首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From case reports of patients treated with the tetracyclic antidepressant drug maprotiline, it appears that this drug is subject to polymorphic metabolism. Thus, we studied formation of the major maprotiline metabolite desmethylmaprotiline to identify the human cytochrome P-450 enzymes (CYP) involved. In incubations with human liver microsomes from two different donors, the substrate maprotiline was used at five different concentrations (5 to 500 microM). For selective inhibition of CYPs, quinidine (0.5-50 microM; CYP2D6), furafylline (0.3-30 microM; CYP1A2), ketoconazole (0.2-20 microM; CYP3A4), mephenytoin (20-200 microM; CYP2C19), chlorzoxazone (1-100 microM; CYP2E1), sulphaphenazole (0.2-100 microM; CYP2C9) and coumarin (0.2-100 microM; CYP2A6) were used. Desmethylmaprotiline concentrations were measured by HPLC, and enzyme kinetic parameters were estimated using extended Michaelis-Menten equations with non-linear regression. Relevant inhibition of the desmethylmaprotiline formation rate was observed in incubations with quinidine, furafylline and ketoconazole only. Formation rates of desmethylmaprotiline were consistent with a two enzyme model with a high (K(M)=71 and 84 microM) and a low (K(M)=531 and 426 microM) affinity site for maprotiline in the two samples, respectively. The high affinity site was competitively inhibited by quinidine (K(i,nc) 0.13 and 0.61 microM), the low-affinity site was non-competitively inhibited by furafylline (K(i,nc) 0.11 and 1.3 microM). Thus it appears that CYP2D6 and CYPIA2 contribute to maprotiline demethylation. Based on the parameters obtained, for plasma concentrations of 1 microM 83% (mean) of desmethylmaprotiline formation in vivo is expected to be mediated by CYP2D6 while 17% only may be attributed to CYPIA2 activity.  相似文献   

2.
Simultaneous expression plasmids were constructed for bovine adrenal cytochromes P450c17 and P450c21 (pA gamma alpha) and for both P450s together with NADPH-cytochrome P450 reductase (pAR gamma alpha). On introduction of each of the plasmids into Saccharomyces cerevisiae AH22 cells, the transformed yeast strains AH22/pA gamma alpha and AH22/pAR gamma alpha produced about 10(5) molecules per cell of P450c17 and 2 x 10(3) molecules per cell of P450c21. The expression levels of NADPH-cytochrome P450 reductase was about 3 x 10(4) and 6 x 10(5) molecules per cell in the strains AH22/pA gamma alpha and AH22/pAR gamma alpha, respectively. When progesterone was added to growing cell cultures of the transformed yeast strains, the substrate was metabolized more rapidly in the AH22/pAR gamma alpha cells than AH22/pA gamma alpha cells, probably due to overproduction of the reductase. In the AH22/pAR gamma alpha cells, progesterone was first converted into 17 alpha-hydroxyprogesterone to the extent of 82% by the catalysis of P450c17. 17 alpha-hydroxyprogesterone was further converted into 11-deoxycortisol by P450c21 to the extent of 60% of the added substrate. The conversion of progesterone into androstenedione through 17 alpha-hydroxyprogesterone was estimated to be less than 3%, suggesting very low C17,20-lyase activity of P450c17, although other hydroxylation products were detected. Androstenedione was further converted into testosterone by an unknown pathway present in S. cerevisiae cells.  相似文献   

3.
Oxidative metabolism of the alkaloid rutaecarpine by human cytochrome P450.   总被引:2,自引:0,他引:2  
Rutaecarpine is the main active alkaloid of the herbal medicine, Evodia rutaecarpa. To identify the major human cytochrome P450 (P450) participating in rutaecarpine oxidative metabolism, human liver microsomes and bacteria-expressed recombinant human P450 were studied. In liver microsomes, rutaecarpine was oxidized to 10-, 11-, 12-, and 3-hydroxyrutaecarpine. Microsomal 10- and 3-hydroxylation activities were strongly inhibited by ketoconazole. The 11- and 12-hydroxylation activities were inhibited by alpha-naphthoflavone, quinidine, and ketoconazole. These results indicated that multiple hepatic P450s including CYP1A2, CYP2D6, and CYP3A4 participate in rutaecarpine hydroxylations. Among recombinant P450s, CYP1A1 had the highest rutaecarpine hydroxylation activity. Decreased metabolite formation at high substrate concentration indicated that there was substrate inhibition of CYP1A1- and CYP1A2-catalyzed hydroxylations. CYP1A1-catalyzed rutaecarpine hydroxylations had V(max) values of 1,388 to approximately 1,893 pmol/min/nmol P450, K(m) values of 4.1 to approximately 9.5 microM, and K(i) values of 45 to approximately 103 microM. These results indicated that more than one molecule of rutaecarpine is accessible to the CYP1A active site. The major metabolite 10-hydroxyrutaecarpine decreased CYP1A1, CYP1A2, and CYP1B1 activities with respective IC(50) values of 2.56 +/- 0.04, 2.57 +/- 0.11, and 0.09 +/- 0.01 microM, suggesting that product inhibition might occur during rutaecarpine hydroxylation. The metabolite profile and kinetic properties of rutaecarpine hydroxylation by human P450s provide important information relevant to the clinical application of rutaecarpine and E. rutaecarpa.  相似文献   

4.
Studies were performed to determine the cytochromes P450 (P450) responsible for the biotransformation of (S)-13[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H, 13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-dione (LY333531) to its equipotent metabolite, N-desmethyl LY333531, and to examine the ability of these two compounds to inhibit P450-mediated metabolism. Kinetic studies indicated that a single enzyme in human liver microsomes was able to form N-desmethyl LY333531 with an apparent K(M) value of approximately 1 microM. The formation rate of N-desmethyl LY333531 was correlated with markers of nine P450s in a bank of 20 human liver microsomes. The only significant correlation observed was with the form-selective activity for CYP3A. Of the nine cDNA-expressed P450s examined, only CYP3A4 and CYP2D6 formed N-desmethyl LY333531. However, CYP3A4 formed N-desmethyl LY333531 at a rate 57-fold greater than that observed with CYP2D6. In incubations with human liver microsomes, quinidine, an inhibitor of CYP2D6, demonstrated little inhibition of metabolite formation while ketoconazole, an inhibitor of CYP3A, demonstrated almost complete inhibition. Thus, CYP3A is responsible for the formation of N-desmethyl LY333531. LY333531 and N-desmethyl LY333531 were also examined for their ability to inhibit metabolism mediated by CYP2D6, CYP2C9, CYP3A, and CYP1A2. LY333531 and N-desmethyl LY333531 were found to competitively inhibit CYP2D6 with calculated K(i) values of 0.17 and 1.0 microM, respectively. Less potent inhibition by these compounds of metabolism mediated by the other three P450s examined was observed. In conclusion, CYP3A is primarily responsible for forming N-desmethyl LY333531. Therefore, alterations in the activity of this enzyme have the potential to affect LY333531 clearance. In addition, LY333531 and its metabolite are predicted to be potential inhibitors of CYP2D6-mediated reactions in vivo.  相似文献   

5.
Exposure to the pesticide methoxychlor in rodents is linked to impaired steroid production, ovarian atrophy and reduced fertility. Following in vivo administration, it is rapidly converted by the liver to 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), the reported active metabolite. Both methoxychlor and HPTE have weak estrogenic and antiandrogenic activities, and these effects are thought to be mediated through the estrogen and androgen receptors, respectively. Previous in vivo studies on methoxychlor exposure to female animals have demonstrated decreased progesterone production but no change in serum estrogen levels. We recently showed that HPTE specifically inhibits the P450 cholesterol side-chain cleavage (P450scc, CYP11A1) step resulting in decreased androgen production by cultured rat testicular Leydig cells. The current studies examined the mechanism of action of HPTE on progesterone production by cultured ovarian cells (granulosa and theca-interstitial) from pregnant mare serum gonadotropin-primed immature rats. In addition, we evaluated whether the effects of HPTE on rat ovarian cell progesterone biosynthesis were mediated through the estrogen or androgen receptors. Exposure to HPTE (0, 10, 50 or 100nM) alone progressively inhibited progesterone formation in cultured theca-interstitial and granulosa cells and the P450scc catalytic activity in theca-interstitial cells in a dose-dependent manner with significant declines starting at 50nM. However, HPTE did not change mRNA levels of the P450scc system (P450scc, adrenodoxin reductase and adrenodoxin) as well as P450scc protein levels. Of interest, estradiol, xenoestrogens (bisphenol-A or 4-tert-octylphenol), a pure antiestrogen (ICI 182,780), or antiandrogens (4-hydroxyflutamide or the vinclozolin metabolite M-2), had no effect on progesterone production even at 1000nM. Co-treatment of HPTE with ICI 182,780 did not block the effect of HPTE on progesterone formation. These studies suggest that the decline in progesterone formation following exposure to HPTE in cultured ovarian cells is associated with the inhibition of catalytic activity of P450scc at least in theca-interstitial cells. This action does not appear to be mediated through the estrogen or androgen receptor signaling pathways, and other chemicals exhibiting estrogenic, antiestrogenic or antiandrogenic properties do not mimic its effect on ovarian steroid production.  相似文献   

6.
The in vitro effect of polycyclic aromatic hydrocarbons (PAHs) on ovarian steroidogenesis of the flounder (Platichthys flesus L.) was determined. Fully vitellogenic ovary tissue was in vitro incubated in the presence of phenanthrene, benzo[a]pyrene or chrysene, using 17alpha-hydroxyprogesterone or androstenedione as precursors. Androstenedione (A), testosterone (T) and 17beta-estradiol (E(2)) synthesised in the presence of PAHs were assayed by radioimmunoassay and results compared with control incubations. In order to establish the effect of PAHs on the steroidogenic enzyme systems cytochrome P450 17,20-lyase (P450-17,20l), 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and cytochrome P450 aromatase (P450-arom), results were also compared with the action of ketoconazole (KCZ) and aminoglutethimide (AMG), wich are, respectively, inhibitors of cytochrome P450 steroidogenic enzymes and of P450-arom. KCZ inhibited secretion of A and E(2) in 65% and T in 40%, as a consequence of inhibited P450-17,20l and P450-arom. AMG inhibited P450-arom, which resulted in decreased E(2) synthesis to approximately 50% of control incubations. All the three PAHs inhibited A secretion by approximately 50% and E(2) from 10 to 40%. Because steroid conjugation was also inhibited by phenanthrene, it could be concluded that PAH action was mediated by an inhibitory effect over P450-17,20l, 17beta-HSD and P450-arom. Except for 17beta-HSD, PAHs resembled KCZ, and P450-17,20l was the most sensitive to their inhibitory effect. In conclusion, PAHs strongly blocked the activity of P450-17,20l, a rate-limiting enzyme for conversion of C21 to C19 steroids, and showed, therefore, the potential to disrupt the reproductive cycle of fish living in polluted environments, due to impairment of steroid biosynthesis.  相似文献   

7.
1. The aim was to identify the individual human cytochrome P450 (CYP) enzymes responsible for the in vitro N-demethylation of hydromorphone and to determine the potential effect of the inhibition of this metabolic pathway on the formation of other hydromorphone metabolites. 2. Hydromorphone was metabolized to norhydromorphone (apparent Km = 206 - 822 microM, Vmax = 104 - 834 pmol min(-1) mg(-1) protein) and dihydroisomorphine (apparent Km = 62 - 557 microM, Vmax = 17 - 122 pmol min(-1) mg(-1) protein) by human liver microsomes. 5. In pooled human liver microsomes, troleandomycin, ketoconazole and sulfaphenazole reduced norhydromorphone formation by an average of 45, 50 and 25%, respectively, whereas furafylline, quinidine and omeprazole had no effect. In an individual liver microsome sample with a high CYP3A protein content, troleandomycin and ketoconazole inhibited norhydromorphone formation by 80%. 5. The reduction in norhydromorphone formation by troleandomycin and ketoconazole was accompanied by a stimulation in dihydroisomorphine production.Recombinant CYP3A4, CYP3A5, CYP2C9 and CYP2D6, but not CYP1A2, catalysed norhydromorphone formation, whereas none of these enzymes was active in dihydroisomorphine formation. 6. In summary, CYP3A and, to a lesser extent, CYP2C9 catalysed hydromorphone N-demethylation in human liver microsomes. The inhibition of norhydromorphone formation by troleandomycin and ketoconazole resulted in a stimulation of microsomal dihydroisomorphine formation.  相似文献   

8.
The biotransformation of prasugrel to R-138727 (2-[1-2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4-mercapto-3-piperidinylidene]acetic acid) involves rapid deesterification to R-95913 (2-[2-oxo-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl]-1-cyclopropyl-2-(2-fluorophenyl)ethanone) followed by cytochrome P450 (P450)-mediated formation of R-138727, the metabolite responsible for platelet aggregation. For identification of the P450s responsible for the formation of the active metabolite, the current studies were conducted with R-95913 as the substrate. Incubations required supplementation with reduced glutathione. Hyperbolic kinetics (K(m) 21-30 microM), consistent with a single enzyme predominating, were observed after incubations with human liver microsomes. Correlation analyses revealed a strong relationship between R-138727 formation and CYP3A-mediated midazolam 1'-hydroxylation (r(2) = 0.98; p < 0.001) in a bank of characterized human liver microsomal samples. The human lymphoblast-expressed enzymes capable of forming R-138727, in rank order of rates, were CYP3A4>CYP2B6>CYP2C19 approximately CYP2C9>CYP2D6. A monoclonal antibody to CYP2B6 and the CYP3A inhibitor ketoconazole substantially inhibited R-138727 formation, whereas inhibitors of CYP2C9 (sulfaphenazole) and CYP2C19 (omeprazole) did not. Scaling of in vitro intrinsic clearance values from expressed enzymes to the whole liver using a relative abundance approach indicated that either CYP3A4 alone or CYP3A4 and CYP2B6 are the major contributors to R-138727 formation. R-95913 and R-138727 were also examined for their ability to inhibit metabolism mediated by five P450s. R-138727 did not inhibit the P450s tested. In vitro, R-95913 inhibited CYP2C9, CYP2C19, CYP2D6, and CYP3A, with K(i) values ranging from 7.2 microM to 82 microM, but did not inhibit CYP1A2. These K(i) values exceed circulating concentrations in humans by 3.8- to 43-fold. Therefore, neither R-95913 nor R-138727 is expected to substantially inhibit the P450-mediated metabolism of coadministered drugs.  相似文献   

9.
We recently reported the protective effect of 2-hydroxy- cis-terpenone (HCT) against aflatoxin B 1 (AFB1)-induced cytotoxicity in human HepG2 liver cells ( Zhou et al. Chem. Res. Toxicol. 2006, 19, 1415-1419 ); however, the mechanism was not clear. In this paper, the chemoprotective mechanism was investigated with liver microsomes and purified P450 3A4 enzyme. HCT showed effective inhibition of the metabolic conversion of AFB1 in liver microsomes at 40 microM, and more importantly, the inhibition of the carcinogenic exo-AFB1-epoxide formation from AFB1. Further study indicated the direct inhibition of purified P450 3A4 enzyme activity by HCT with an IC 50 value of 20 microM. Under aqueous conditions, HCT was slowly converted to an oxidized product OHCT, which exhibits similar inhibitory effects on both P450 3A4 and the metabolic conversion and carcinogenic activation of AFB1 with liver microsomes as those of HCT. Enzyme mechanism studies revealed that OHCT acted as a mixed inhibitor of P450 3A4 with K i and K i' at 17.6 +/- 5.6 and 7.6 +/- 1.5 microM, respectively. Finally, OHCT showed no cytotoxicity at 60 microM in HepG2 liver cells and effective chemoprotection at 40 and 60 microM against AFB1 (2 microM) induced cytotoxicity. In contrast, ketoconazole alone exhibited 20% cell mortality at 20 microM, while chemoprotection with ketoconazole against 2 microM AFB1 in HepG2 was observed at 10 and 20 microM, which was much higher than the 1 microM concentration used in the inhibitory assays of P450 3A4 activity and AFB1 metabolism with liver microsomes.  相似文献   

10.
Effect of nonylphenol on aminopyrine N-demethylase activity, a typical drug-metabolizing enzyme activity, by ten kinds of human hepatic cytochrome P450s (CYP) and on progesterone 17alpha-hydroxylase activity by steroidogenic CYP17 was investigated. When determined at 2 mM substrate concentration, nonylphenol (1 mM) most efficiently inhibited aminopyrine N-demethylation by CYP2C9 and CYP2C19, by 61% and 59%, respectively, followed by CYP2D6, CYP1A2, CYP2C18 and CYP2C8 (46-51%), whereas inhibition of the activities by other CYPs was less than 27%. Additionally, nonylphenol competitively inhibited diclofenac 4'-hydroxylation by CYP2C9 and S-mephenytoin 4'-hydroxylation by CYP2C19 with Ki values of 5.3 and 37 microM, respectively. Furthermore, nonylphenol exhibited a competitive inhibition of progesterone 17alpha-hydroxylase activity by CYP17 with Ki value of 62 microM. These results suggest that nonylphenol inhibits human hepatic CYPs, especially CYP2C9 and CYP2C19, and steroidogenic CYP17 activities.  相似文献   

11.
Kinetics of the 2- and 4-hydroxylations of estradiol (E2) by human liver microsomal samples were studied to determine the major P450 isoform involved in these endogenous reactions. Thirty human liver microsomal samples were analysed. Metabolism of 25 microM [14C]E2 produced 2-hydroxy and 4-hydroxy derivatives with a ratio of 3.2 +/- 1.5 and a great inter-individual variation. Kinetic analysis of the 2- and 4-hydroxylations of E2 exhibited a curvilinear double reciprocal plot with an apparent Km of 15 microM. Further experiments demonstrated that alpha-naphthoflavone, testosterone and progesterone increased the 2-hydroxylation activity, suggesting the involvement of a substrate activation mechanism. These two hydroxylations of E2 were shown to be catalysed by cytochrome P450 with an apparent dissociation constant Ks of 0.8 microM. These 2- and 4-hydroxylations inter-correlated significantly (r = 0.93; N = 30). The 2-hydroxylation of E2 correlated with four monooxygenase activities known to be supported by P450 3A4/3A5, namely nifedipine oxidation (r = 0.78; N = 29); erythromycin N-demethylation (r = 0.69; N = 27), testosterone 6 beta-hydroxylation (r = 0.66; N = 25) and tamoxifen N-demethylation (r = 0.64; N = 29). On the other hand, E2-hydroxylations did not correlate with activities supported by P450 1A2 and P450 2E1. Furthermore, drugs as cyclosporin, diltiazem, triacetyl-oleandomycin and 17 alpha-ethynylestradiol inhibited more than 90% of the E2-hydroxylations at concentrations < 250 microM, while weak inhibition was shown with 500 microM cimetidine and no significant inhibition with caffeine, phenacetin and omeprazole. Finally, 2- and 4-hydroxylations of E2 correlated significantly with the content of P450 3A4/3A5 immunodetected by a monoclonal antibody anti-human P450-nifedipine (r = 0.84; N = 28). E2-hydroxylation activities were inhibited by more than 80% with polyclonal anti-human anti-P450-nifedipine. Preincubation of human liver microsomes with 100 microM gestodene (a suicide substrate of P450 3A4) inactivated this P450 isoform and accordingly allowed evaluation of the contribution of other P450 isoforms to the E2 metabolism to about 21% (+/- 17%, N = 29). All these results taken together suggest that P450 3A4/3A5 are the major forms involved in the formation of catecholestrogens in the human liver microsomes.  相似文献   

12.
In vitro studies were carried out to identify the major contribution of CYP2C8, CYP2D6 and CYP3A4 to the metabolism of perospirone (cis-N-[4-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]butyl]cyclohexane-1,2-dicarboximide monohydrochloride dehydrate), a novel antipsychotic agent, using human liver microsomes and expressed P450 isoforms. Quinidine (a specific inhibitor of CYP2D6) did not markedly affect the metabolism of perospirone, whereas quercetin (an inhibitor of CYP2C8) and ketoconazole (an inhibitor of CYP3A4) caused a decrease in the metabolism with human liver microsomes in a concentration dependent fashion. With 10 microM quercetin, the metabolism of perospirone was inhibited by 60.0% and with 1 microM ketoconazole almost complete inhibition was apparent. Anti-CYP2C8 and anti-CYP2D6 antisera did not exert marked effects, whereas anti-CYP3A4 antiserum caused almost complete inhibition. With expressed P450s, K(m) and V(max) values were 1.09 microM and 1.93 pmol/min/pmol P450 for CYP2C8, 1.38 microM and 5.73 pmol/min/pmol P450 for CYP2D6, and 0.245 microM and 61.3 pmol/min/pmol P450 for CYP3A4, respectively. These results indicated that the metabolism of perospirone in human liver was mainly catalysed by CYP3A4, and to a lesser extent CYP2C8 and CYP2D6 were responsible because kinetic data (K(m) and V(max)) of CYP2C8 and CYP2D6 suggested catalytic potential.  相似文献   

13.
CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminobenzotriazole and the requirement for NADPH. Apparent K(m) and V(max) values ranged from 0.6 to 2.4 microM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid omega-hydroxylation rates (r(2) = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3-18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics.  相似文献   

14.
Identification of the human cytochrome P450 (P450) enzymes involved in the metabolism of cisapride and racemic norcisapride [(+/-)-norcisapride] was investigated at 0.1 and 1 microM, concentrations that span the mean plasma C(max) for cisapride. Formation of norcisapride (Nor), 3-fluoro-4-hydroxycisapride (3F), and 4-fluoro-2-hydroxycisapride (4F) from cisapride and an uncharacterized metabolite (UNK) from (+/-)-norcisapride in human liver microsomes (HLMs) were consistent with Michaelis-Menten kinetics for a single enzyme (K(m), 6.0, 14.3, 13.9, and 107 microM; V(max), 1350, 696, 568, and 25 pmol/mg of protein, respectively). HLMs converted cisapride to Nor at rates that were at least 3 orders of magnitude greater than those observed for (+/-)-norcisapride conversion to UNK. The sample-to-sample variation in the rates of Nor, 3F, 4F, and UNK formation correlated strongly (r(2) > 0.796) with CYP3A4/5 activity in a panel of HLMs (n = 7) and was markedly reduced by ketoconazole, a potent CYP3A inhibitor. Ketoconazole virtually eliminated (+/-)-norcisapride conversion to UNK (94 +/- 0.5%). Studies with 10 cDNA-expressed enzymes revealed that CYP3A4 catalyzed the formation of Nor and 4F at rates >100 times those of non-CYP3A enzymes and >100- and 50-fold higher than CYP3A5 and CYP3A7, respectively. CYP3A4 was the only P450 capable of UNK formation. Therefore, CYP3A4 is the principal P450 enzyme responsible for the conversion of cisapride to Nor, 3F, and 4F and of (+/-)-norcisapride to UNK. Compared with cisapride, factors related to CYP3A4-mediated (+/-)-norcisapride metabolism (e.g., ontogeny of drug-metabolizing enzymes, inhibition, and induction) should be clinically unimportant due to the apparent lack of dependence on cytochromes P450 for elimination.  相似文献   

15.
Ridogrel [(E)-5-[[[(3-pyridinyl)[3-(trifluoromethyl)phenyl] methylene]amino]oxy] pentanoic acid] is a potent inhibitor of the P450-dependent human platelet thromboxane A2 (TxA2) synthase. Fifty percent inhibition is already achieved at 5.0 +/- 0.37 nM. This IC50 value is close to half the P450 concentration used, i.e. 10.7 nM. Ridogrel binds to human platelet microsomal P450 as proven by the type II spectral changes induced by the addition of increasing concentrations of ridogrel to solubilized microsomes. The calculated half-maximal spectral change (SC50 value) is 3.78 +/- 1.79 nM. These results indicate that ridogrel binds stoichiometrically and suggest that inhibition of thromboxane synthesis may originate from liganding of its basic nitrogen to the haem-iron of P450 and from the attachment of the hydrophobic carboxylic side chain to or near the substrate binding place. Ridogrel is a selective inhibitor of the TxA2 synthase. At a high concentration (10 microM), ridogrel has a slight, if any, effect on the P450-mediated cholesterol synthesis in human liver and hepatoma cells and androgen synthesis from 17 alpha-hydroxy-20-dihydroprogesterone or pregnenolone in subcellular fractions from rat testes. These results indicate that ridogrel is a poor inhibitor of the P450-dependent 14 alpha-demethylase, 17 alpha-hydroxylase and 17,20-lyase. It has, up to 10 microM, no effect on the adrenal mitochondrial 11 beta-hydroxylase and cholesterol side-chain cleavage enzyme and does not inhibit aromatase activity in human placental microsomes. Ridogrel has no significant effect on the regio- and stereoselective P450-dependent oxidations of testosterone in liver microsomes from unpretreated or from 5-pregnen-3 beta-ol-20-one-16 alpha-carbonitrile-, phenobarbital- or 3-methylcholanthrene-pretreated male and female Sprague-Dawley rats. It does not interfere with the reduction of testosterone into 5 alpha-dihydrotestosterone and 5 alpha androstane 3 beta, 17 beta-diol.  相似文献   

16.
A metabolic interaction between stiripentol (STP), an anticonvulsant agent that inhibits the activity of several cytochromes P450 (P450s), and clobazam (CLB), a 1,5-benzodiazepine, used in association with STP in severe myoclonic epilepsy in infancy was observed in vivo. This interaction was characterized in vitro using cDNA-expressed CYP3A4 and CYP2C19 (main P450 involved in CLB metabolism) to calculate K(i) and IC(50) of stiripentol in comparison with ketoconazole (CYP3A4 inhibitor) and omeprazole (CYP2C19 inhibitor). STP inhibited N-demethylation of CLB to N-desmethylclobazam (NCLB) mediated by CYP3A4 (noncompetitively) and CYP2C19 (competitively) with K(i) = 1.59 +/- 0.07 and 0.516 +/- 0.065 microM and IC(50) = 1.58 microM [95% confidence interval (CI95%) = 1.20-2.08] and 3.29 microM (CI95% = 1.87-5.79), respectively. STP inhibited also more strongly the 4'-hydroxylation of NCLB to 4'-hydroxy-N-desmethylclobazam by CYP2C19 [competitive interaction with K(i) = 0.139 +/- 0.025 microM and IC(50) = 0.276 microM (CI95% = 0.206-0.371)]. The inhibitory effect of STP on CLB demethylation by CYP3A4 was much weaker than that of ketoconazole [IC(50) = 0.023 microM (CI95% = 0.016-0.033)], whereas its effect on NCLB hydroxylation by CYP2C19 was much higher than that of omeprazole [IC(50) = 2.99 microM (CI95% = 2.11-4.24)]. The major in vitro inhibitory effect of STP on CLB metabolism and mostly on NCLB biotransformation is consistent with the changes in vivo in CLB and NCLB plasma concentrations in children treated by the association CLB/STP.  相似文献   

17.
The formation of chemically reactive metabolites from carbamazepine (CBZ) in the presence of mouse and human liver microsomes has been investigated using cytotoxicity and irreversible binding of radiolabelled compound as quantitative end-points. For comparison, the formation of the stable CBZ-10,11-epoxide (CBZ-10,11-E) has been measured. The formation of the cytotoxic, protein-reactive and stable metabolites of CBZ was increased by induction of the cytochrome P450 enzymes by phenobarbitone and reduced by co-incubation in vitro with ketoconazole (10-250 microM), suggesting that the formation of these metabolites is cytochrome P450 dependent. All human livers tested (N = 6) bioactivated CBZ to a protein-reactive metabolite, the mean covalent binding increasing from 0.08 +/- 0.01% (without NADPH) to 0.27 +/- 0.09% (with NADPH; P less than or equal to 0.05). The formation of the chemically reactive metabolites was reduced by a subphysiological concentration of reduced glutathione (GSH) (500 microM), while ascorbic acid (100 microM) had no effect. Neither compound affected the formation of CBZ-10,11-E. Microsomal epoxide hydrolase (mEH), but not cytosolic epoxide hydrolase, caused a concentration-dependent inhibition of cytotoxicity reaching a maximum of 60% at 100 U of mEH. Covalent binding was also reduced by 60% by 100 U mEH. The separated T- and B-lymphocytes showed no difference in sensitivity when incubated with CBZ and mouse microsomes. The study demonstrates that the balance between activation of CBZ by the cytochrome P450 enzymes to a chemically reactive arene oxide metabolite and its detoxification by mEH and GSH may contribute to individual susceptibility to CBZ idiosyncratic toxicity.  相似文献   

18.
The in vitro metabolism of tolperisone, 1-(4-methyl-phenyl)-2-methyl-3-(1-piperidino)-1-propanone-hydrochloride, a centrally acting muscle relaxant, was examined in human liver microsomes (HLM) and recombinant enzymes. Liquid chromatography-mass spectrometry measurements revealed methyl-hydroxylation (metabolite at m/z 261; M1) as the main metabolic route in HLM, however, metabolites of two mass units greater than the parent compound and the hydroxy-metabolite were also detected (m/z 247 and m/z 263, respectively). The latter was identified as carbonyl-reduced M1, the former was assumed to be the carbonyl-reduced parent compound. Isoform-specific cytochrome P450 (P450) inhibitors, inhibitory antibodies, and experiments with recombinant P450s pointed to CYP2D6 as the prominent enzyme in tolperisone metabolism. CYP2C19, CYP2B6, and CYP1A2 are also involved to a smaller extent. Hydroxymethyl-tolperisone formation was mediated by CYP2D6, CYP2C19, CYP1A2, but not by CYP2B6. Tolperisone competitively inhibited dextromethorphan O-demethylation and bufuralol hydroxylation (K(i) = 17 and 30 microM, respectively). Tolperisone inhibited methyl p-tolyl sulfide oxidation (K(i) = 1200 microM) in recombinant flavin-containing monooxygenase 3 (FMO3) and resulted in a 3-fold (p < 0.01) higher turnover number using rFMO3 than that of control microsomes. Experiments using nonspecific P450 inhibitors-SKF-525A, 1-aminobenzotriazole, 1-benzylimidazole, and anti-NADPH-P450-reductase antibodies-resulted in 61, 47, 49, and 43% inhibition of intrinsic clearance in HLM, respectively, whereas hydroxymethyl-metabolite formation was inhibited completely by nonspecific chemical inhibitors and by 80% with antibodies. Therefore, it was concluded that tolperisone undergoes P450-dependent and P450-independent microsomal biotransformations to the same extent. On the basis of metabolites formed and indirect evidences of inhibition studies, a considerable involvement of a microsomal reductase is assumed.  相似文献   

19.
1. Amiodarone (AMI) is a potent anti-arrhythmic drug and mono-N-desethylamiodarone (MDEA) is its only known metabolite. It was found recently that in rabbit liver microsomes MDEA was biotransformed to n-3-hydroxybutyl-MDEA (3OH-MDEA). 2. In liver microsomes isolated from the untreated rabbit, the formation of 3OH-MDEA obeyed Michaelis-Menten enzyme kinetics with Km = 6.39 +/- 1.07 microM and Vmax = 0.56 +/- 0.21 nmolmin(-1) mg(-1) protein. 3. Furthermore, (1) among chemicals usually used as inhibitors of cytochrome P450, only midazolam (MDZ), cyclosporin A and ketoconazole inhibited the MDEA hydroxylase activity significantly (>60% inhibition), (2) MDZ, a substrate of CYP3A, inhibited the 30OH-MDEA formation competitively (Ki = 10 +/- 5 microM), (3) the formation rates of 3OH-MDEA correlated positively with those of 1'OH-MDZ (r = 0.81; n = 6), and (4) MDEA hydroxylase activity of microsomes isolated from rabbit rifampicin-induced cultured hepatocytes was 4-fold more active than the control. 4. Since CYP3A6 is mainly induced by rifampicin in rabbit-cultured hepatocytes, the data suggest that this isoform is involved in the biotransformation of MDEA to 3OH-MDEA. 5. Since alpha-naphthoflavone, cimetidine and quinidine also partially inhibited the MDEA hydroxylase activity, it is possible that other CYPs, such as 1A, 2C and 2D, may also be active in the metabolism of amiodarone.  相似文献   

20.
The formation of steroids in the H295R human adrenocortical carcinoma cell line was analysed by HPLC or RIA, and based on these data the apparent catalytic activities of CYP11A, CYP17, CYP21 and CYP11B1 in this cell line were calculated. The environmental pollutant 3-methylsulfonyl-DDE (3-MeSO2-DDE) and the cytochrome P450 (CYP) inhibitors ketoconazole, metyrapone and aminoglutethimide were studied for their effects on the steroid formation. Metyrapone (IC50) of 1 microM) and 3-MeSO2-DDE (10 microM: 66 +/- 10% of control) were found to inhibit the apparent CYP11B1 activity. Ketoconazole inhibited all enzymes examined with the greatest effects on CYP11B1 (IC50) of 2.5 microM). Aminoglutethimide was examined only for effects on CYP11A activity and was shown to inhibit pregnenolone formation (20 microM: 61 +/- 4% of control). The possibility of studying all CYP enzymes in the corticosteroidogenesis makes this cell line a valuable test system to examine effects of chemicals, such as suspected endocrine disruptors, on the human glucocorticoid hormone synthesis. The inhibition of cortisol formation by 3-MeSO2-DDE supports an interaction with the active site of CYP11B1, as previously reported in mouse adrenocortical Y1 cells. In mice, this interaction led to metabolic activation and a high adrenotoxicity of 3-MeSO2-DDE. Therefore studies on the adrenotoxicity of 3-MeSO2-DDE in humans are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号