首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of Mycobacterium tuberculosis to grow in macrophages is critical to the virulence of this important pathogen. One way M. tuberculosis is thought to maintain a hospitable niche in macrophages is by arresting the normal process of phagosomes maturing into acidified phagolysosomes. The process of phagosome maturation arrest by M. tuberculosis is not fully understood, and there has remained a need to firmly establish a requirement for phagosome maturation arrest for M. tuberculosis growth in macrophages. Other intracellular pathogens that control the phagosomal environment use specialized protein export systems to deliver effectors of phagosome trafficking to the host cell. In M. tuberculosis, the accessory SecA2 system is a specialized protein export system that is required for intracellular growth in macrophages. In studying the importance of the SecA2 system in macrophages, we discovered that SecA2 is required for phagosome maturation arrest. Shortly after infection, phagosomes containing a ΔsecA2 mutant of M. tuberculosis were more acidified and showed greater association with markers of late endosomes than phagosomes containing wild-type M. tuberculosis. We further showed that inhibitors of phagosome acidification rescued the intracellular growth defect of the ΔsecA2 mutant, which demonstrated that the phagosome maturation arrest defect of the ΔsecA2 mutant is responsible for the intracellular growth defect. This study demonstrates the importance of phagosome maturation arrest for M. tuberculosis growth in macrophages, and it suggests there are effectors of phagosome maturation that are exported into the host environment by the accessory SecA2 system.  相似文献   

2.
Brucella spp. are facultative intracellular parasites of various mammals, including humans, typically infecting lymphoid as well as reproductive organs. We have investigated how B. suis and B. melitensis enter human monocytes and in which compartment they survive. Peripheral blood monocytes readily internalized nonopsonized brucellae and killed most of them within 12 to 18 h. The presence of Brucella-specific antibodies (but not complement) increased the uptake of bacteria without increasing their intracellular survival, whereas adherence of the monocytes or incubation in Ca(2+)- and Mg(2+)-free medium reduced the uptake. Engulfment of all Brucella organisms (regardless of bacterial viability or virulence) initially resulted in phagosomes with tightly apposed walls (TP). Most TP were fully fusiogenic and matured to spacious phagolysosomes containing degraded bacteria, whereas some TP (more in monocyte-derived macrophages, HeLa cells, and CHO cells than in monocytes) remained tightly apposed to intact bacteria. Immediate treatment of infected host cells with the lysosomotropic base ammonium chloride caused a swelling of all phagosomes and a rise in the intraphagosomal pH, abolishing the intracellular survival of Brucella. These results indicate that (i) human monocytes readily internalize Brucella in a conventional way using various phagocytosis-promoting receptors, (ii) the maturation of some Brucella phagosomes is passively arrested between the steps of acidification and phagosome-lysosome fusion, (iii) brucellae are killed in maturing but not in arrested phagosomes, and (iv) survival of internalized Brucella depends on an acidic intraphagosomal pH and/or close contact with the phagosomal wall.  相似文献   

3.
Brucella species are gram-negative, facultatively intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment in phagocytic and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. However, the biochemical mechanisms and microbial factors implicated in Brucella maturation are still completely unknown. We developed two different approaches in an attempt to gain further insight into these mechanisms: (i) a fluorescence microscopy analysis of general intracellular trafficking on whole cells in the presence of Brucella and (ii) a flow cytometry analysis of in vitro reconstitution assays showing the interaction between Brucella suis-containing phagosomes and lysosomes. The fluorescence microscopy results revealed that fusion properties of latex bead-containing phagosomes with lysosomes were not modified in the presence of live Brucella suis in the cells. We concluded that fusion inhibition was restricted to the pathogen phagosome and that the host cell fusion machinery was not altered by the presence of live Brucella in the cell. By in vitro reconstitution experiments, we observed a specific association between killed B. suis-containing phagosomes and lysosomes, which was dependent on exogenously supplied cytosol, energy, and temperature. This association was observed with killed bacteria but not with live bacteria. Hence, this specific recognition inhibition seemed to be restricted to the pathogen phagosomal membrane, as noted in the in vivo experiments.  相似文献   

4.
Cells in the Brucella spp. are intracellular pathogens that survive and replicate within host monocytes. Brucella maintains persistent infections in animals despite the production of high levels of anti-Brucella-specific antibodies. To determine the effect of antibody opsonization on the ability of Brucella to establish itself within monocytes, the intracellular trafficking of virulent Brucella abortus 2308 and attenuated hfq and bacA mutants was followed in the human monocytic cell line THP-1. Early trafficking events of B. abortus 2308-containing phagosomes (BCP) were indistinguishable from those seen for control particles (heat-killed B. abortus 2308, live Escherichia coli HB101, or latex beads). All phagosomes transiently communicated the early-endosomal compartment and rapidly matured into LAMP-1(+), cathepsin D(+), and acidic phagosomes. By 2 h postinfection, however, the number of cathepsin D(+) BCP was significantly lower for live B. abortus 2308-infected cells than for either Brucella mutant strains or control particles. B. abortus 2308 persisted within these cathepsin D(-), LAMP-1(+), and acidic vesicles; however, at the onset of intracellular replication, the numbers of acidic B. abortus 2308 BCP decreased while remaining cathepsin D(-) and LAMP-1(+). In contrast to B. abortus 2308, the isogenic hfq and bacA mutants remained in acidic, LAMP-1(+) phagosomes and failed to initiate intracellular replication. Notably, markers specific for the host endoplasmic reticulum were absent from the BCPs throughout the course of the infection. Thus, opsonized B. abortus in human monocytes survives within phagosomes that remain in the endosomal pathway and replication of virulent B. abortus 2308 within these vesicles corresponds with an increase in intraphagosomal pH.  相似文献   

5.
Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. We have previously shown that the maturation inhibition of the Brucella-containing phagosome appears to be restricted at the phagosomal membrane, but the precise molecular mechanisms and factors involved in this inhibition have yet to be identified. Interestingly, recent studies have revealed that caveolae or lipid rafts are implicated in the entry of some microorganisms into host cells and mediate an endocytic pathway avoiding fusion with lysosomes. In this study, we investigated the role of cholesterol and the ganglioside GM(1), two components of lipid rafts, in entry and short-term survival of Brucella suis in murine macrophages, by using cholesterol-sequestering (filipin and beta-methyl cyclodextrin) and GM(1)-binding (cholera toxin B) molecules. Our results suggest that lipid rafts may provide a portal for entry of Brucella into murine macrophages under nonopsonic conditions, thus allowing phagosome-lysosome fusion inhibition, and provide further evidence to support the idea that the phagosome maturation inhibition is restricted at the phagosomal membrane.  相似文献   

6.
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the ‘vacuolar’ ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.  相似文献   

7.
The Francisella tularensis-containing phagosome (FCP) matures to a late-endosome-like phagosome prior to bacterial escape into the cytosols of macrophages, where bacterial proliferation occurs. Our data show that within the first 15 min after infection of primary human monocyte-derived macrophages (hMDMs), approximately 90% of the FCPs acquire the proton vacuolar ATPase (vATPase) pump and the lysomotropic dye LysoTracker, which concentrates in acidic compartments, similar to phagosomes harboring the Listeria monocytogenes control. The acquired proton vATPase pump and lysomotropic dye are gradually lost by 30 to 60 min postinfection, which coincides with bacterial escape into the cytosols of hMDMs. Colocalization of phagosomes harboring the iglD mutant with the vATPase pump and the LysoTracker dye was also transient, and the loss of colocalization was faster than that observed for the wild-type strain, which is consistent with the faster escape of the iglD mutant into the macrophage cytosol. In contrast, colocalization of both makers with phagosomes harboring the iglC mutant was persistent, which is consistent with fusion to the lysosomes and failure of the iglC mutant to escape into the macrophage cytosol. We have utilized a fluorescence microscopy-based phagosome integrity assay for differential labeling of vacuolar versus cytosolic bacteria, using antibacterial antibodies loaded into the cytosols of live hMDMs. We show that specific inhibition of the proton vATPase pump by bafilomycin A1 (BFA) blocks rapid bacterial escape into the cytosols of hMDMs, but 30% to 50% of the bacteria escape into the cytosol by 6 to 12 h after BFA treatment. The effect of BFA on the blocking of bacterial escape into the cytosol is completely reversible, as the bacteria escape after removal of BFA. We also show that the limited fusion of the FCP to lysosomes is not due to failure to recruit the late-endosomal fusion regulator Rab7. Therefore, within few minutes of its biogenesis, the FCP transiently acquires the proton vATPase pump to acidify the phagosome, and this transient acidification is essential for subsequent bacterial escape into the macrophage cytosol.  相似文献   

8.
Brucella infects macrophages by swimming internalization, after which it is enclosed in macropinosomes. We investigated the role of the uptake pathway in phagosome trafficking, which remains unclear. This study found membrane sorting during swimming internalization and is essential in intracellular replication of Brucella. The B. abortus virB mutant replicated intracellularly when it was in the macropinosome established by wild-type B. abortus that retained its ability to alter phagosome trafficking. Lipid rafts-associated molecules, such as GM1 ganglioside, were selectively included into macropinosomes, but Rab5 effector early endosome autoantigen (EEA1) and lysosomal glycoprotein LAMP-1 were excluded from macropinosomes containing B. abortus induced by swimming internalization. In contrast, when the swimming internalization was bypassed by phorbol myristate acetate (PMA)-induced macropinocytosis, lipid raft-associated molecules were excluded, and EEA1 and LAMP-1 were included into macropinosomes containing bacteria. The phosphatidylinositol 3-kinase inhibitor wortmannin that inhibits PMA-induced macropinocytosis blocked internalization of virB mutant, but not of wild-type of B. abortus and wortmannin treatment did not affect intracellular replication. Our results suggest that membrane sorting requires swimming internalization of B. abortus and decides the intracellular fate of the bacterium, and that Brucella -induced macropinosome formation is a different mechanism from PMA-induced macropinocytosis.  相似文献   

9.
Yersinia pseudotuberculosis survived and multiplied in the phagosomes of B10.A mouse peritoneal macrophages. As one of the possible mechanisms for the bacteria's survival in the phagosomes, we demonstrated that live Y. pseudotuberculosis inhibited the phagosomal acidification; pH within phagosomes containing the live Y. pseudotuberculosis remained at about 6.0, whereas pH within phagosomes containing the dead Y. pseudotuberculosis fell to about 4. 5. This ability to inhibit intraphagosomal acidification was also shared by mutants lacking the 42 Md virulence plasmid, indicating that it is chromosomally encoded. The phagosomes containing dead bacteria raised the pH to 6.2 after the treatment of their macrophages with an inhibitor (bafilomycin A1) specific for V-ATPase. Although the amount of V-ATPase in the A and B subunits on the phagosomes was not significantly different between the live and dead bacteria infection, the phagosomes containing live bacteria had a 10-fold smaller V-ATPase activity than those containing the dead bacteria. These results indicated that the inhibition of phagosomal acidification by Y. pseudotuberculosis infection was due to the attenuation of V-ATPase activity, and not due to the exclusion of V-ATPase subunits from the phagosome membrane as found in Mycobacterium avium.  相似文献   

10.
Trophoblasts in normal and Brucella abortus-infected caprine placentas were examined by ultrastructural morphometric analysis to establish structural relationships of B abortus with cytoplasmic organelles; brucellae were identified with colloidal gold-labeled anti-B abortus bovine IgG. Cytotrophoblasts had large numbers of B abortus in cisternae of rough endoplasmic reticulum; binucleate trophoblasts did not contain bacteria. In infected trophoblasts there was a significant hypertrophy of B abortus-filled rough endoplasmic reticulum (RER) and a corresponding reduction in normal-appearing RER. Volume and surface density of RER in trophoblasts were: normal placentas (control), 2.8% and 0.30 sq mu; infected placentas, 27.9% (27.4% of which contained B abortus) and 0.56 sq mu (cells containing B abortus) and 3.3% and 0.34 sq mu (cells not containing B abortus). These data suggest that B abortus replicates within the RER of trophoblasts, possibly for synthesis and glycosylation of bacterial membrane proteins.  相似文献   

11.
To maintain survival in macrophages, Brucella must overcome a hostile phagosomal environment defined as low pH, limited nutrition and low oxygen tension. The specific mechanisms utilized by Brucella to surmount such unfavorable environmental factors in phagosomes are not well understood. In general, to adapt to a change in environmental oxygen tension, bacteria use different terminal oxidases that have different oxygen affinity. To survive in phagosomes where low oxygen tension exists, Brucella, like other bacteria, may require high oxygen affinity terminal oxidases that can accept electrons through a cytochrome bc(1)complex dependent or independent pathway. Using a Brucella abortus cytochrome bc(1)complex deficient mutant, delta fbcF, the requirement for a high oxygen affinity terminal oxidase governed by the cytochrome bc(1)complex dependent pathway was tested. The number of cfu from RAW 264.7 macrophage cells and spleens of BALB/c mice infected with wild-type or the cytochrome bc(1)complex deficient mutant was similar during the course of infection. These results suggest that B. abortus contains no essential terminal oxidase utilized at low oxygen tension in phagosomes requiring the cytochrome bc(1)complex. Alternatively, other branched cytochrome bc(1)complex independent respiratory mechanisms that contain the high oxygen affinity terminal oxidases likely exist to facilitate Brucella survival in phagosomes. This is the first investigation regarding the Brucella respiratory system at the molecular level and the involvement of a respiratory system in Brucella pathogenesis.  相似文献   

12.
Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome.  相似文献   

13.
The paper and review by Goren et al. (J. Leukocyte Biol. 41, 111, 1987) contain serious objections to the reports from several laboratories on the pattern of fusion of secondary lysosomes with phagosomes (yeasts being predominantly the target) in polyanion-treated macrophages; these reports had concluded that the polyanions were inhibitors of this fusion. The main objection by Goren et al. is to the alleged misuse of electron microscopic (EM) lysosome markers; many instances of phagosome-lysosome (P-L) fusion in the treated cells have therefore been missed. The central argument is that 1) the "hydrocolloid" properties of certain of these polyanions hinder the passage of the enmeshed marker from lysosome to phagosome after their fusion and 2) this hindrance is mistakenly interpreted as indicating that fusion has not taken place, thus giving rise to the belief that the polyanions can inhibit fusion. In reply, we explain that we score as P-L fusion any instance of marker (ferritin) being seen anywhere in a fused phagosome (phagolysosome). For this crucial reason, immobilisation of marker by a hydrocolloid polyanion, e.g., in lysosomal residue of phagolysosomes or just within phagosome membranes (as in Goren's Figs. 5 and 6 [8]), would not seriously threaten the marker distinction between fusion and nonfusion (with consequent underestimation of the former) and therefore would not invalidate the reports of a high incidence of nonfusion in polyanion-treated macrophages. Such inhibition of P-L fusion is supported by using as lysosomal label the nonpermeant fluorescent probe lucifer yellow (accepted by Goren et al. as a reliable indicator of fusion). Further support comes from the correlated inhibition of the saltatory movements of secondary lysosomes previously described; static lysosomes will have their contact with the phagosomes severely restricted. Another criticism is based on the failure of certain salient properties and functions of phagosomes to change significantly after polyanion treatment of the macrophages; these include intraphagosomal digestion, presence of lysosomal enzymes, and acidification. However, this indirect evidence can be accounted for alternatively by the operation of factors (primary lysosomes, endogenous acidification, etc.) not affected by the polyanionic block. We conclude that fusion inhibition by the polyanions is a real phenomenon, as previously reported, notwithstanding the hydrocolloid properties of some of them. Furthermore, an explanation based on hydrocolloid properties is questionable, since one or possibly two of the five main polyanionic agents appear not to be hydrocolloids.  相似文献   

14.
The virulence of Salmonella typhimurium for mice results, in part, from its ability to survive after phagocytosis by macrophages. Although it is generally agreed that intracellular bacteria persist in membrane-bound phagosomes, there remains some question as to whether these phagosomes fuse with macrophage lysosomes. This report describes the maturation of phagosomes containing S. typhimurium inside mouse bone marrow-derived macrophages. Macrophages were infected briefly and incubated for various intervals; then they were examined by fluorescence microscopy for colocalization of bacteria with lysosomal markers. These markers included LAMP-1, cathepsin L, and fluorescent proteins or dextrans preloaded into lysosomes by endocytosis. By all measures, phagosomes containing S. typhimurium merged completely with the lysosomal compartment within 20 min of phagocytosis. The rate of phagosome-lysosome fusion was similar to the rate for phagocytosed latex beads. Phagolysosomes remained accessible to fluid-phase probes and contained lysosomal markers for many hours. Moreover, a large percentage of the wild-type bacteria that were viable 20 min after infection survived longer incubations inside macrophages, indicating that the survivors were not a minor subpopulation that avoided phagosome-lysosome fusion. Therefore, we conclude that S. typhimurium survives within the lysosomal compartments of macrophages.  相似文献   

15.
Infectious Chlamydia psittaci enters macrophages via a cytochalasin B-insensitive pathway in which chlamydia-containing phagosomes do not fuse with lysosomes; heat-inactivated C. psittaci enters macrophages via a route in which phagosomes do fuse with lysosomes. In an attempt to explain these differences, phagosomes containing infectious and heated chlamydiae were isolated from mouse macrophages by a procedure developed to isolate L-cell chlamydial phagosomes by rate zonal centrifugation. Macrophage phagosomes acted similarly to L-cell phagosomes on dextran and discontinuous sucrose gradients and exhibited similar detergent sensitivities. Total proteins of the two phagosomes were compared with each other, L-cell proteins, and surface-labeled proteins from macrophages. Both macrophage phagosome membranes had at least nine proteins with equal sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities; some were the same as L-cell phagosome proteins. Each phagosome had at least one protein not seen in the other. Only two phagosome proteins had mobilities equal to macrophage plasma membrane proteins. Macrophage phagosomes containing infectious and heat-inactivated C. psittaci, although created by different entry mechanisms and destined for different intracellular fates, exhibited only a few differences in their proteins.  相似文献   

16.
The intracellular human pathogens Legionella pneumophila and Mycobacterium tuberculosis reside in altered phagosomes that do not fuse with lysosomes and are only mildly acidified. The L. pneumophila phagosome exists completely outside the endolysosomal pathway, and the M. tuberculosis phagosome displays a maturational arrest at an early endosomal stage along this pathway. Rab5 plays a critical role in regulating membrane trafficking involving endosomes and phagosomes. To determine whether an alteration in the function or delivery of Rab5 could play a role in the aberrant development of L. pneumophila and M. tuberculosis phagosomes, we have examined the distribution of the small GTPase, Rab5c, in infected HeLa cells overexpressing Rab5c. Both pathogens formed phagosomes in HeLa cells with molecular characteristics similar to their phagosomes in human macrophages and multiplied in these host cells. Phagosomes containing virulent wild-type L. pneumophila never acquired immunogold staining for Rab5c, whereas phagosomes containing an avirulent mutant L. pneumophila (which ultimately fused with lysosomes) transiently acquired staining for Rab5c after phagocytosis. In contrast, M. tuberculosis phagosomes exhibited abundant staining for Rab5c throughout its life cycle. To verify that the overexpressed, recombinant Rab5c observed on the bacterial phagosomes was biologically active, we examined the phagosomes in HeLa cells expressing Rab5c Q79L, a fusion-promoting mutant. Such HeLa cells formed giant vacuoles, and after incubation with various particles, the giant vacuoles acquired large numbers of latex beads, M. tuberculosis, and avirulent L. pneumophila but not wild-type L. pneumophila, which consistently remained in tight phagosomes that did not fuse with the giant vacuoles. These results indicate that whereas Rab5 is absent from wild-type L. pneumophila phagosomes, functional Rab5 persists on M. tuberculosis phagosomes. The absence of Rab5 on the L. pneumophila phagosome may underlie its lack of interaction with endocytic compartments. The persistence of functional Rab5 on the M. tuberculosis phagosomes may enable the phagosome to retard its own maturation at an early endosomal stage.  相似文献   

17.
Yates RM  Russell DG 《Immunity》2005,23(4):409-417
Toll-like receptors modulate many aspects of the innate immune response. Recent reports suggest that the maturation of phagosomes following particle uptake is modulated through signaling of Toll-like receptors. In the current study, the kinetics of phagosome maturation was evaluated quantitatively by ratio fluorometry to determine the lumenal pH of the phagosomes and a FRET-based technique to determine the degree of phagosome/lysosome fusion. Profiles generated for phagosomes containing experimental particles with or without the TLR ligands Pam3Cys-Ser-(Lys)4 or LPS failed to reveal a difference in maturation despite activating TLR-signaling pathways. Moreover, while macrophages defective in individual TLRs generated phagosome maturation profiles identical to wild-type macrophages, MyD88-deficient macrophages exhibited a marked depression in phagosome/lysosome fusion that appears independent of short-term TLR-mediated effects. The results demonstrate that the rate of maturation of phagosomes proceeds independently of TLR signaling pathways.  相似文献   

18.
When small particles, such as microorganisms, are taken up by macrophages, they are wrapped with a portion of the host cell plasma membrane and ingested, creating a new organelle, the phagosome. This phagosome matures stepwise as newly formed endosomes do, finally forming a phagolysosome, a process that contributes to killing of ingested microbes and to the presentation of microbial antigens on the surface of the phagocyte. Some pathogenic bacteria, however, reprogramme the phagocytic cell in such a way that the phagosome will either be arrested in an early stage of maturation or will be diverted and create an unusual, novel phagosomal compartment. To study the molecular processes that underly biogenesis of bacteria-containing phagosomes, we have established a method to isolate and to biochemically analyse bacteria-containing phagosomes. This method consists of mechanical lysis of infected macrophages, production of a postnuclear supernatant followed by fractionation in a discontinuous sucrose density gradient, separation through a Ficoll cushion, and by a final concentration step. These phagosome preparations contain very little endosomal or lysosomal contamination (the organelles of most concern when studying phagosome biogenesis) and very little Golgi- and plasma membrane-derived contamination, but do contain some mitochondrial and ER contamination. This method could also be used to study bacterial factors (proteins, RNA) produced while in phagosomes.  相似文献   

19.
Brucella is a broad-range, facultative intracellular pathogen that can survive and replicate in an endoplasmic reticulum (ER)-derived replication niche by preventing fusion of its membrane-bound compartment with late endosomes and lysosomes. This vacuolar hijacking was demonstrated to be dependent on the type IV secretion system VirB but no secreted effectors have been identified yet. A virB mutant is unable to reach its ER-derived replicative niche and does not multiply intracellularly. In this paper, we showed that, by co-infecting bovine macrophages or HeLa cells with the wild type (WT) strain of Brucella melitensis 16M and a deletion mutant of the complete virB operon, the replication of DeltavirB is rescued in almost 20% of the co-infected cells. Furthermore, we demonstrated that co-infections with the WT strains of Brucella abortus or Brucella suis were equally able to rescue the replication of the B. melitensis DeltavirB mutant. By contrast, no rescue was observed when the WT strain was given 1h before or after the infection with the DeltavirB mutant. Finally, vacuoles containing the rescued DeltavirB mutant were shown to exclude the LAMP-1 marker in a way similar to the WT containing vacuoles.  相似文献   

20.
Francisella tularensis, the agent of tularemia, is an intracellular pathogen, but little is known about the compartment in which it resides in human macrophages. We have examined the interaction of a recent virulent clinical isolate of F. tularensis subsp. tularensis and the live vaccine strain with human macrophages by immunoelectron and confocal immunofluorescence microscopy. We assessed the maturation of the F. tularensis phagosome by examining its acquisition of the lysosome-associated membrane glycoproteins (LAMPs) CD63 and LAMP1 and the acid hydrolase cathepsin D. Two to four hours after infection, vacuoles containing live F. tularensis cells acquired abundant staining for LAMPs but little or no staining for cathepsin D. However, after 4 h, the colocalization of LAMPs with live F. tularensis organisms declined dramatically. In contrast, vacuoles containing formalin-killed bacteria exhibited intense staining for all of these late endosomal/lysosomal markers at all time points examined (1 to 16 h). We examined the pH of the vacuoles 3 to 4 h after infection by quantitative immunogold staining and by fluorescence staining for lysosomotropic agents. Whereas phagosomes containing killed bacteria stained intensely for these agents, indicating a marked acidification of the phagosomes (pH 5.5), phagosomes containing live F. tularensis did not concentrate these markers and thus were not appreciably acidified (pH 6.7). An ultrastructural analysis of the F. tularensis compartment revealed that during the first 4 h after uptake, the majority of F. tularensis bacteria reside within phagosomes with identifiable membranes. The cytoplasmic side of the membranes of approximately 50% of these phagosomes was coated with densely staining fibrils of approximately 30 nm in length. In many cases, these coated phagosomal membranes appeared to bud, vesiculate, and fragment. By 8 h after infection, the majority of live F. tularensis bacteria lacked any ultrastructurally discernible membrane separating them from the host cell cytoplasm. These results indicate that F. tularensis initially enters a nonacidified phagosome with LAMPs but without cathepsin D and that the phagosomal membrane subsequently becomes morphologically disrupted, allowing the bacteria to gain direct access to the macrophagic cytoplasm. The capacity of F. tularensis to alter the maturation of its phagosome and to enter the cytoplasm is likely an important element of its capacity to parasitize macrophages and has major implications for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号