首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endostatin (ED) is a carboxyl-terminal fragment of collagen XVIII with strong antiangiogenic activity. ED has been considered as a highly specific inhibitor of endothelial cell proliferation and migration through interaction with its receptor on the surface of endothelial cells. Recently, direct antitumor effects of ED in colon cancer cells and head and neck squamous cell carcinoma cells has been reported. However, its effect on lung cancer cells has not been clarified. The purpose of the present study was to determine the effect of ED on in vitro lung cancer cell function and to identify its receptor on lung cancer cells. We revealed that alpha5 integrin is capable of being a functional ED receptor among several integrins that are expressed on murine lung cancer (Lewis lung cancer [LLC]) cells. We further demonstrated that the ED-integrin interaction modulates various in vitro biological functions of LLC cells as we revealed that immobilized ED helps in LLC cell adhesion and migration in an integrin-dependent manner. Furthermore, ED inhibited LLC cell proliferation and induced apoptosis. Interestingly, ED did not demonstrate any antiproliferative activity against the other murine lung cancer cell line, KLN205, that lacks alpha5 integrin but binds to immobilized ED through the beta1 integrin. In addition, the binding of ED to alpha5 integrin on LLC cells induced phosphorylation of focal adhesion kinase. Taken together, these results suggest that the interaction between ED and alpha5 integrin may play an important role in lung cancer cell function.  相似文献   

2.
Huh JE  Lee EO  Kim MS  Kang KS  Kim CH  Cha BC  Surh YJ  Kim SH 《Carcinogenesis》2005,26(8):1436-1445
Recent studies have revealed that 1,2,3,4,6-penta-O-galloyl-beta-d-glucose (PGG) has anti-tumorigenic activity in vitro. In the present work, we evaluated the in vitro and in vivo antiangiogenic and antitumor activities of PGG and examined its molecular mechanisms. PGG significantly inhibited the proliferation and tube formation in basic fibroblast growth factor (bFGF)-treated human umbilical vein endothelial cells (HUVECs) at non-cytotoxic concentrations. PGG effectively disrupted the bFGF-induced neo-vascularization in chick chorioallantoic membrane (CAM) and in Matrigel plugs in the mice. When mice were intraperitoneally injected, PGG also significantly inhibited tumor angiogenesis induced by Lewis lung carcinoma (LLC) and the growth of LLC by 57 and 91% of control tumor weight at 4 and 20 mg/kg, respectively. Immunohistochemical analysis revealed decreased microvessel density, decreased expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF), reduced tumor cell proliferation and increased tumor cell apoptosis. Similarly, PGG significantly attenuated the expression of COX-2 and VEGF and reduced the secretion of VEGF and prostaglandin E2 in bFGF-treated HUVECs. Furthermore, the COX-2 inhibitor NS398 significantly inhibited tube formation and neo-vascularization in CAM, supporting the role of COX-2 in PGG inhibition of angiogenesis. PGG diminished the phosphorylation of extracellular signal regulated kinase 1/2, Jun NH2-terminal kinase and activated phospho-p38 mitogen-activated protein kinase (MAPK) in a dose-dependent manner in bFGF-treated HUVECs. In addition, p38 inhibitor SB203580 abolished the downregulation of COX-2, VEGF and the antiproliferative activity by PGG. Taken together, our data demonstrate that PGG exerts antitumor activity primarily via inhibition of angiogenesis through COX-2 and MAPK- dependent pathways.  相似文献   

3.
There is increasing evidence to suggest the anti-tumor effects of non-steroidal anti-inflammatory drugs (NSAIDs). In this study it was shown that the most popular NSAID in Japan, loxoprofen sodium (LOX), inhibited in vivo growth of implanted Lewis lung carcinoma (LLC), whereas LOX did not affect the proliferation and viability of LLC cells in vitro. Intratumoral vessel density in LOX-treated mice was significantly lower than that of mice without treatment. Intratumoral expressions of vascular endothelial growth factor (VEGF) mRNA were attenuated by the LOX treatment. LOX suppressed both intratumoral and systemic VEGF protein in LLC-implanted mice. LOX also inhibited tubular formation of primary cultured human umbilical vein endothelial cells, presumably due to the inhibition of VEGF. In patients with advanced non-small cell lung cancer, LOX medication (120 mg/day) for a week significantly decreased the plasma VEGF level. These results suggest that LOX may have potent anti-cancer effects in patients with advanced NSCLC.  相似文献   

4.
Lung cancer is a leading cause of cancer mortality worldwide. Novel and nontoxic agents targeting angiogenesis and tumor cell proliferation and survival are desirable for lung cancer chemoprevention and treatment. Previously we have reported that 6-(1-oxobutyl)-5,8-dimethoxy-1,4-naphthoquinone (OXO) exhibits anti-tumor activity against S-180 sarcoma in vitro and in vivo. Here we studied the anti-angiogenic and apoptogenic attributes of OXO in vitro and in vivo targeting lung cancer. In human umbilical vein endothelial cells (HUVECs), we show that OXO more potently inhibited VEGF-stimulated than basic bFGF-stimulated HUVEC proliferation and capillary differentiation. In Lewis lung carcinoma (LLC) cells, OXO not only induces S-phase arrest and mitochondria/caspase-9 pathway mediated apoptosis, but also effectively down-regulated the hypoxia-induced expression of HIF-1alpha and VEGF at mRNA and protein levels in LLC and decreased VEGF secretion into conditioned culture media. OXO significantly reduced in vivo functional angiogenesis in the mouse Matrigel plug assay. Furthermore, OXO potently inhibited the growth of LLC cells inoculated on the flank of syngenic mice at dosages that did not affect their body weight. The in vivo anti-cancer effect was associated with decreased HIF-1alpha and VEGF expression, decreased microvessel density as well as a reduction of tumor cell proliferation and increased tumor cell apoptosis. Taken together, these results demonstrate that OXO exerts anti-cancer activity through anti-angiogenesis and tumor cell cycle arrest and apoptosis. These findings warrant additional studies of OXO as a novel agent for the chemoprevention and treatment of lung cancer.  相似文献   

5.
Angiogenesis plays a key role in the growth and metastasis of lung cancers, and vascular endothelial growth factor (VEGF) is one of the major angiogenic factors. The study aims to investigate whether phosphoro thioate-modified antisense VEGF oligodeoxynucleo tides (ASODN) formulated in cationic liposome could inhibit the growth of Lewis lung carcinoma (LLC) tumors by antiangiogenesis. The study demonstrated that ASODN downregulated the expression of VEGF in LLC cells at levels of protein and mRNA in vitro and in vivo. The conditioned media obtained from LLC cells treated with ASODN significantly inhibited the proliferation of bovine aortic endothelial cells. The ASODN therapy significantly suppressed the growth of established subcutaneous LLC tumors in mice by inhibiting angiogenesis and damaging the blood flow of tumors. In conclusion, our results suggest that ASODN targeting VEGF presents a potent therapeutic strategy to combat lung cancers.  相似文献   

6.
Adiponectin is an adipokine that can suppress the proliferation of various human carcinoma cells. Although its anti-tumor activities have been suggested by many clinical investigations and animal studies, the underlying mechanisms are not fully characterized. In MMTV-polyomavirus middle T antigen (MMTV-PyVT) transgenic mice models, reduced- or complete loss-of-adiponectin expression promotes mammary tumor development. The present study demonstrated that while tumor development in control MMTV-PyVT mice is associated with a progressively decreased circulating cholesterol concentration, adiponectin deficient MMTV-PyVT mice showed significantly elevated total- and low density lipoprotein (LDL)-cholesterol levels. Cholesterol contents in tumors derived from adiponectin deficient mice were dramatically augmented. High fat high cholesterol diet further accelerated the tumor development in adiponectin deficient PyVT mice. The protein levels of LDL receptor (LDLR) were found to be upregulated in adiponectin-deficient tumor cells. In human breast carcinoma cells, treatment with LDL-cholesterol or overexpressing LDLR elevates nuclear beta-catenin activity and facilitates tumor cell proliferation. On the other hand, adiponectin decreased LDLR protein expression in breast cancer cells and inhibited LDL-cholesterol-induced tumor cell proliferation. Both in vivo and in vitro evidence demonstrated a stimulatory effect of adiponectin on autophagy process, which mediated the down-regulation of LDLR. Adiponectin-induced reduction of LDLR was blocked by treatment with a specific inhibitor of autophagy, 3-methyladenine. In conclusion, the study demonstrates that adiponectin elicits tumor suppressive effects by modulating cholesterol homeostasis and LDLR expression in breast cancer cells, which is at least in part attributed to its role in promoting autophagic flux.  相似文献   

7.

Purpose

Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has exhibited the strongest antimalarial activity among the derivatives of artemisinin. There is growing evidence that DHA has some impact against tumors. Our purpose was to evaluate in vitro antitumoral properties of DHA in the murine Lewis lung carcinoma (LLC) cell line. At the same time, we observed the therapeutic effect of DHA combined with cyclophosphamide (CTX) in the LLC and combined with cisplatin (CDDP) in the human non-small cell lung cancer A549 xenotransplanted carcinoma in vivo.

Methods

Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, apoptosis was measured by AO/EB double staining and flow cytometry. The expression of vascular endothelial growth factor (VEGF) receptor KDR/flk-1 was analyzed by western blotting and RT-PCR. In vivo activity of DHA combined with CTX or CDDP was assayed through tumor growth and metastasis.

Results

Dihydroartemisinin exhibited high anti-cancer activity in LLC cell line. DHA also induced apoptosis of LLC cells and influenced the expression of VEGF receptor KDR/flk-1. Furthermore, in both tumor xenografts, a greater degree of growth inhibition was achieved when DHA and chemotherapeutics were used in combination. The affection by DHA combined CTX on LLC tumor metastasis was significant.

Conclusions

Dihydroartemisinin is a potent compound against LLC cell line in vitro. In vivo, the combination strategy of DHA and chemotherapeutics holds promise for the treatment of relatively large and rapidly growing lung cancers.  相似文献   

8.
The formation of new blood vessels (angiogenesis) represents a critical factor in the malignant growth of solid tumors and metastases. Vascular endothelial cell growth factor (VEGF) and its receptor VEGFR2 represent central molecular targets for antiangiogenic intervention, because of their integral involvement in endothelial cell proliferation and migration. In the current study, we investigated in vitro and in vivo effects of receptor blockade on various aspects of the angiogenic process using monoclonal antibodies against VEGFR2 (cp1C11, which is human specific, and DC101, which is mouse specific). Molecular blockade of VEGFR2 inhibited several critical steps involved in angiogenesis. VEGFR2 blockade in endothelial cells attenuated cellular proliferation, reduced cellular migration, and disrupted cellular differentiation and resultant formation of capillary-like networks. Further, VEGFR2 blockade significantly reduced the growth response of human squamous cell carcinoma xenografts in athymic mice. The growth-inhibitory effect of VEGFR2 blockade in tumor xenografts seems to reflect antiangiogenic influence as demonstrated by vascular growth inhibition in an in vivo angiogenesis assay incorporating tumor-bearing Matrigel plugs. Further, administration of VEGFR2-blocking antibodies in endothelial cell cultures, and in mouse xenograft models, increased their response to ionizing radiation, indicating an interactive cytotoxic effect of VEGFR2 blockade with radiation. These data suggest that molecular inhibition of VEGFR2 alone, and in combination with radiation, can enhance tumor response through molecular targeting of tumor vasculature.  相似文献   

9.
We previously demonstrated increased numbers of CD34(+) progenitor cells in the peripheral blood of tumor bearers. Also demonstrated was the feasibility of chemoattracting these cells by sponge implants containing VEGF. The present study used a murine Lewis lung carcinoma (LLC) model to test if CD34(+) cells that are chemoattracted to a tumor excision site can be differentiated in situ into dendritic cells and whether this leads to increased local immune reactivity. After surgically excising established LLC tumors, mice received at the excision site gelatin sponge implants containing VEGF to chemoattract CD34(+) cells, and/or GM-CSF plus SCF to induce CD34(+) cell differentiation into dendritic cells. In some studies, lysates of GFP-transfected LLC cells (LLC(GFP)) were also included in the implants as a source of tumor antigen. After 2 weeks, implants and local lymph nodes were removed and analyzed. Implants containing VEGF, GM-CSF/SCF or VEGF/GM-CSF/SCF had a higher proportion of CD34(+) cells compared to control implants. However, the number of dendritic cells was higher in implants containing GM-CSF/SCF or VEGF/GM-CSF/SCF than those containing either VEGF or diluent. Regional lymph node from mice containing GM-CSF/SCF or VEGF/GM-CSF/SCF implants showed increased dendritic cell levels. However, when lysates from LLC(GFP) were added to the implants, the highest proportion of dendritic cells associated with GFP was in lymph nodes of mice containing GM-CSF/SCF implants. Lymph node cells from mice with GM-CSF/SCF or VEGF/GM-CSF/SCF had a higher level of proliferation and IFN-gamma secretion in response to in vitro LLC lysate challenge, with the greatest response being from lymph node cells of mice with GM-CSF/SCF implants. These results suggest the feasibility of using GM-CSF/SCF-containing implants to increase dendritic cell levels, uptake of tumor antigens, trafficking to lymph nodes and stimulation of immune reactivity at tumor excision sites with residual tumor.  相似文献   

10.
Lee J  Lee J  Yu H  Choi K  Choi C 《Cancer letters》2011,309(2):145-150
Analysis using the public microarray database Gene Expression Omnibus indicates significantly higher mRNA expression of VEGF and VEGFRs in colorectal cancer and high grade astrocytoma but not in hepatocellular carcinoma compared to normal tissue. Human malignant astrocytoma cell lines (U251-MG and U373-MG) and HT-1080 fibrosarcoma cells expressed relatively higher levels of VEGF and VEGFRs compared to hepatocellular and colorectal cancer cell lines. Administration of exogenous VEGF-A induced cell growth in a dose-dependent fashion in astrocytoma and fibrosarcoma cells but not in colorectal and hepatocellular cancer cells. The blockade of VEGF inhibited cell survival only in U251-MG, U373-MG and HT-1080 cells. These results collectively suggest the role of autocrine VEGF signaling in various cancer cells and provide a basis for the variable clinical responses to antiangiogenic therapy observed in different types of malignancies.  相似文献   

11.
Recombinant human endostatin (rh-endostatin), a potential antiangiogenic agent, is used in non-small cell lung carcinoma treatment and represses vascular endothelial cell growth factor (VEGF) levels in tumor cell. However, precise affection of rh-endostatin on the proangiogenic VEGF isoforms (VEGF165) or antiangiogenic VEGF isoforms (VEGF165b) is not clear. We therefore tested the hypothesis that rh-endostatin could alter expression of these isoforms to regulate tumor growth. A549 cells were exposed to rh-endostatin, and the expression of VEGF165 and VEGF165b was detected. The role of SP1 as a regulator of isoform expression was investigated. We then examined the anticancer and antiangiogenic efficacy of rh-endostatin in combination with exogenous VEGF165b against A549 cells, EA.HY 926 cells and xenograft model of human lung cancer. rh-Endostatin reduced VEGF165 and induced VEGF165b as well as inhibited SP1 in A549 cells. SP1 inhibitor (betulinic acid) also developed those changes. VEGF165b–rh-endostatin combination was highly synergistic and inhibited growth, survival, and migration of A549 cells, VEGF-mediated VEGFR2 phosphorylation in EA.HY 926 cells, and tumor growth in xenograft model of human lung cancer. rh-Endostatin downregulates proangiogenic vascular endothelial growth factor A (VEGFA) isoform and upregulates antiangiogenic VEGFA isoform, possibly through inhibition of SP1. Furthermore, VEGF165b sensitizes A549 to rh-endostatin treatment and enhances the anticancer effect of rh-endostatin.  相似文献   

12.
背景与目的 血管内皮生长因子(VEGF)是一种特异地作用于血管内皮细胞的生长因子,它能促进血管内皮细胞增殖及新生血管的生成.本研究的目的是探讨脂质体介导的VEGF反义硫代寡核苷酸(ASODN)对培养的Lewis肺癌细胞合成VEGF的影响.方法 将经脂质体包裹并经部分硫代修饰后的VEGF ASODN、正义寡核苷酸(SODN)加入培养的Lewis肺癌细胞中,采用RT-PCR技术和免疫组织化学SP法检测肺癌细胞中VEGF mRNA和VEGF蛋白表达,同时测定各上清液刺激下血管内皮细胞生长的受抑情况.结果 VEGF ASODN能明显抑制Lewis肺癌细胞VEGF mRNA和VEGF蛋白表达,而且可以显著抑制内皮细胞的生长.结论 VEGF ASODN能抑制肺癌细胞表达VEGF,可以成为肺癌基因治疗的一种新的途径.  相似文献   

13.
Angiogenesis is required for tumor growth and metastasis and, therefore, represents a target for cancer treatment. While many factors have been implicated in promoting angiogenesis, vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis. ZD6474 is a potent VEGF receptor-2 (VEGFR-2) tyrosine kinase inhibitor which also has activity against the epidermal growth factor receptor (EGFR) tyrosine kinase. The purpose of this study was to investigate the sensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines to ZD6474, and to evaluate its antitumor efficacy on HNSCC xenografts. This is the first demonstration of antitumor effects of ZD6474 on HNSCC. In vitro ZD6474 displayed antiproliferative effects on HNSCC cells and inhibition of VEGFR-2 and EGFR pathways. In vivo ZD6474 displayed antitumor activity, induced apoptosis and antiangiogenic activity on nude mice bearing an established xenograft of YCU-H891 cells. These results suggest that ZD6474 has the potential to inhibit two key pathways in tumor growth via inhibition of VEGF-dependent tumor angiogenesis and via inhibition of EGFR-dependent tumor cell proliferation.  相似文献   

14.
In a recent study on head and neck squamous cell carcinoma (HNSCC) cells we found that epigallocatechin-3-gallate (EGCG), a major biologically active component of green tea, inhibited activation of the epidermal growth factor receptor (EGFR) and related signaling pathways. Since activation of EGFR signaling pathways is associated with angiogenesis, we examined the effects of EGCG on vascular endothelial growth factor (VEGF) production by YCU-H891 HNSCC and MDA-MB-231 breast carcinoma cell lines, because we found that both of these cell lines display autocrine activation of transforming growth factor-alpha (TGF-alpha)/EGFR signaling and produce high levels of VEGF. Treatment with EGCG inhibited the constitutive activation of the EGFR, Stat3, and Akt in both cell lines. These changes were associated with inhibition of VEGF promoter activity and cellular production of VEGF. Mechanistic studies indicated that inhibition of Stat3, but not mitogen-activated protein kinase kinase (MEK)1 or phosphatidylinositol 3'-kinase (PI3K), significantly decreased VEGF promoter activity. However, the inhibitory effects of a dominant negative Stat3 on VEGF expression was not as strong as that produced by EGCG. An analysis of alternative pathways indicated that EGCG strongly inhibited the constitutive activation of NF-kappa B in both cell lines, and an NF-kappa B inhibitor strongly inhibited VEGF production. These results suggest that EGCG inhibits VEGF production by inhibiting both the constitutive activation of Stat3 and NF-kappa B, but not extracellular-signal-regulated kinase (ERK) or Akt, in these cells. Therefore, EGCG may be useful in treating HNSCC and breast carcinoma because it can exert both antiproliferative and antiangiogenic activities.  相似文献   

15.
Khromova N  Kopnin P  Rybko V  Kopnin BP 《Oncogene》2012,31(11):1389-1397
Experimental and clinical studies positively correlate expression of vascular endothelial growth factor (VEGF)-C in cancer cells with accelerated tumor progression and/or unfavorable clinical outcome. However, many aspects of tumor-promoting activity of VEGF-C and consequences of its downregulation for tumor progression remain poorly understood. To clarify these points, we created a set of VEGF receptor 3-positive lung carcinoma A549 and colon carcinoma HCT116 cell sublines with stable repression of VEGF-C synthesis. Analysis of the behavior of these cells revealed multiple effects of VEGF-C downregulation, which, in addition to deceleration of cell proliferation and invasion in vitro and inhibition of lymphangiogenesis in tumor and surrounding tissues observed earlier, included previously undescribed effects, in particular, partial restoration of epithelial phenotype, reduction in the percentage of tumor-initiating cells (cancer stem cells) in the cell population and inhibition of metastasis of orthotopic lung cancer xenografts to other lung lobes. These results are consistent with the idea of high potentiality of VEGF-C as a cancer drug target.  相似文献   

16.
Endostatin (ED) is a carboxyl-terminal fragment of type XVIII collagen with a strong anti-angiogenic activity. The purpose of this study is to determine the effect of ED gene transfer into lung cancer cells on in vivo tumor growth in a murine model. The murine lung cancer cell line, Lewis Lung Carcinoma (LLC), was transfected with ED gene to express and secrete ED. After clones were selected to secrete ED, several stable transfectants with ED gene (LLC/ED) and control transfectants (LLC/Mock) were established. In vitro proliferation of these transfectants demonstrated similar growth speed. In contrast to previous reports, in vivo subcutaneous tumorignecity of LCC/ED transfectants was significantly greater than that of LLC/Mock transfectants. Immunohistochemical staining analysis demonstrated that ED gene transfer induced angiogenesis, suggesting coinduction of another gene implicated for neovascularization. As expected, LLC/ED transfectants secreted not only ED but also vascular endothelial growth factor (VEGF) to a much greater degree than LLC/mock transfectants. Interestingly, culture supernatants of LLC/ED cells enhanced in vitro proliferation of human umbilical vein endothelial cells (HUVEC) to a much greater degree than those of LLC/Mock cells. These results indicate that ED gene transfer in murine lung carcinoma cells induces VEGF secretion, resulting in enhancement of in vivo tumorigenecity in the murine model. More attention should be paid for ED gene therapy into lung cancer cells since it may influence other proteins secretion, which upregulates angiogenesis.  相似文献   

17.
We examined how the effect of topotecan is modulated by transient hypoxia in three different tumor lines, Lewis lung carcinoma (LLC), U87 human glioblastoma and DMS273 human small cell lung cancer. Four groups of tumor bearing mice were treated with saline or a single dose of topotecan, immediately followed by 6-h or 72-h exposure to a hypoxic environment (10% O2) or normal air. Topotecan + hypoxia resulted in significantly greater suppression of tumor growth than normoxic topotecan or hypoxia alone. Correspondingly, the sensitivity of LLC cells to topotecan in a clonogenic survival assay was significantly higher under hypoxia. This effect of hypoxia was not a general phenomenon, since the tumor growth inhibitory effect of the alkylating agent cisplatin was not changed by hypoxic environment. In a parallel series of in vitro experiments, cell cultures were exposed to hypoxia (0.1% or 0.7% O2) in a hypoxic chamber or normoxia for 24 h. We found a dose-dependent downregulation of HIF-1 by topotecan (30–270 nM). The hypoxic upregulation of Glucose transporter-1 and VEGF secretion to the culture medium was inhibited by the addition of topotecan, while doses up to 270 nM had no effect on VEGF under normoxia. VEGF protein levels in tumors were also reduced by topotecan. These data show that the effect of topotecan is increased by transient hypoxia, and this may be a direct effect on the ability of cells to survive under hypoxia as well as an antiangiogenic effect, mediated through the HIF-1 inhibitory effect of topotecan.  相似文献   

18.
The role of vascular endothelial growth factor A (VEGFA) in tumor angiogenesis is well established and accordingly, molecules targeting VEGFA or its receptors are being presently used in the clinics for treatment of several types of cancer. However, these antiangiogenic agents are expensive and have serious side effects. Thus identification of newer drugs with manageable systemic side effects or toxicities is of immense clinical importance. Since we have reported earlier that dopamine (DA) inhibits VEGFA induced angiogenesis in experimental tumor models, we therefore sought to investigate whether DA treatment results in similar toxicities like other antiangiogenic agents. Our results indicated that unlike sunitinib, another commonly used antiangiogenic agent in the clinics which targets VEGF receptors, DA [50 mg/kg/days × 7days intraperitoneally (i.p.)] not only could inhibit tumor angiogenesis and growth of HT29 human colon cancer and LLC (Lewis lung carcinoma) in mice, it also did not cause hypertension, hematological, renal and hepatic toxicities in normal, HT29 and LLC tumor bearing animals. Furthermore and interestingly, in contrast to the currently used antiangiogenic agents, DA also prevented 5‐fluorouracil (5FU) induced neutropenia in HT29 colon cancer bearing mice. This action of DA was through inhibition of 5FU mediated suppression of colony forming unit‐granulocyte macrophage colony forming units in the bone marrow. Thus our results indicate that DA may be safely used as an antiangiogenic drug for the treatment of malignant tumors.  相似文献   

19.
Tumors induce new blood vessel growth primarily from host organ microvascular endothelial cells (EC), and microvasculature differs significantly between the lung and liver. Vascular endothelial growth factor (VEGF or VEGF-A) promotion of tumor angiogenesis is thought to be mediated primarily by VEGF receptor-2 (VEGFR-2). In this study, VEGFR-2 antibody (DC101) inhibited growth of RenCa renal cell carcinoma lung metastases by 26%, whereas VEGFR-1 antibody (MF-1) had no effect. However, VEGFR-2 neutralization had no effect on RenCa liver metastases, whereas VEGFR-1 neutralization decreased RenCa liver metastases by 31%. For CT26 colon carcinoma liver metastases, inhibition of both VEGFR-1 and VEGFR-2 was required to induce growth delay. VEGFR-1 or VEGFR-2 inhibition decreased tumor burden not by preventing the establishment of micrometastases but rather by preventing vascularization and growth of micrometastases by 55% and 43%, respectively. VEGF induced greater phosphorylation of VEGFR-2 in lung ECs and of VEGFR-1 in liver ECs. EC proliferation, migration, and capillary tube formation in vitro were suppressed more by VEGFR-2 inhibition for lung EC and more by VEGFR-1 inhibition for liver EC. Collectively, our results indicate that liver metastases are more reliant on VEGFR-1 than lung metastases to mediate angiogenesis due to differential activity of VEGFRs on liver EC versus lung EC. Thus, therapies inhibiting specific VEGFRs should consider the targeted sites of metastatic disease.  相似文献   

20.
PURPOSE: Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. RESULTS: We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and significantly inhibited the VEGF-dependent tyrosine phosphorylation of VEGF receptor-2, whereas it had no significant effect on VEGF receptor-1 activity. Moreover, the inhibition of receptor phosphorylation was correlated with a marked decrease in the ability of VEGF to induce pERK activation. Neovastat does not compete against the binding of basic fibroblast growth factor, indicating a preferential inhibitory effect on the VEGF receptor. CONCLUSIONS: Because Neovastat was shown previously to inhibit metalloproteinase activities, these results suggest that Neovastat is able to target multiple steps in tumor neovascularization, further emphasizing its use as a pleiotropic, multifunctional antiangiogenic drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号