首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Summary The characteristics of the non-adrenergic, noncholinergic inhibitory response of the rat stomach fundus to transmural nerve stimulation were compared with the relaxation induced by vasoactive intestinal polypeptide (VIP). Treatment with -chymotrypsin (5 U/ml) or VIP antiserum (1:200) significantly reduced the relaxation induced by transmural nerve stimulation at 30 Hz, indicating that the possible transmitter in the non-adrenergic, non-cholinergic nerves is a peptide and may be VIP or a closely related peptide. VIP was able to relax, fully and dose-dependently, the stomach fundus that had previously been constricted by treatment with 10–6 M serotonin, and the IC50 value for VIP was 2.4 × 10–9 M. VIP elevated levels of cyclic AMP in a dose-dependent manner and the EC50 value was 2.8 × 10–9 M in the presence of 10–6 M atropine and 10–6 M guanethidine. The stomach fundus was relaxed by transmural nerve stimulation (30 Hz, 50 mA) and transmural nerve stimulation also caused production of cyclic AMP in the rat stomach in the presence of atropine and guanethidine. The basal level of cyclic AMP in the stomach was 8.7 ± 0.26 pmole/mg protein. When transmural nerve stimulation was applied for 5 min, the contraction of the stomach, induced by 10–6 M serotonin, was inhibited by 54% in the presence of atropine and guanethidine and the level of cyclic AMP was increased to 13.0 ± 0.73 pmol/mg protein. Apamin inhibited the transmural nerve stimulation-induced relaxation and shifted the dose-response curve for VIP to the right. These results suggest that one of the putative neurotransmitter from non-adrenergic, non-cholinergic nerves in the rat stomach is VIP and that VIP-induced relaxation may be mediated by the production of cyclic AMP and by the opening of apamin-sensitive K+-channels.Send offprint requests to K. Kamata at the above address  相似文献   

2.

Background and purpose

5-Hydroxytryptamine (5-HT) is one of the inhibitory mediators in the urinary bladder outlet region. Here we investigated mechanisms involved in 5-HT-induced relaxations of the pig bladder neck.

Experimental approach

Urothelium-denuded strips of pig bladder were mounted in organ baths for isometric force recordings of responses to 5-HT and electrical field stimulation (EFS).

Key results

After phenylephrine-induced contraction, 5-HT and 5-HT receptor agonists concentration-dependently relaxed the preparations, with the potency order: 5-carboxamidotryptamine (5-CT) > 5-HT = RS67333 > (±)-8-hydroxy-2-dipropylaminotetralinhydrobromide > m-chlorophenylbiguanide > α-methyl-5-HT > ergotamine. 5-HT and 5-CT relaxations were reduced by the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulphonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride and potentiated by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide dihydrochloride (WAY 100135) and cyanopindolol, 5-HT1A and 5-HT1A/1B receptor antagonists respectively. Inhibitors of 5-HT1B/1D, 5-HT2, 5-HT2B/2C, 5-HT3, 5-HT4, 5-HT5A and 5-HT6 receptors failed to modify 5-HT responses. Blockade of monoamine oxidase A/B, noradrenergic neurotransmission, α-adrenoceptors, muscarinic and purinergic receptors, nitric oxide synthase, guanylate cyclase and prostanoid synthesis did not alter relaxations to 5-HT. Inhibitors of Ca2+-activated K+ and ATP-dependent K+ channels failed to modify 5-HT responses but blockade of neuronal voltage-gated Na+-, Ca2+-and voltage-gated K+ (Kv)-channels potentiated these relaxations. Adenylyl cyclase activation and cAMP-dependent protein kinase (PKA) inhibition potentiated and reduced, respectively, 5-HT-induced responses. Under non-adrenergic, non-cholinergic, non-nitrergic conditions, EFS induced neurogenic, frequency-dependent, relaxations which were resistant to WAY 100135 and cyanopindolol.

Conclusions and implications

5-HT relaxed the pig urinary bladder neck through muscle 5-HT7 receptors linked to the cAMP-PKA pathway. Prejunctional 5-HT1A receptors and Kv channels modulated 5-HT-induced relaxations whereas postjunctional K+ channels were not involved in such responses. 5-HT7 receptor antagonists could be useful in the therapy of urinary incontinence produced by intrinsic sphincter deficiency.  相似文献   

3.
  1. The nerve-mediated contraction of the female rabbit bladder neck and different portions of the urethra (proximal, medial and distal) was studied in vitro by electrical stimulation (50 V, 30 Hz, 0.05 ms width, trains of 5 s every 5 min) by use of a superfusion system.
  2. The amplitude (Emax) and the duration (Dmax) of the stimulated contraction were studied in the four tissues. The Emax value was significantly higher in distal urethra (2.07±0.15 g) compared to the bladder neck (1.08±0.10 g), proximal urethra (0.73±0.07 g) and medial urethra (0.87±0.07 g). In contrast, the Dmax value appeared slightly but significantly lower (P<0.05) in distal urethra (68.5±2.3 s) than in bladder neck (76.7±6.0 s), proximal urethra (84.5±5.0 s) and medial urethra (81.3±3.5 s).
  3. Cocaine (1 μM) significantly increased the basal Emax values in medial and distal urethra and the basal Dmax values in the four tissues.
  4. Prazosin (1 μM) significantly reduced Emax value in proximal, medial and distal urethra and Dmax value in bladder neck and proximal urethra. Atropine (1 μM) also significantly reduced Emax values in bladder neck and proximal urethra and reduced Dmax value in bladder neck, but not in other tissues. Yohimbine (0.1 μM) was devoid of effect in the four tissues.
  5. The association of prazosin (1 μM) and atropine (1 μM) did not modify the Emax and the Dmax values of the electrically-induced contractions, except in proximal urethra and in bladder neck where an additive inhibitory effect (on Emax only) was observed compared to prazosin and atropine alone.
  6. The residual contractile response after combined treatment with prazosin and atropine was significantly diminished by tetrodotoxin (TTX; 1 μM) but not completely abolished. These NANC contractions were insensitive to P2X-purinoceptor desensitization by continuous tissue perfusion with α,β-methylene ATP (30 μM).
  7. These results demonstrate that bladder neck and proximal urethra are mainly innervated by the parasympathetic nervous system, whereas medial and distal urethras are to a greater extent under the control of the sympathetic innervation. The residual responses, insensitive to prazosin and atropine, may indicate a NANC innervation in the four tissues. However, the nature of the NANC neurotransmitter remains to be identified.
  相似文献   

4.
alpha, beta-Methylene ATP has advantages over ATP in producing desensitisation of the P2-purinoceptor since it is degraded more slowly than ATP and does not initiate synthesis of prostaglandins. Following desensitisation of the excitatory P2-purinoceptors in the guinea-pig urinary bladder, the excitatory responses to non-adrenergic, non-cholinergic nerve stimulation were abolished, while those to acetylcholine and histamine were little affected. This result is consistent with the purinergic nerve hypothesis.  相似文献   

5.

Background and purpose:

As adenosine 5′-triphosphate (ATP) is one of the inhibitory mediators of the bladder outflow region, this study investigates the possible release of ATP or related purines in response to electrical field stimulation (EFS) and the purinoceptor(s) involved in nerve-mediated relaxations of the pig urinary bladder neck.

Experimental approach:

Urothelium-denuded and intact phenylephrine-precontracted strips were mounted in organ baths containing physiological saline solution at 37°C and gassed with 95% O2 and 5% CO2 for isometric force recordings.

Key results:

EFS, in the presence of atropine, guanethidine and NG-nitro-L-arginine, and exogenous purines, produced frequency- and concentration-dependent relaxations respectively. Adenosine 5′-diphosphate (ADP) and adenosine were more potent than ATP in producing relaxation, while uridine 5′-triphosphate, uridine 5′-diphosphate and α,β-methylene ATP were less effective. The non-selective P2 antagonist suramin, and the P2Y1 and P1 receptor blockers 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate tetrasodium and 8-(p-sulphophenyl)theophylline, respectively, inhibited the responses to EFS and ATP. The P1 agonist''s potency was: 5′-N-ethylcarboxamidoadenosine (NECA)>4-2[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene propanoic acid hydrochloride>2-chloro-N6-cyclopentyladenosine>-2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide = adenosine. 4-(-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol, an A2A antagonist, reduced the relaxations to EFS, adenosine and NECA. In urothelium-intact samples, relaxations to EFS and purines were smaller than in urothelium-denuded preparations. Neuronal voltage-gated Na+ channels blockade failed to modify ATP relaxations. At basal tension, EFS- and ATP-induced contractions were resistant to desensitization or blockade of P2X1 and P2X3 receptors.

Conclusions and implications:

ATP is involved in the non-adrenergic, non-cholinergic, non-nitrergic inhibitory neurotransmission in the pig bladder neck, producing relaxation largely through muscle A2A receptors after breakdown to adenosine, and P2Y1 receptors after breakdown to ADP. Antagonists of these receptors may be useful for urinary incontinence treatment produced by intrinsic sphincteric deficiency.  相似文献   

6.
In the guinea-pig proximal colon, 5-hydroxytryptamine (5-HT) relaxes the longitudinal muscle by stimulating neuronal 5-HT receptors, which induces the release of nitric oxide (NO). It was investigated whether the inhibitory neurotransmitters adenosine 5-triphosphate (ATP) and/or vasoactive intestinal polypeptide (VIP) could be involved as well.Antagonists to block the contractile response to 5-HT via 5-HT2, 5-HT3 or 5-HT4 receptors were present throughout the experiments and methacholine was administered to precontract the strips. ATP, VIP and 5-HT induced concentration-dependent relaxations, in the case of 5-HT yielding a non-monophasic concentration-response curve. Tetrodotoxin (TTX; 300 nM), NG-nitro-l-arginine (l-NNA, 100 M) and their combination did not inhibit the relaxations induced by VIP (up to 0.3 M) or 0.3–3 M ATP but reduced those by 10 M ATP. Suramin (300 M) strongly inhibited the relaxations to ATP and VIP. l-NNA and suramin also inhibited the relaxations to 5-HT. In the presence of l-NNA (100 M), suramin did not significantly inhibit the relaxations to 5-HT. Suramin did not affect the relaxations to isoprenaline, nitroglycerin or exogenous NO (1 M), demonstrating its specificity. Apamin (30 nM) inhibited both the relaxations to ATP (by 70–100%) and to 5-HT; relaxations to isoprenaline were partially inhibited, indicating a non-specific component in the inhibitory action of apamin. However, relaxations to exogenous VIP (up to 0.3 M), NO (1 ,M) and to nitroglycerin were not inhibit ed. In the presence of l-NNA (100 M), apamin inhibited the relaxations to 5-HT only at 30 M. ,\-methylene-ATP (,-Me-ATP; 100 M) did not desensitize the responses to ATP. Reactive blue 2 affected the relaxations to isoprenaline at concentrations necessary to significantly inhibit the relaxations to ATP (i.e. from 10 M onwards). Thus, it was not possible to test either ,-Me-ATP or reactive blue 2 against the relaxations to 5-HT. -Chymotrypsin (0.015 mg·ml–1) and trypsin (0.005 mg·ml–1) almost abolished the relaxations to VIP, but did not affect those to isoprenaline and 5-HT. The VIP receptor antagonists [p-Cl-d-Phe6, Leu17]VIP (1 M) and VIP10–28 (1 and 3 M) did not affect the concentration-response curve to VIP and were hence not tested against 5-HT. Phosphoramidon (1 M) had no effect on the relaxations to VIP or 5-HT.It can be concluded that in the guinea-pig colon longitudinal muscle, VIP and ATP induce relaxation via a direct effect on the smooth muscle, not involving NO. 5-HT-induced relaxations are mediated by NO as well as by a substance which is sensitive to inhibition by suramin but not apamin. It is suggested that this substance is ATP and not a peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号