首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that treating gravid female rats with the bacteriotoxin lipopolysaccharide (LPS) led to the birth of offspring with fewer than normal dopamine (DA) neurons. This DA neuron loss was long-lived and associated with permanent increases in the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). Because of this pro-inflammatory state, we hypothesized that these animals would be more susceptible to subsequent exposure of DA neurotoxins. We tested this hypothesis by treating female Sprague-Dawley rats exposed to LPS or saline prenatally with a subtoxic dose of the DA neurotoxin rotenone (1.25 mg/kg per day) or vehicle for 14 days when they were 16 months old. After another 14 days, the animals were sacrificed. Tyrosine hydroxylase-immunoreactive (THir) cell counts were used as an index of DA neuron survival. Animals exposed to LPS prenatally or rotenone postnatally exhibited a 22% and 3%, respectively, decrease in THir cell counts relative to controls. The combined effects of prenatal LPS and postnatal rotenone exposure produced a synergistic 39% THir cell loss relative to controls. This loss was associated with decreased striatal DA and increased striatal DA activity ([HVA]/[DA]) and TNFalpha. Animals exposed to LPS prenatally exhibited a marked increase in the number of reactive microglia that was further increased by rotenone exposure. Prenatal LPS exposure also led to increased levels of oxidized proteins and the formation of alpha-Synuclein and eosin positive inclusions resembling Lewy bodies. These results suggest that exposure to low doses of an environmental neurotoxin like rotenone can produce synergistic DA neuron losses in animals with a preexisting pro-inflammatory state. This supports the notion that Parkinson's disease (PD) may be caused by multiple factors and the result of "multiple hits" from environmental toxins.  相似文献   

2.
We previously demonstrated that in utero exposure to the bacteriotoxin lipopolysaccharide (LPS) led to the birth of rat pups with fewer than normal dopamine (DA) neurons. These animals exhibited significant neuroinflammation in the nigrostriatal pathway creating the possibility that they could exhibit further, progressive DA neuron loss over their lives. To study this possibility, we injected gravid female rats i.p. at 10,000 endotoxin units (EUs) of LPS per kg or saline at embryonic (E) day 10.5 and assigned pups to sacrifice groups at 4, 14 and 17 months such that littermates were sacrificed at each end point. The effects of prenatal LPS on DA cell counts and striatal DA were significantly reduced relative to controls whereas DA activity and numbers of activated microglia (OX-6ir cell) were statistically increased. However, the progressive DA neuron loss was parallel to that of the controls suggesting that prenatal LPS does not produce an accelerated rate of DA neuron loss. Interestingly, locomotor activity was increased after 3 months in animals exposed to LPS prenatally, but by 16 months, was significantly reduced relative to controls. Additionally, animals exposed to LPS prenatally exhibited Lewy body-like inclusions that were first seen in 14 month old animals. These data broadly support previous studies demonstrating that prenatal exposure to LPS, as frequently occurs in humans as part of Bacterial Vaginosis, leads to the birth of animals with fewer than normal DA neurons. The progressive DA neuron loss seen in these animals is, however, primarily a result of normal aging.  相似文献   

3.
Toxin-induced animal models of Parkinson's disease (PD) exhibit many of the same neuroinflammatory changes seen in patients suggesting a role for inflammation in DA neuron loss. Yet, despite this inflammation, the progressive loss of DA neurons that characterizes PD is rarely seen in animals. We infused lipopolysaccharide (LPS) or saline into 7-month-old rats that had been exposed to LPS or saline prenatally and assessed them for DA neuron loss and inflammatory measures (interleukin 1 beta, tumor necrosis factor-alpha, glutathione, and activated microglia) over a period of 84 days to examine the role of pre-existing inflammation in progressive DA neuron loss. LPS infusion into both prenatal treatment groups produced neuroinflammation during the 14 days of LPS infusion that subsequently reverted toward normal over the next 70 days. In animals with pre-existing inflammation (i.e., prenatal LPS), however, the acute changes seen were attenuated, but took much longer to return to normal suggesting a prolonged inflammatory response. These inflammatory changes were consistent with the greater acute DA neuron loss seen in the prenatal saline controls and the progressive DA neuron loss seen only in the animals exposed to LPS prenatally. Interestingly, both prenatal treatment groups exhibited increases in microglia over the entire 84-day course of the study. These data suggest that pre-existing neuroinflammation prolongs the inflammatory response that occurs with a second toxic exposure, which may be responsible for progressive DA neuron loss. This provides further support for the "multiple hit" hypothesis of PD.  相似文献   

4.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). Although the exact mechanisms responsible for this cell loss are unclear, emerging evidence suggests the involvement of inflammatory events. In the present study, we characterized the effects of the proinflammatory bacteriotoxin lipopolysaccharide (LPS) on the number of tyrosine hydroxylase immunoreactive (THir) cells (used as an index for DA neurons) in primary mesencephalic cultures. LPS (10-80 microg/ml) selectively decreased THir cells and increased culture media levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) as well as nitrite (an index of nitric oxide (NO) production). Cultures exposed to both LPS and neutralizing antibodies to IL-1beta or TNF-alpha showed an attenuation of the LPS-induced THir cell loss by at least 50% in both cases. Inhibition of the inducible form of nitric oxide synthase (iNOS) by L-NIL did not affect LPS toxicity, but increased the LPS-induced levels of both TNF-alpha and IL-1beta. These findings suggest that neuroinflammatory stimuli which lead to elevations in cytokines may induce DA neuron cell loss in a NO-independent manner and contribute to PD pathogenesis.  相似文献   

5.
Male rats received intraventricular infusions of the dopamine (DA) neurotoxin 6-hydroxydopamine (6-OHDA; 0, 75, 150, and 250 μg) in order to determine if DA neuron loss was associated with an increase in striatal trophic activity. After 4 weeks, the animals were sacrificed and perfused with normal saline, and the brains were removed, immediately frozen, and processed. Intraventricular infusions of 6-OHDA were associated with a dose-dependent reduction in striatal DA content and tyrosine hydroxylase-immunoreactive (THir) cell counts in the substantia nigra while striatal DA activity ([HVA]/[DA]) was increased. Extracts of the striatum from these animals increased the survival of E15 primary, dissociated rostral mesencphalic cultures growing at low cell density. This growth effect was positively correlated with the dose of 6-OHDA infused. THir cell counts present in high-cell-density mesencephalic cultures following 72 h of extract incubation were similarly correlated to 6-OHDA dose but inversely correlated with striatal DA content and THir cell counts in the substantia nigra. Trophic activity in the cerebellar extracts from these animals was significantly lower than that present in striatal extracts and was not influenced by 6-OHDA lesions. These data suggest that loss of DA innervation in the striatum is associated with an increase in striatal trophic activity directed at DA neurons. A compensatory response to the loss of DA neurons involving increased striatal trophic activity may result in increased DA terminal sprouting of remaining viable DA neurons that, in turn, would serve to help reinstate normal DA tone.  相似文献   

6.

Introduction

The etiology of Parkinson's disease (PD) is still unknown. Until now, oxidative stress and neuroinflammation play a crucial role in the pathogenesis of PD. However, the specific synergistic role of oxidative stress and neuroinflammation in the occurrence and development of PD remains unclear.

Methods

The changes in motor behavior, dopamine (DA) neurons quantification and their mitochondrial respiratory chain, glial cells activation and secreted cytokines, Nrf2 signaling pathway, and redox balance in the brain of rats were evaluated.

Results

Lipopolysaccharide (LPS)-induced neuroinflammation and rotenone (ROT)-induced oxidative stress synergistically aggravated motor dysfunction, DA neuron damage, activation of glial cells, and release of related mediators, activation of Nrf2 signaling and destruction of oxidative balance. In addition, further studies indicated that after ROT-induced oxidative stress caused direct damage to DA neurons, LPS-induced inflammatory effects had stronger promoting neurotoxic effects on the above aspects.

Conclusions

Neuroinflammation and oxidative stress synergistically aggravated DA neuronal loss. Furtherly, oxidative stress followed by neuroinflammation caused more DA neuronal loss than neuroinflammation followed by oxidative stress.  相似文献   

7.
Kim YJ  Park HJ  Lee G  Bang OY  Ahn YH  Joe E  Kim HO  Lee PH 《Glia》2009,57(1):13-23
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra (SN). Numerous studies have provided evidence suggesting that neuroinflammation plays an important role in the pathogenesis of PD. In this study, we used lipopolysaccharide (LPS)-induced in vitro and in vivo inflammation models to investigate whether human mesenchymal stem cells (hMSCs) have a protective effect on the dopaminergic system through anti-inflammatory mechanisms. The hMSC treatment significantly decreased LPS-induced microglial activation, tumor necrosis factor (TNF)-alpha, inducible nitric oxide synthase (iNOS) mRNA expression, and production of NO and TNF-alpha compared with the LPS-only treatment group. In co-cultures of microglia and mesencephalic dopaminergic neurons, hMSC treatment significantly decreased the loss of tyrosine hydroxylase-immunopositive (TH-ip) cells. The hMSC treatment in rats showed that TH-ip neuronal loss induced by LPS stimulation in the SN was considerably decreased and was clearly accompanied by a decrease in activation of microglia, as well as TNF-alpha and iNOS mRNA expression and production of TNF-alpha. These data suggest that hMSCs have a neuroprotective effect on dopaminergic neurons through anti-inflammatory actions mediated by the modulation of microglial activation. Along with various trophic effects and trans-differentiational potency, the anti-inflammatory properties of MSCs could have major therapeutic implications in the treatment of PD.  相似文献   

8.
The most prominent neurochemical hallmark of Parkinson's disease (PD) is the loss of nigrostriatal dopamine (DA). Animal models of PD have concentrated on depleting DA and therapies have focused on maintaining or restoring DA. Within this context estrogen protects against 6-hydroxdopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions of the nigrostriatal DA pathway. Present studies tested the hypothesis that neuroprotective estrogen actions involve activation of the insulin-like growth factor-1 (IGF-1) system. Ovariectomized rats were treated with either a single subcutaneous injection of 17beta-estradiol benzoate or centrally or peripherally IGF-1. All rats were infused unilaterally with 6-OHDA into the medial forebrain bundle (MFB) to lesion the nigrostriatal DA pathway. Tyrosine hydroxylase (TH) immunocytochemistry confirmed that rats injected with 6-OHDA had a massive loss of TH immunoreactivity in both the ipsilateral substantia nigra compacta (60% loss) and the striatum (>95% loss) compared to the contralateral side. Loss of TH immunoreactivity was correlated with loss of asymmetric forelimb movements, a behavioral assay for motor deficits. Pretreatment with estrogen or IGF-1 significantly prevented 6-OHDA-induced loss of substantia nigra compacta neurons (20% loss) and TH immunoreactivity in DA fibers in the striatum (<20% loss) and prevented the loss of asymmetric forelimb use. Blockage of IGF-1 receptors by intracerebroventricular JB-1, an IGF-1 receptor antagonist, attenuated both estrogen and IGF-1 neuroprotection of nigrostriatal DA neurons and motor behavior. These findings suggest that IGF-1 and estrogen acting through the IGF-1 system may be critical for neuroprotective effects of estrogen on nigrostriatal DA neurons in this model of PD.  相似文献   

9.
Mutations in the alpha-synuclein gene have been linked to rare cases of familial Parkinson's disease (PD). Alpha-synuclein is a major component of Lewy bodies (LB), a pathological hallmark of PD. Transgenic mice and Drosophila expressing either wild-type or mutant human alpha-synuclein develop motor deficits, LB-like inclusions in some neurons, and neuronal degeneration. However, the relationship between abnormal aggregates of alpha-synuclein and human dopamine (DA) neuron degeneration remains unclear. In this report, we have investigated the influence of alpha-synuclein expression on DA neurons in primary culture of embryonic human mesencephalon. Two days after culture, human DA cells were transduced with wild-type or mutant human (Ala(53)Thr) alpha-synuclein adenoviruses and maintained for 5 days. Overexpression of mutant and wild-type human alpha-synuclein resulted in 49% (P<0.01) and 27% (P<0.05) loss of DA neurons, respectively, while not affecting viability of other cells in the culture. Overexpression of rat alpha-synuclein or GFP (green fluorescent protein) had no effect on DA neuron survival. Cytoplasmic inclusions of alpha-synuclein were detected immunohistochemically in DA cells transduced with mutant human alpha-synuclein, but not wild-type alpha-synuclein. These results show that overexpression of human alpha-synuclein, particularly the mutant form, can cause human DA neuron death, suggesting that alpha-synuclein may have a primary role in the pathogenesis of PD.  相似文献   

10.
The molecular characteristics of midbrain dopamine (DA) neurons have been extensively studied in Parkinson's disease (PD). No such studies of the characteristics of midbrain DA neurons in Alzheimer's disease (AD) or Alzheimer's disease with parkinsonism (AD/Park) have been published. We examined the levels of tyrosine hydroxylase (TH) protein, and the expression of TH and dopamine transporter (DAT) mRNAs, in midbrain neurons of PD, AD, and AD/Park cases. In PD, the loss of TH protein in the ventral tier of the substantia nigra pars compacta (SNpc) of the PD group is accompanied by severe losses in the number of neurons that express TH mRNA and DAT mRNA (74% loss). Remaining neurons show a shift to higher concentrations of TH mRNA but a shift to lower concentrations of DAT mRNA per cell. Hence, there is evidence that compensation in the remaining neurons can elevate concentrations of TH mRNA and lower DAT mRNA. Alternatively, there may be a predilection for a loss of neurons with high levels of DAT mRNA and low TH mRNA levels within the SNpc of PD cases. There was no change in TH protein but an elevation of TH mRNA concentrations per neuron without any change in concentrations of DAT mRNA in the AD group. The AD/Park group did not exhibit changes in the level of TH protein, but showed a small loss (26%) of neurons in the SNpc and a greater loss in other regions of the midbrain (43–53%). Remaining DA neurons showed a marked shift to lower concentrations of DAT mRNA per neuron and a nonsignificant shift in cellular concentration of TH mRNA to higher levels. This is consistent with our previous work showing that with AD/Park there is a significant reduction in the number of DAT sites located on DA terminals in the striatum, but the midbrain neurons have not died. Our results indicate that the differential regulation of mRNAs encoding TH and DAT is similar in the parkinsonian disorders (PD and AD/Park) even though the degree of cell death is very different. This might suggest that compensatory events occur in these DA neurons in AD/Park that are similar to those in PD and that result in differential effects on mRNAs encoding TH and DAT proteins.  相似文献   

11.
Patient‐specific induced pluripotent stem cells (iPSCs) are a promising source for cell transplantation therapy. In Parkinson's disease (PD) patients, however, their vulnerability and the transmission of pathological α‐Synuclein are possible drawbacks that may prevent PD‐specific iPSCs (PDiPSCs) from being used in clinical settings. In this study, we generated iPSCs from idiopathic PD patients and found that there was no significant vulnerability between dopaminergic (DA) neurons generated from healthy individuals and idiopathic PD patients. PDiPSC‐derived DA neurons survived and functioned in the brains of PD model rats. In addition, in the brains of α‐Synuclein transgenic mice, PDiPSC‐derived DA neurons did not cause pathological α‐Synuclein accumulation in the host brain or in the grafts. These results suggested that iPSCs derived from idiopathic PD patients are feasible as donor cells for autologous transplantation to treat PD. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
The pathological basis for the dementia which occurs in 20 to 40% of patients with idiopathic Parkinson's disease (PD) remains uncertain. In the present postmortem study, we compared the prevalence and severity of parenchymal and vascular amyloid-beta (Abeta) deposition in the cerebral cortex in a group of 57 PD brains, including 13 cases with dementia, and in 100 control brains. A higher proportion of PD brains had vascular Abeta deposition, whereas the proportions and severity of parenchymal Abeta were similar in the PD and control groups. There was a poor correlation between Abeta deposition and neurofibrillary tangles which were present in only small numbers in a minority of cases. Cortical Abeta deposition was present in only 6 of the 13 cases with dementia and only 3 fulfilled the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria for definite Alzheimer's disease. The present findings confirm that dementia in PD is only infrequently due to fully established Alzheimer's disease. However, vascular and parenchymal Abeta deposition could still contribute to dementia and cognitive decline when combined with other changes such as alpha-synuclein deposition in the cerebral cortex and cortical Lewy bodies.  相似文献   

13.
Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra   总被引:13,自引:0,他引:13  
Nuclear receptor-related factor 1 (Nurr1), a member of the nuclear receptor superfamily, is associated with the induction of dopaminergic (DA) phenotypes in developing and mature midbrain neurons. It is well established that dopaminergic nigrostriatal function decreases with age. Whether age-related deficits in DA phenotypic markers are associated with alterations in Nurr1 expression is unknown. The present study found that virtually all of tyrosine hydroxylase-immunoreactive (TH-ir) neurons within the young adult human substantia nigra were Nurr1-immunoreactive (Nurr1-ir) positive. Stereologic counts revealed a significant reduction in the number of Nurr1-ir nigral neurons in middle-aged (23.13%) and aged (46.33%) individuals relative to young subjects. The loss of Nurr1-ir neurons was associated with a similar decline in TH-ir neuron number. In this regard, TH-ir neuronal number was decreased in middle-aged (11.10%) and in aged (45.97%) subjects, and this loss of TH-ir neurons was highly correlated (r = 0.92) with the loss of Nurr1-ir neurons. In contrast, the number of melanin-containing nigral neuron number was generally stable across age groups, indicating that changes in Nurr1 and TH reflect phenotypic age-related changes and not frank neuronal degeneration. In support of this concept, confocal microscopic analyses of Nurr1-ir and TH-ir fluorescence intensity revealed parallel decreases in Nurr1- and TH-immunofluorescence as a function of age. These data demonstrate that age-related decline of DA phenotypic markers is associated with down-regulation of Nurr1 expression in the SN.  相似文献   

14.
Pong K  Doctrow SR  Baudry M 《Brain research》2000,881(2):359-189
Oxidative stress has been implicated in the selective degeneration of dopaminergic (DAergic) neurons in Parkinson's disease (PD). In this study, we tested the efficacy of EUK-134, a superoxide dismutase (SOD) and catalase mimetic, on the nitration of tyrosine hydroxylase (TH), a marker of oxidative stress, and neurotoxicity produced by 1-methyl-4-phenylpyridinium (MPP(+)) and 6-hydroxydopamine (6-OHDA) in primary DAergic neuron cultures. Exposure of cultures to 10 microM MPP(+) reduced dopamine (DA) uptake and the number of tyrosine hydroxylase immunoreactive (THir) neurons to 56 and 52% of control, while exposure to 30 microM 6-OHDA reduced DA uptake and the number of THir neurons to 58 and 59% of control, respectively. Pretreatment of cultures with 0.5 microM EUK-134 completely protected DAergic neurons against MPP(+)- and 6-OHDA-induced neurotoxicity. Exposure of primary neuron cultures to either MPP(+) or 6-OHDA produced nitration of tyrosine residues in TH. Pretreatment of cultures with 0.5 microM EUK-134 completely prevented MPP(+)- or 6-OHDA-induced nitration of tyrosine residues in TH. Taken together, these results support the idea that reactive oxygen species (ROS) are critically involved in MPP(+)- and 6-OHDA-induced neurotoxicity and suggest a potential therapeutic role for synthetic catalytic scavengers of ROS, such as EUK-134, in the treatment of PD.  相似文献   

15.
Parkinson's disease (PD) is a basal ganglia disorder. Motor symptoms develop insidiously following substantial neurodegeneration of the dopamine (DA) neurons in the nigrostriatal system and produce slowed, infrequent movements, postural instability, and gait changes. A thorough understanding of neurochemical compensations occurring in the striatum during early stages of PD is crucial in identifying components that are altered initially as the DA is depleted. Producing an incomplete lesion of the nigrostriatal DA system in rats would mimic the principal early neurochemical features of human PD. We infused 6-hydroxydopamine unilaterally into the substantia nigra to reach a target of approximately 50% depletion in striatal DA at 4 weeks. This was evaluated by HPLC analysis of tissue DA content and monitored behaviorally by forepaw use reflecting asymmetries in striatal DA levels. DA loss was assessed by using tyrosine hydroxylase immunohistochemical staining, and the data were conjoined with the behavioral assessments. We found that activated caspase-3, its actin cleavage product fractin, and components of the apoptosome were increased significantly in DA-depleted striatum. Thus mobilization of the intrinsic programmed cell death pathway occurred, without cell loss. Elevations in apoptogenic proteins were pronounced in enkephalinergic striatopallidal neurons compared with the substance P-containing striatonigral neurons. Our findings suggest that cellular homeostatic imbalances that accompany even mild striatal DA depletion take time to develop, differentially affect the striatal output pathways, and may be an important feature of early-stage PD. These observations could be capitalized upon to develop therapeutic interventions in the preclinical phases of the disorder.  相似文献   

16.
Argyrophilic glial inclusions, which are immunohistochemically positive for alpha-synuclein but negative for tau protein, were examined in the brain of Parkinson's disease (PD) patients. Autopsied brains of 10 individuals who died from PD, of two incidental Lewy body disease cases and of five age-matched individuals whose deaths were caused by non-neurological diseases were studied, histopathologically, by Gallyas-Braak staining and, immunohistochemically, with anti-alpha-synuclein antibody, anti-ubiquitin, and anti-tyrosine hydroxylase. All postmortem PD brains showed a significant number of argyrophilic glial inclusions, but no glial inclusions were found in control brains. The inclusions were found not only in the regions showing neuronal loss and gliosis, such as the substantia nigra, locus ceruleus and dorsal vagal nucleus, but also in regions without neuronal loss and gliosis, such as the cerebral cortex, cerebral white matter, striatum, globus pallidus, thalamus, cerebellum and spinal cord. The distribution and density of glial inclusions in PD brains varied from case to case but, in the cerebral cortex, the number of glial inclusions were fairly well correlated with the number of Lewy bodies. The distribution pattern of glial inclusions also showed a striking resemblance to that of catecholaminergic neurones and fibres. The abnormal accumulation of alpha-synuclein in glial cells was more widespread than neurone loss, and appears to be an important pathological feature of PD.  相似文献   

17.
Parkinson's disease is a progressive neurodegenerative disorder, caused in part by the loss of dopamine (DA) neurons in the substantia nigra (SN). Neurotrophic factors have been shown to increase the basal survival of DA neurons in vitro, as well as to protect the neurons from some toxins under certain in vitro conditions and in animal models. Although these factors have often been tested individually, they have rarely been studied in combinations. We therefore examined the effect of such combinations after acute exposure to the toxin 1‐methyl‐4‐phenylpyridinium (MPP+) using dissociated postnatal rat midbrain cultures isolated from SN and ventral tegmental area (VTA). We found that significant loss of DA neurons in the SN occurred with an LC50 of between 1 and 10 μm , whereas the LC50 of DA neurons from the VTA was approximately 1000‐fold higher. We did not observe neuroprotection against MPP+ by individual exposure to glial cell‐line derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF), transforming growth factor beta (TGFβ), basic fibroblast growth factor (FGF‐2) or growth/differentiation factor 5 (GDF5) at concentrations of 100 or 500 ng/mL. Combinations of two, three or four neurotrophic factors were also ineffective. However, when the SN cultures were exposed to a combination of all five neurotrophic factors, each at a concentration of 100 ng/mL, we observed a 30% increase in DA neuron survival in the presence of 10 and 500 μm MPP+. These results may be relevant to the use of neurotrophic factors as therapeutic treatments for Parkinson's disease.  相似文献   

18.
Parkinson's disease (PD) is a common neurodegenerative disorder with prominent loss of nigro‐striatal dopaminergic neurons. The resultant dopamine (DA) deficiency underlies the onset of typical motor symptoms (MS). Nonetheless, individuals affected by PD usually show a plethora of nonmotor symptoms (NMS), part of which may precede the onset of motor signs. Besides DA neuron degeneration, a key neuropathological alteration in the PD brain is Lewy pathology. This is characterized by abnormal intraneuronal (Lewy bodies) and intraneuritic (Lewy neurites) deposits of fibrillary aggregates mainly composed of α‐synuclein. Lewy pathology has been hypothesized to progress in a stereotypical pattern over the course of PD and α‐synuclein mutations and multiplications have been found to cause monogenic forms of the disease, thus raising the question as to whether this protein is pathogenic in this disorder. Findings showing that the majority of α‐synuclein aggregates in PD are located at presynapses and this underlies the onset of synaptic and axonal degeneration, coupled to the fact that functional connectivity changes correlate with disease progression, strengthen this idea. Indeed, by altering the proper action of key molecules involved in the control of neurotransmitter release and re‐cycling as well as synaptic and structural plasticity, α‐synuclein deposition may crucially impair axonal trafficking, resulting in a series of noxious events, whose pressure may inevitably degenerate into neuronal damage and death. Here, we provide a timely overview of the molecular features of synaptic loss in PD and disclose their possible translation into clinical symptoms through functional disconnection.  相似文献   

19.
Parkinson’s disease (PD) is characterized by a progressive and selective loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although the etiology of PD remains unclear, neuroinflammation has been implicated in the development of PD. Running exercise (Ex) promotes neuronal survival and facilitates the recovery of brain functions after injury. Therefore, we hypothesize that Ex protects the DA neurons against inflammation-induced injury in the SN. An intraperitoneal lipopolysaccharide (LPS, 1 mg/kg) injection induced microglia activation in the SN within hours, followed by a reduction in the number of DA neurons. LPS reduced the level of dopamine in the striatum and impaired the performance of motor coordination. Furthermore, the levels of the brain-derived neurotrophic factor (BDNF) were reduced in the SN by the LPS treatment. Four weeks of Ex before LPS treatment completely prevented the LPS-induced loss of DA neurons, reduction of dopamine levels and dysfunction of motor movement. Ex did not change the LPS-induced status of microglia activation or the levels of cytokines/chemokines, but restored the levels of LPS-reduced BDNF-TrkB signaling molecules. Blocking the action of BDNF, through its receptor TrkB antagonist, abolished the Ex-induced protection against LPS-induced DA neuron loss. Intrastriatal perfusion of BDNF alone was sufficient to counteract the LPS-induced DA neuron loss. Altogether, our results show that Ex protects DA neurons against inflammation-induced insults. The neuroprotective effects of Ex are not due to the modulation of inflammation status, but rather to the activation of the BDNF-TrkB signaling pathway.  相似文献   

20.
Parkinson's disease (PD) is pathologically defined by the death of dopaminergic (DA) neurons within the pars compacta of the substantia nigra. To date, the cause of this multifaceted disease remains largely unclear, which may contribute in part to a current lack of disease-modifying therapies. Recent advances in single-cell and spatial genomic profiling tools have provided powerful new ways to measure cellular state changes in brain diseases. Here, we describe how these tools have offered insight into these complex disorders and highlight a recently performed comprehensive study of DA neuron susceptibility in PD. The data generated by this recent work provide evidence for the role of specific pathways and common genetic variants resulting in the loss of a critical DA subtype in PD. We conclude by outlining a set of basic and translational opportunities that arise from those data and insights gathered from this work. © 2023 International Parkinson and Movement Disorder Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号