首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-mediated proteolytic damage in white matter of hydrocephalic rats?   总被引:4,自引:0,他引:4  
Hydrocephalus is a pathological dilatation of the cerebrospinal fluid (CSF)-containing ventricles of the brain. Damage to periventricular white matter is multifactorial with contributions by chronic ischemia and gradual physical distortion. Acute ischemic and traumatic brain injuries are associated with calcium-dependent activation of proteolytic enzymes. We hypothesized that hydrocephalus is associated with calcium ion accumulation and proteolytic enzyme activation in cerebral white matter. Hydrocephalus was induced in immature and adult rats by injection of kaolin into the cisterna magna and several different experimental approaches were used. Using the glyoxal bis (2-hydroxyanil) method, free calcium ion was detected in periventricular white matter at sites of histological injury. Western blot determinations showed accumulation of calpain I (mu-calpain) and immunoreactivity for calpain I was increased in periventricular axons of young hydrocephalic rats. Proteolytic cleavage of a fluorogenic calpain substrate was demonstrated in white matter. Immunoreactivity for spectrin breakdown products was detected in scattered callosal axons of young hydrocephalic rats. The findings support the hypothesis that periventricular white matter damage associated with experimental hydrocephalus is due, at least in part, to calcium-activated proteolytic processes. This may have implications for supplemental drug treatments of this disorder.  相似文献   

2.
Proteolytic processing of beta-amyloid precursor by calpain I   总被引:3,自引:0,他引:3  
The beta-amyloid peptide is a core component of the neuritic plaques that accumulate in Alzheimer's disease. Since the beta-peptide resides within a family of precursor proteins (APPs), proteolytic processing of APP is required for beta-amyloid deposition into plaques. Here, we have examined the role played by the calcium-dependent cysteine protease calpain I in APP processing. Immunoblotting with a specific APP antiserum was used to assess the in vitro degradation of rat brain APP, which appears as a triplet of polypeptides of Mr 110-130 kDa. Both soluble and membrane-bound APP were extraordinarily sensitive to activated calpain I. APP contains at least 3 distinct calpain I cleavage sites. The most protease-sensitive site was located within the highly acidic structural motif called the PEST domain, a second site was upstream of the putative N-linked glycosylation sites, and a third generated a 16 kDa carboxy-terminal fragment that contains the beta-peptide. Based on light microscopic immunohistochemistry, APP and calpain I were extensively colocalized within large numbers of neurons distributed throughout the rat brain, with especially high levels of each in neocortical layer 5, subiculum, globus pallidus, entopeduncular nucleus, anterodorsal and reticular thalamic nuclei, motor trigeminal nucleus, deep cerebellar nuclei, and Purkinje cells. Both antigens were most prevalent within neuronal perikarya. Intraventricular kainate infusion, which is known to cause rapid activation of hippocampal calpain I, produced a 32% decline in APP levels after 24 hr, suggestive of in vivo degradation of APP by calpain I. Following kainate-induced neuronal loss, both APP and calpain I immunoreactivities appeared in the surrounding reactive astroglia. These results indicate that calpain I may be involved in the normal and, perhaps, pathological processing of APP, and that this processing could occur in either neurons or reactive astrocytes. Calcium influx and calpain I activation may provide a mechanism by which excitatory neurotransmission regulates APP metabolism.  相似文献   

3.
Type I and type III Na+ channels are localized mainly in neuronal cell bodies in mouse brain. Type II channels are preferentially localized in unmyelinated fiber tracts but are not detectable in normally myelinated fibers. In shiverer mice, which lack compact myelin due to a defect in the myelin basic protein gene, elevated expression of type II Na+ channels was observed in the hypomyelinated axons of large-caliber fiber tracts such as the corpus callosum, internal capsule, fimbria, fornix, corpus medullare of the cerebellum, and nigrostriatal pathway by immunocytochemical analysis with subtype-specific antibodies. No difference was observed in the localization of type I and type III Na+ channels between wild-type and shiverer mice. These findings support the hypothesis that type II Na+ channels are preferentially localized in axons of brain neurons and suggest that their density and localization are regulated by myelination. The selective increase in the number of type II channels in hypomyelinated fiber tracts may contribute to the hyperexcitable phenotype of the shiverer mouse.  相似文献   

4.
Calpains have importance in human neurodegenerative disease pathogenesis, but these mechanisms are difficult to study in postmortem tissues. To establish a cellular model of the human calpain and calpastatin system, we characterized calpain I, calpain II, and calpastatin in SH-SY5Y human neuroblastoma cells in relation to their counterparts in human brain and investigated their expression and activity after inducing cellular differentiation with retinoic acid (RA), a physiological effector of normal brain development. Calpain I in both SH-SY5Y cells and human brain existed in the cytosolic and particulate fractions as three isoforms (80, 78, and 76 kDa) and exhibited atypical isoelectric focusing behavior. Calpain II in SH-SY5Y cells, as in human brain, migrated as a single predominantly cytosolic 76-kDa protein with an isoelectric point ranging from 5.9 to 6.3. Calpastatin from both sources was also 90% cytosolic. In the cells it was composed of four discrete bands, ranging in molecular weight from 110 to 127 kDa. Levels of activated (76 and 78 kDa) and precursor (80 kDa) calpain I isoforms rose 54% (P < 0.0001) in the particulate fraction and 26% (P < 0.0001) in the soluble fraction after 3 days of RA exposure. Because levels and activity of calpastatin remain unchanged during the first 7 days of RA exposure, the increased abundance of calpain I implies a net activation of the calpain system during differentiation. Calpain I activation may contribute to the remodeling of cell shape and neurite extension/retraction associated with neuronal differentiation. J. Neurosci. Res. 48:181–191, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The translucent band which lies just beneath the spinal V tract at the lower end of the spinal trigeminal nucleus (nucleus caudalis) can be divided into three layers. These three layers are distinguished by textural differences in their neuropil and by the morphology and laminar distribution of the axons and dendrites of their neurons. Layer II contains four different kinds of interneurons. Stalked cells are named after their short, stalk-like branches. Their cell bodies are found in greatest numbers in the outer half of layer II. Their coneshaped dendritic arbors extend medially across layers II and III and sometimes extend into layer IV. Their axons form extensive, canopy-like arborizations in layer I. Stalked cells are considered to be excitatory interneurons receiving input on their dendritic spines from primary axonal endings in the layers II and III glomeruli and transferring it to the dendrites of the layer I projection neurons. Layer II contains three kinds of Golgi type II inteneurons, i.e, neurons whose axons branch repeatedly within the confimes of their dendritic arbors. Islet cells similar to those found in layer III (Gobel), '75a), are found in small clusters in layer II. Their dendrites and axons are largely confined in layer II. The dendrites of the arboreal cell burst, in tree-like fashion, into highly focal dendritic arbors confined largely in layer II while the extensive rostral and caudal dendritic arbors of the II-III border cell lie largely in layers II and III with a few branches extending into layer I. The axons of both of these interneurons arborize in layers II and III with a few collaterals extending into layer I. Islet cells, arboreal cells and II-III border cells are considered to be inhibitory interneurons. They are strategically situated to interrupt transmission between primary axonal endings in layers II and III and the layer I projection neurons by altering the output of the stalked cells.  相似文献   

6.
Sustained stimulation of receptors for excitatory amino acids leads to both activation of the calcium-dependent cysteine protease calpain I and to the death of receptive neurons. Here, we have examined the relationship between the calpain I activation and neurodegeneration. Calpain I activation was manifested as increased levels of the major proteolytic fragments of the calpain substrate spectrin, detected and quantified by immunoblotting. Intraventricular administration of the excitatory amino acids kainate or N-methyl-D-aspartate (NMDA) produced calpain I-mediated spectrin degradation and hippocampal neuronal loss. The NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid selectively blocked NMDA- but not kainate-induced protease activation and hippocampal damage. Temporally, spectrin degradation preceded the onset of pyramidal cell degeneration monitored by silver-impregnation histochemistry. Only those doses of kainate (0.15-1 microgram) or NMDA (40-80 micrograms) sufficient to cause hippocampal damage markedly increased spectrin breakdown. Both the neuronal damage and calpain I activation induced by kainate occurred primarily in area CA3. Degeneration of hippocampal neurons evoked by colchicine was not accompanied by calpain activation, indicating that proteolysis is not stimulated simply as a secondary response to neuronal destruction. Thus, a close correspondence exists between excitatory amino acid induction of neuronal degeneration and of calpain I-mediated spectrin degradation. The results suggest that calpain I may be an intracellular mediator of excitatory amino acid action, and further, they support the hypothesis that calcium influx and calpain I activation are obligatory events in the initiation of excitatory amino acid neurotoxicity.  相似文献   

7.
The protein kinase C family of enzymes is composed of at least ten different isoforms that display a variety of distinct biochemical specificities. Many of these isoforms are highly expressed in brain, and some show regional specificity in their distribution, suggesting that they may serve specific functions. By using immunocytochemistry to localize the βI, βII, γ, or δ isoforms of protein kinase C in the central vestibular system of the adult rat, we found the vestibular ganglion and its peripheral and central processes of the eighth nerve to be heavily labeled with protein kinase C βI immunoreactivity. Labeled axons and terminals were also found in all four vestibular nuclei. Some neurons of the vestibular ganglion were weakly stained with the antibody to protein kinase C βII, as were scattered axons in the eighth nerve, and scattered axons and terminals were found in all four vestibular nuclei among weakly labeled neurons. A few axons in the vestibular portion of the eighth nerve were labeled with protein kinase C γ immunoreactivity, and neurons of the spinal, lateral, and superior vestibular nuclei were heavily decorated with synapses, presumably derived from Purkinje neurons, which were also strongly immunoreactive. Neurons of the medial vestibular nucleus were not as heavily innervated. With the antibody to protein kinase C δ, we found scattered, weakly immunoreactive neurons in the vestibular portion of the eighth nerve. Myelinated fiber bundles of the spinal vestibular nucleus contained moderate numbers of labeled axons, and the other vestibular nuclei were well innervated by protein kinase C δ axons and terminals. Most of these probably derive from Purkinje cells, which were labeled in longitudinal bands interspersed with bands of labeled basket cells. These data suggest that particular protein kinase C isoforms play specific roles in vestibular and cerebellar function. J. Comp. Neurol. 385:26–42, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
It has been suggested that, after ischaemia, activation of proteases such as calpains could be involved in cytoskeletal degradation leading to neuronal cell death. In vivo, calpain inhibitors at high doses have been shown to reduce ischaemic damage and traumatic brain injury, however, the relationship between calpain activation and cell death remains unclear. We have investigated the role of calpain activation in a model of ischaemia based on organotypic hippocampal slice cultures using the appearance of spectrin breakdown products (BDPs) as a measure of calpain I activation. Calpain I activity was detected on Western blot immediately after a 1-h exposure to ischaemia. Up to 4 h post ischaemia, BDPs were found mainly in the CA1 region and appeared before uptake of the vital dye propidium iodide (PI). 24 h after the insult, BDPs were detected extensively in CA1 and CA3 pyramidal cells, all of which was PI-positive. However, there were many more PI-positive cells that did not have BDPs, indicating that the appearance of BDPs does not necessarily accompany ischaemic cell death. Inhibition of BDP formation by the broad-spectrum protease inhibitor leupeptin was not accompanied by any neuroprotective effects. The more specific and more cell-permeant calpain inhibitor MDL 28170 had a clear neuroprotective effect when added after the ischaemic insult. In contrast, when MDL 28170 was present throughout the entire pre- and post-incubation phases, PI labelling actually increased, indicating a toxic effect. These results suggest that calpain activation is not always associated with cell death and that, while inhibition of calpains can be neuroprotective under some conditions, it may not always lead to beneficial outcomes in ischaemia.  相似文献   

9.
Calpains are Ca2+ -dependent cytosolic cysteine proteases that participate in the pathology of Duchenne muscular dystrophy (DMD). Utrophin is a functional homolog of dystrophin that partially compensates for dystrophin deficiency in myofibers of mdx mice. In this study, we investigated the susceptibility of utrophin to cleavage by calpain in vitro and in muscle cells. We found that utrophin is a direct in vitro substrate of purified calpain I and II. Cleavage of utrophin by calpain I or II generates specific degradation products that are also found in cultured control and DMD myotubes under conditions with elevated intracellular Ca2+ levels. In addition, we showed that activation of cellular calpains by Ca2+ ionophore treatment reduces utrophin protein levels in muscle cells and that calpain inhibition prevents this Ca2+ -induced reduction in utrophin levels. These observations suggest that, beside its known effect on general muscle protein degradation, calpain contributes to DMD pathology by specifically degrading the compensatory protein utrophin.  相似文献   

10.
Histochemical analyses of type II brain 4.1/4.1B/KIAA0987, a member of the protein 4.1 family, were carried out in rat brain. In situ hybridization (ISH) showed that type II brain 4.1 mRNA is expressed in a variety of neuronal cells. In particular, type II brain 4.1 mRNA was actively transcribed in the cells of the mesencephalon and the brainstem, which have large myelinated nerve fibers. Expression of type II brain 4.1 mRNA was not observed at least in glial cells distributed in nerve fiber tracts. In immunohistochemical studies using anti-type II brain 4.1-specific antibody, the major immunosignals appeared as brilliant pairs of dots along nerve fibers. Such immunosignals were detected throughout the brain, but were highly concentrated in nerve fiber tracts. These data suggested that type II brain 4.1 is predominantly localized to neuronal paranodes. Detailed analysis concentrating on the nodal region indicated that type II brain 4.1 is present at the paranodal membrane but not in the axoplasm. Weaker type II brain 4.1-specific immunosignals were observed along the internodal membrane of myelinated axons and in the cytoplasm of some neuronal cells. Finally, comparative immunohistochemical studies using antibodies against the other three protein 4.1 family members, type I brain 4.1/4.1N/KIAA0338, erythroid type 4.1 (4.1R) and 4.1G, demonstrated that each of these proteins is distributed in a unique pattern in the cerebellum. Our results are the first to show that type II brain 4.1 is the only member of the protein 4.1 family localized to neuronal paranodes.  相似文献   

11.
In the present experiments, we studied the subcellular distribution of three types of extralysosomal, neutral proteolytic activities in rat telencephalon: (1) nonthiol proteases (NTP), (2) thiol proteases (TP), and (3) calcium-activated thiol proteases (calpains I and II). Subcellular fractionation was performed by using conventional differential and sucrose-gradient centrifugation techniques. The only significant proteolytic activity detected in crude homogenates could be assigned to calpain II, the high-threshold calcium-activated protease. Within the primary fractions prepared from the homogenates, the highest levels of calpain II were found in S3, or the soluble cytoplasmic fraction. Significant activity of the enzyme was also present in P2, the crude mitochondrial/synaptosomal fraction. In contrast, the specific activity of calpain I was greatest in P2 with somewhat lesser enzymatic activity in P1 and S3. Most of the calpain I in P2 was recovered after differential centrifugation through sucrose gradients and lysis of the resultant subfractions. In marked contrast, only a small percentage of the calpain II activity was recovered in the gradient bands. In all, calpain II appears to be predominantly localized in the soluble cytoplasmic compartment while the greatest concentrations of calpain I are found in the soluble components of small glial and neuronal processes (pinched off during homogenization) that constitute the P2 fraction. The highest specific activity of the calcium-independent proteases was obtained in P3, a fraction essentially devoid of calpain, with a secondary peak in P2. Subfractionation of P2 revealed that calcium-independent TP in P2 was associated with mitochondria while the calcium-independent NTP was more uniformly distributed across myelin, synaptosomes, and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Neurones of origin of the ventral spinocerebellar tract were stained with intracellularly applied horseradish peroxidase to investigate whether they give off any initial axon collaterals. The neurones were located in the fourth and fifth lumbar segments and were identified by their antidromic activation following stimulation in the contralateral superior cerebellar peduncle. Nine of the 23 neurones with well-stained axons were found to give off axon collaterals soon after the axons crossed the midline. The collaterals entered the contralateral ventral horn and branched within lamina VII and the dorsal part of lamina VIII. Collaterals were found arising only from neurones located in the middle of lamina VII and from axons which took a mediorostral direction. In all of these neurones excitatory postsynaptic potentials were evoked from group Ia afferents of at least some nerves, in addition to such potentials from Ib or unidentified group I afferents, and inhibitory postsynaptic potentials were evoked from group I and II afferents. The area of terminal branching of the collaterals suggests that they may supply contralateral ventral spinocerebellar neurones with information from muscles and/or mediate crossed reflexes from group I afferents.  相似文献   

13.
Complexin (cx) I and cx II are synaptic proteins preferentially expressed by inhibitory and excitatory hippocampal neurons respectively. We previously reported decreased hippocampal formation cx mRNA and protein expression in schizophrenia, with a greater loss of cx II than cx I. The present in situ hybridization study was both an attempt at replication, and an extension to include bipolar and unipolar mood disorders, using sections from the Stanley Foundation brain series. In schizophrenia, both mRNAs were decreased in some hippocampal subfields, especially CA4, but were preserved in subiculum. The cx II/cx I mRNA ratio was unchanged. In bipolar disorder, the mRNAs were reduced in CA4, subiculum and parahippocampal gyrus, with the deficit in subiculum being diagnostically specific. No alterations in cx mRNAs were found in major depression. Treatment of rats with antipsychotics (haloperidol or chlorpromazine) for 2 weeks had no effect on hippocampal cx mRNAs. These data replicate the finding of decreased cx I and cx II expression in the hippocampus in schizophrenia and show a similar or greater abnormality in bipolar disorder. Non-replication of the cx II > cx I mRNA loss in schizophrenia means that the hypothesis of a preferential involvement of excitatory connections was not supported. The results extend the emerging evidence that altered circuitry may be a component of the neuroanatomy of both schizophrenia and bipolar mood disorder.  相似文献   

14.
Calpains and calpastatin in the brain of the rabbit were examined in experimental situations that could mimic some features of brain ischemia. Incubations of bisected brains in saline at 39°C for 0.5, 1, or 1.5 h resulted in a decreased calpain I activity in the cytosol and in an increased hydrophobicity of cytosolic calpain II activity. Incubation of brain homogenates at different pH levels demonstrated an almost-complete transfer of calpains from the cytoplasmic compartment to the membranes when pH was lowered from 6 to 5. At pH values lower than 5, the total calpain activity (soluble plus membrane-bound) markedly decreased. No significant changes of calpastatin activity or its subcellular distribution was found following incubation of the homogenates at different pH levels.  相似文献   

15.
Recent evidence has suggested that Alzheimer's disease may result from an underlying defect of protein catabolism. In an attempt to identify such a defect, we have determined the levels of Ca(2+)-activated proteinase (principally calpain II) and endogenous inhibitor (calpastatin) activity in normal and Alzheimer's disease cases, following fractionation of parietal cortex (grey and white matter) via anion-exchange chromatography. The chromatographic elution profiles and levels of calpain II activity were found to be similar in grey and white matter in both normal and Alzheimer's disease cases. The characteristics of calpain II, including Ca2+ concentration required for optimum activity for enzymes partially purified from normal or Alzheimer's disease cortex were identical. Similarly, the chromatographic elution profiles and levels of total calpastatin activity (approximately equal to that for calpain II activity) were found to be similar in grey and white matter from normal and Alzheimer's disease cases. These data suggest that the characteristic neurodegeneration associated with Alzheimer's disease does not result from alteration in the level of activity or characteristics of the calpain/calpastatin system in the cerebral cortex of patients with this disorder.  相似文献   

16.
The cytoarchitecture, topography, and cellular structure of the nucleus olfactorius anterior (NOA) in the hedgehog have been studied in Nissl-stained and Golgi preparations. The NOA is an important receptive allocortical formation for olfactory fibers and the major source of association fibers relating the main olfactory bulb with the rest of the olfactory brain. It was divided into a bulbar part; four subdivisions named lateral, dorsal, medial, and ventral; an external part; and a posterior part. Except for the external and posterior subdivisions, the NOA is relatively homogeneous and, in spite of the apparent lack of sublamination in Niss-stained material, four clearly defined cellular laminae were distinguished by the Golgi method. These layers were found to be strikingly similar to those in the piriform cortex. Layer I contains the terminal ramifications of apical dendrites of pyramidal cells and the collaterals of the lateral olfactory tract. The superficial part of layer II contains extraverted pyramidal cells with two or three apical dendrites ramifying in layer I. Most pyramidal cells in the deep part of layer II and layer III are typical pyramidal cells with axons entering the commissura anterior. Some pyramidal cell axons bifurcate into two branches running in opposite directions in the commissura anterior. The interstitial zone below layer III contains deep pyramidal cells and polymorphic cells with ascending branches. Cells with intrinsic axons were classified into four main categories according to the distribution of their axonal ramifications: 1) cells with very restricted axons, 2) cells with axons oriented tangentially in the superficial part of layer II, 3) cells with ascending axons located in the deep part, and 4) chandelierlike cells. Finally, some functional considerations are discussed.  相似文献   

17.
Two kynurenine aminotransferases in human brain   总被引:6,自引:0,他引:6  
Using Tris-acetate buffer rather than conventional phosphate buffer, it was possible to detect two distinct proteins capable of producing the neuroinhibitory brain metabolite kynurenic acid (KYNA) from L-kynurenine in human brain tissue. The two kynurenine aminotransferases (KATs), arbitrarily termed 'KAT I' and 'KAT II', could be physically separated by isoelectric focussing on a pH 3-10 Ampholine gradient, and, more completely, by differential elution from a DEAE-Sepharose column. KAT I showed a pronounced preference for pyruvate as a co-factor and had a pH optimum of 9.6. In contrast, KAT II was virtually equally active when either pyruvate or 2-oxoglutarate were used as the aminoacceptor, and its pH optimum was 7.4. Moreover, KAT I and KAT II differed with regard to their sensitivity to amino acids and as the aminoacceptor, and its pH optimum was 7.4. Moreover, KAT I and KAT II differed with regard to their sensitivity to amino acids and kinetic characteristics. The existence of two separate enzymes capable of producing KYNA in the human brain raises the question if and to what extent each of the enzymes regulates the cerebral synthesis of KYNA and its possible role as a modulator of excitatory amino acid receptor function.  相似文献   

18.
The gliotoxic chemical ethidium bromide when injected locally in the rat spinal cord induced areas of demyelination which developed at various times according to the dose used. High doses induced lesions of fast development (type I) and intermediate lesions (type III) whereas low doses induced slow lesions (type II). Following the demyelinating process, naked axons were remyelinated either by oligodendrocytes or Schwann cells (SC) depending on their location in areas respectively with or without astrocytes. In most lesions the area remyelinated by SC was prominent. In lesions of slow development it was possible to observe the factors that influenced SC behavior within the central nervous system. Following the initial invasion from subpial areas and perivascular spaces, SC expansion depended on the presence of a stable extracellular matrix. In type I lesions this matrix was present due to the inflammatory nature of the process. In type II lesions that matrix did not occur thus SC only could migrate among demyelinated axons using them as stepping stones. Between adjacent SC thin diameter collagen fibres could be detected. It was not found any evidence of SC migration along the naked axons.  相似文献   

19.
The ventral or inner region of spinal substantia gelatinosa (SG; lamina II(i)) is a heterogeneous sublamina important for the generation and maintenance of hyperalgesia and neuropathic pain. To test whether II(i) neurons can be hyperpolarized by the mu-opioid agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO; 500 nM) and to address possible downstream consequences of mu-opioid-evoked inhibition of II(i) neurons, we combined in vitro whole-cell, tight-seal recording methods with fluorescent labeling of the intracellular tracer biocytin and confocal microscopy. Twenty-one of 23 neurons studied had identifiable axons. Nine possessed axons that projected ventrally into laminae III-V; six of these were hyperpolarized by DAMGO. Three of four neurons with identifiable axons that projected to lamina I were hyperpolarized by DAMGO. Most neurons could be classified as either islet cells or stalked cells. Five of nine labeled islet cells and only two of seven stalked cells were hyperpolarized by DAMGO. Three were stellate cells: one resembled a spiny cell and three could not be classified. DAMGO hyperpolarized each of the stellate cells, the spiny cell, and 1 of the unclassified cells. Our data support the hypothesis that part of the action of mu-opioid agonists involves the inhibition of interneurons that are part of a polysynaptic excitatory pathway from primary afferents to neurons in the deep and/or superficial dorsal horn.  相似文献   

20.
Calpain proteases influence intracellular signaling pathways and regulate cytoskeleton organization, but the neuronal and pathological roles of individual isoenzymes are unknown. In Alzheimer's disease (AD), the activated form of calpain I is significantly increased while the fate of calpain II has been more difficult to address. Here, calpain II antibodies raised to different sequences within a cryptic region around the active site, which becomes exposed during protease activation, were shown immunohistochemically to bind extensively to neurofibrillary tangles (NFT), neuritic plaques, and neuropil threads in brains from individuals with AD. Additional `pre-tangle' granular structures in neurons were also intensely immunostained, indicating calpain II mobilization at very early stages of NFT formation. Total levels of calpain II remained constant in the prefrontal cortex of AD patients but were increased 8-fold in purified NFT relative to levels of calpain I. These results implicate activated calpain II in neurofibrillary degeneration, provide further evidence for the involvement of the calpain system in AD pathogenesis, and imply that neuronal calcium homeostasis is altered in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号