首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
OBJECTIVE: Thrombopoietin (TPO) is the pivotal regulator of thrombocytopoiesis and megakaryocytopoiesis, and binding to its receptor c-Mpl leads to activation of at least two different signaling pathways: the Jak-Stat pathway and the Ras-MAPK pathway. Our aim was to elucidate which Stat-complexes are formed in TPO signal transduction in human blood platelets. MATERIALS AND METHODS: We used electrophoretic mobility shift assays (EMSA) in order to analyze the formation of distinct Stat complexes on two distinct oligonucleotide probes. Furthermore, we used immunoprecipitation and Western blotting of protein lysates from TPO-stimulated platelets. RESULTS: We found homodimers of Stat1alpha, Stat3, Stat5a, and Stat5b, as well as heterodimers of Stat1/Stat3 and Stat5a/Stat5b, but no Stat1/Stat5 or Stat3/Stat5 heterodimers are formed in platelets in response to TPO. Stat5 complexes bound to labeled DNA with a fast kinetic followed by Stat3 and Stat1. The adapter protein CrkL is present in DNA-bound Stat5 complexes and predominantly bound to Stat5b. The kinase ERK2 is also tyrosine phosphorylated after TPO-stimulation of platelets but this activation does not modulate the phosphorylation of the serine residues in the PXSP motif present in Stat1 and Stat3. CONCLUSION: Our findings thus emphasize the differential regulation of Stat1, Stat3, Stat5a, and Stat5b in platelets and may be an appropriate model of c-Mpl signaling in mega-karyopoiesis.  相似文献   

3.
4.
5.
STAT5 proteins are constitutively activated in malignant cells from many patients with leukemia, including the myeloproliferative neoplasms (MPNs) chronic myeloid leukemia (CML) and polycythemia vera (PV), but whether STAT5 is essential for the pathogenesis of these diseases is not known. In the present study, we used mice with a conditional null mutation in the Stat5a/b gene locus to determine the requirement for STAT5 in MPNs induced by BCR-ABL1 and JAK2(V617F) in retroviral transplantation models of CML and PV. Loss of one Stat5a/b allele resulted in a decrease in BCR-ABL1-induced CML-like MPN and the appearance of B-cell acute lymphoblastic leukemia, whereas complete deletion of Stat5a/b prevented the development of leukemia in primary recipients. However, BCR-ABL1 was expressed and active in Stat5-null leukemic stem cells, and Stat5 deletion did not prevent progression to lymphoid blast crisis or abolish established B-cell acute lymphoblastic leukemia. JAK2(V617F) failed to induce polycythemia in recipients after deletion of Stat5a/b, although the loss of STAT5 did not prevent the development of myelofibrosis. These results demonstrate that STAT5a/b is essential for the induction of CML-like leukemia by BCR-ABL1 and of polycythemia by JAK2(V617F), and validate STAT5a/b and the genes they regulate as targets for therapy in these MPNs.  相似文献   

6.
7.
8.
The D816V-mutated variant of Kit triggers multiple signaling pathways and is considered essential for malignant transformation in mast cell (MC) neoplasms. We here describe that constitutive activation of the Stat5-PI3K-Akt-cascade controls neoplastic MC development. Retrovirally transduced active Stat5 (cS5(F)) was found to trigger PI3K and Akt activation, and to transform murine bone marrow progenitors into tissue-infiltrating MCs. Primary neoplastic Kit D816V(+) MCs in patients with mastocytosis also displayed activated Stat5, which was found to localize to the cytoplasm and to form a signaling complex with PI3K, with consecutive Akt activation. Finally, the knock-down of either Stat5 or Akt activity resulted in growth inhibition of neoplastic Kit D816V(+) MCs. These data suggest that a downstream Stat5-PI3K-Akt signaling cascade is essential for Kit D816V-mediated growth and survival of neoplastic MCs.  相似文献   

9.
10.
Yan D  Hutchison RE  Mohi G 《Blood》2012,119(15):3539-3549
The JAK2V617F mutation has been identified in most cases of Ph-negative myeloproliferative neoplasms (MPNs) including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Expression of JAK2V617F results in constitutive activation of multiple signaling molecules/pathways. However, the key signaling downstream of JAK2V617F required for transformation and induction of MPNs remains elusive. Using a mouse genetic strategy, we show here that Stat5 is absolutely required for the pathogenesis of PV induced by Jak2V617F. Whereas expression of Jak2V617F in mice resulted in all the features of human PV, including an increase in red blood cells, hemoglobin, hematocrit, white blood cells, platelets, and splenomegaly, deletion of Stat5 in the Jak2V617F knockin mice normalized all the blood parameters and the spleen size. Furthermore, deletion of Stat5 completely abrogated erythropoietin (Epo)-independent erythroid colony formation evoked by Jak2V617F, a hallmark feature of PV. Re-expression of Stat5 in Stat5-deficient Jak2V617F knockin mice completely rescued the defects in transformation of hematopoietic progenitors and the PV phenotype. Together, these results indicate a critical function for Stat5 in the pathogenesis of PV. These findings also provide strong support for the development of Stat5 inhibitors as targeted therapies for the treatment of PV and other JAK2V617F-positive MPNs.  相似文献   

11.
12.
13.
14.
15.
OBJECTIVE: The highly related protein-tyrosine kinases Fps (also called Fes) and Fer are sole members of a subfamily of kinases. In this study, knock-in mice harboring kinase-inactivating mutations in both fps and fer alleles were used to assess functional redundancy between Fps and Fer kinases in regulating hematopoiesis. METHODS: Mice harboring kinase-inactivating mutations in fps and fer alleles were generated previously. Compound homozygous mice were bred that lack both Fps and Fer kinase activities and progeny were analyzed for potential defects in viability and fertility. Potential differences in hematopoiesis were analyzed by lineage analysis of bone marrow cells, peripheral blood counts, and hematopoietic progenitor cell colony-forming assays. RESULTS: Mice devoid of both Fps and Fer kinase activities were viable and displayed reduced fertility. Circulating levels of neutrophils, erythrocytes, and platelets were elevated in compound mutant mice compared to wild-type controls, suggesting that hematopoiesis is deregulated in the absence of Fps and Fer kinases. Compound mutant mice also showed reduced overall bone marrow cellularity, and lineage analysis revealed elevated CD11b(hi)Ly-6G(lo) myeloid cells, which may reflect increased granulocyte progenitors. Although no differences in the overall number of granulocyte/monocyte colony-forming progenitors were observed, qualitative differences in myeloid colonies from compound mutant mice suggested a role for Fps and Fer kinases in regulating cell-cell adhesion or a skewing in cellularity of colonies. CONCLUSIONS: Mice lacking both Fps and Fer kinase activities develop normally, show reduced fertility, and display defects in hematopoiesis, thus providing evidence for functional redundancy between Fps and Fer kinases in regulating hematopoiesis.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号