excluded from this approach. When assessing a chemical, a review of prior knowledge and context of use should always precede the use of the TTC decision tree. The initial step is the identification and evaluation of possible genotoxic and/or high potency carcinogens. Following this step, non-genotoxic substances are evaluated in a sequence of steps related to the concerns that would be associated with increasing intakes. For organophosphates a TTC of 18microg per person per day (0.3 microg/kg bw/day) is proposed, and when the compound is not an OP, the TTC values for the Cramer structural classes III, II and I, with their respective TTC levels (e.g. 1800, 540 and 90 microg per person per day; or 30, 9 and 1.5 microg/kg bw /day), would be applied sequentially. All other endpoints or properties were shown to have a distribution of no observed effect levels (NOELs) similar to the distribution of NOELs for general toxicity endpoints in Cramer classes I, II and III. The document was discussed with a wider audience during a workshop held in March 2003 (see list of workshop participants).  相似文献   

11.
药物杂质的毒理学评价要求及进展   总被引:1,自引:0,他引:1       下载免费PDF全文
《中国新药杂志》2010,19(24):2271
 药物原料或制剂中的杂质可能引起临床不良反应。杂质毒理学评价是药物研究的重要内容。ICH关于药物及制剂杂质方面指导原则规定了杂质的报告、鉴定和质控限度,含量超过质控限度的杂质应进行毒理学评价。但指导原则对于研发阶段的药物杂质和遗传毒性杂质的限度未作明确要求。EMEA对于遗传毒性杂质制定了专门的指导原则,引入了毒理学担忧阈值(TTC)的概念对遗传毒性杂质限度进行控制,遗传毒性杂质每日接触量应小于1.5 μg。FDA也推荐采用TTC原则控制遗传毒性和致癌性杂质。本文结合ICH,EMEA及美国FDA等指导原则,对药物杂质毒理学评价的要求及其进展进行了综述。  相似文献   

12.
In pharmaceutical development, significant effort is made to minimize the carcinogenic potential of new drug substances (NDS). This involves appropriate genotoxicity and carcinogenicity testing of the NDS, and understanding the genotoxic potential of its impurities. Current available guidance recommends the use of the threshold of toxicological concern (TTC) for a single impurity where mutagenicity but no carcinogenicity information exists. Despite best efforts, the presence of more than one genotoxic impurity in an NDS may occur at trace levels. This paper repeats the analysis performed by others for a single genotoxic compound, but also uses statistical simulations to assess the impact on cancer risk for a mixture of genotoxic compounds. In summary, with the addition of multiple impurities all controlled to the TTC, an increase in cancer risk was observed. This increase is relatively small when considering the conservative assumptions of the TTC. If structurally similar compounds had an assumed strong correlation (+/-10-fold from the first randomly selected impurity) in cancer potency, the resulting cancer risk was not negatively impacted. Findings based on probabilistic analysis here can be very useful in making appropriate decisions about risk management of multiple genotoxic impurities measured in the final drug substance.  相似文献   

13.
The Threshold of Toxicological Concern (TTC) is a level of human intake or exposure that is considered to be of negligible risk, despite the absence of chemical-specific toxicity data. The TTC approach is a form of risk characterisation in which uncertainties arising from the use of data on other compounds are balanced against the low level of exposure. The approach was initially developed by the FDA for packaging migrants, and used a single threshold value of 1.5mug/day (called the threshold of regulation). Subsequent analyses of chronic toxicity data resulted in the development of TTC values for three structural classes with different potentials for toxicity (1,800, 540 and 90mug/day). These TTC values have been incorporated into the procedure that is used internationally for the evaluation of flavouring substances. Further developments included additional TTC values for certain structural alerts for genotoxicity (0.15mug/day), and for the presence of an organophosphate group (18mug/day). All of these TTC values were incorporated into an extended decision tree for chemicals, such as contaminants, which might be present in human foods. The TTC approach has been shown to have potential applications to risk assessments of cosmetic ingredients, household products and impurities in therapeutic drugs.  相似文献   

14.
For decades, regulators have grappled with different approaches to address the issue of control of impurities. Safety-based limits, such as permissible daily exposure (PDE), acceptable intake (AI), threshold of toxicological concern (TTC) and less than lifetime limits (LTL) have all been used. For many years these safety-based limits have been recognized as virtually safe doses (VSDs). Recently, however, many regulatory agencies are seeking to impose limits for N-nitrosamine impurities, which are significantly below the VSD. This commentary will discuss the evolution of safety-based limits for impurities, provide an overview of the valsartan N-nitrosamine contamination issue and review the toxicology of N-nitrosamines. The outcome of a lessons-learned exercise on sartan medications undertaken by the European Medicines Agency (EMA) will also be discussed. The review will also highlight the many analytical challenges inherent with controlling impurities to ppb-based limits. The use of highly sensitive, low ppb limits, methods may lead to future issues of batch rejection, based on false positives. Regulators initially viewed the N-nitrosamine risk as being insufficient to prompt immediate product discontinuation and patients were specifically advised to continue using their affected medication. Patients were also informed that exposure to N-nitrosamines is extremely common via food and drinking water.  相似文献   

15.
N-Nitrosamines (also referred to as nitrosamines) are a class of substances, many of which are highly potent mutagenic agents which have been classified as probable human carcinogens. Nitrosamine impurities have been a concern within the pharmaceutical industry and by regulatory authorities worldwide since June 2018, when regulators were informed of the presence of N-nitrosodimethylamine (NDMA) in the angiotensin-II receptor blocker (ARB) medicine, valsartan.  Since that time, regulatory authorities have collaborated to share information and knowledge on issues related to nitrosamines with a goal of promoting convergence on technical issues and reducing and mitigating patient exposure to harmful nitrosamine impurities in human drug products. This paper shares current scientific information from a quality perspective on risk factors and potential root causes for nitrosamine impurities, as well as recommendations for risk mitigation and control strategies.  相似文献   

16.
A scientific rationale is provided for estimating acceptable daily intake values (ADIs) for compounds with limited or no toxicity information to support pharmaceutical manufacturing operations. These ADIs are based on application of the "thresholds of toxicological concern" (TTC) principle, in which levels of human exposure are estimated that pose no appreciable risk to human health. The same concept has been used by the US Food and Drug Administration (FDA) to establish "thresholds of regulation" for indirect food additives and adopted by the Joint FAO/WHO Expert Committee on Food Additives for flavoring substances. In practice, these values are used as a statement of safety and indicate when no actions need to be taken in a given exposure situation. Pharmaceutical manufacturing relies on ADIs for cleaning validation of process equipment and atypical extraneous matter investigations. To provide practical guidance for handling situations where relatively unstudied compounds with limited or no toxicity data are encountered, recommendations are provided on ADI values that correspond to three categories of compounds: (1) compounds that are likely to be carcinogenic, (2) compounds that are likely to be potent or highly toxic, and (3) compounds that are not likely to be potent, highly toxic or carcinogenic. Corresponding ADIs for these categories of materials are 1, 10, and 100 microg/day, respectively.  相似文献   

17.
The toxicological assessment of chemically complex food matrices (CCFM) usually is very time consuming, expensive and uses many animal studies. Improvements to obtain a more efficient assessment process remain limited as long as we retain traditional approaches to toxicological risk assessment. New concepts would be needed to achieve real innovations in risk assessment. The threshold of toxicological concern (TTC) potentially is such a concept that has existed for many years and recently has been further developed.The safety of CCFM is difficult to assess as there are numerous unknown substances present (often referred to as ‘Forest-of-Peaks’ in chromatographic analysis). Usually, for the evaluation of CCFM, a full safety assessment approach involving animal studies is needed, but the exposure to most substances is low and TTC might be applicable. However, to apply TTC efficiently to CCFM, a strategy is needed to deal with large numbers of unknowns (substances of which structural information is lacking). Therefore, we have drafted a framework for application of TTC in safety assessment of CCFM. This paper describes the criteria and development of the framework proposing a stepwise approach for the application of TTC in safety assessment of CCFM and future developments required.  相似文献   

18.
Unknown substances, not previously observed, are frequently detected in foods by quality control laboratories. In many cases, the assessment of these ‘new’ substances requires additional chemical analysis for their identification prior to assessing risk. This identification procedure can be time-consuming, expensive and in some instances difficult. Furthermore, in many cases, no toxicological information will be available for the substance. Therefore, there is a need to develop pragmatic tools for the assessment of the potential toxicity of substances with unknown identity to avoid delays in their risk assessment.Hence, the ‘ILSI Europe expert group on the application of the threshold of toxicological concern (TTC) to unexpected peaks found in food’ was established to explore whether the TTC concept may enable a more pragmatic risk assessment of unknown substances that were not previously detected in food. A step-wise approach is introduced that uses expert judgement on the source of the food, information on the analytical techniques, the dietary consumption of food sources containing the unknown substance and quantitative information of the unknown substance to assess the safety to the consumer using the TTC. By following this step-wise approach, it may be possible to apply a TTC threshold of 90 μg/day for an unknown substance in food.  相似文献   

19.
Due to ever-improving analytical capabilities, very low levels of unexpected chemicals can now be detected in foods. Although these may be toxicologically insignificant, such incidents often garner significant attention. The threshold of toxicological concern (TTC) methodology provides a scientifically defensible, transparent approach for putting low-level exposures in the context of potential risk, as a tool to facilitate prioritization of responses, including potential mitigation. The TTC method supports the establishment of tiered, health-protective exposure limits for chemicals lacking a full toxicity database, based on evaluation of the known toxicity of chemicals which share similar structural characteristics. The approach supports the view that prudent actions towards public health protection are based on evaluation of safety as opposed to detection chemistry. This paper builds on the existing TTC literature and recommends refinements that address two key areas. The first describes the inclusion of genotoxicity data as a way to refine the TTC limit for chemicals that have structural alerts for genotoxicity. The second area addresses duration of exposure. Whereas the existing TTC exposure limits assume a lifetime of exposure, human exposure to unintended chemicals in food is often only for a limited time. Recommendations are made to refine the approach for less-than-lifetime exposures.  相似文献   

20.
The threshold of toxicological concern (TTC) is a principle which refers to the possibility of establishing a human exposure threshold value for all chemicals, below which there is no appreciable risk to human health. The concept that exposure thresholds can be identified for individual chemicals in the diet is already widely embodied in practice of many regulatory bodies in setting acceptable daily intakes (ADIs) for chemicals whose toxicological profile is known. However, the TTC concept goes further than this in proposing that a de minimis value can be identified for many chemicals, including those of unknown toxicity, taking the chemical structure into consideration. This concept forms the scientific basis of the US Food and Drug Administration (FDA) '1995 Threshold of Regulation' for indirect food additives. The TTC principle has also been adopted by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in its evaluations of flavouring substances. The establishment of a more widely accepted TTC would benefit consumers, industry and regulators. In precluding extensive toxicity testing and safety evaluations when human intakes are below such a threshold, TTC would focus limited resources of time, cost, animal use and expertise on the testing and evaluation of substances with greater potential to pose risks to human health and contribute to a reduction in the use of animals. An International Life Sciences Institute (ILSI)-Europe expert group has examined this TTC principle, which was based on general toxicity endpoints (including carcinogenicity), for its applicability in food safety evaluation. In addition, the group examined specific endpoints, such as neurotoxicity, immunotoxicity and developmental toxicity. The results of the expert group's considerations including the development of a guideline to apply the principle are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号