首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) was injected into sites of the rat frontal eye field (FEF) located in the medial frontal cortex. After a single iontophoretic injection of PHA-L into a FEF site where intracortical microstimulation elicited eye movements, anterogradely labelled fibres and terminal-like elements were found in the thalamus in the anterior nuclei, intralaminar nuclei, lateral portion of the mediodorsal nucleus and posterior nuclear group. In the midbrain and pons, labelled fibres were located in the anterior pretectal area, Darkschewitsch nucleus, superior colliculus and dorsolateral portion of the central gray. When the tracer was injected at the FEF periphery, at a site the stimulation of which evoked both eye and whisker movements, labelling distribution in the thalamus differed from that observed after FEF injections, while a similar distribution was observed in the brainstem. In the thalamus, anterograde labelling was observed in these latter cases in the anterior nuclei, ventral nuclei, medial portion of the laterodorsal nucleus. The present findings point out that the FEF and FEF periphery are connected with numerous subcortical structures of the thalamus and brainstem. In addition, the connections of FEF and FEF periphery with the thalamus differ, whereas the midbrain and pons connections of the two subdivisions share common targets.  相似文献   

2.
3.
Subcortical afferent projections to the medial limbic cortex were examined in the rat by the use of retrograde axonal transport of horseradish peroxidase. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the dorsal and ventral cingulate areas, the dorsal agranular and ventral granular divisions of the retrosplenial cortex and the presubiculum. Somata of afferent neurons in the thalamus and basal forebrain were identified by retrograde labeling. Each of the anterior thalamic nuclei was found to project to several limbic cortical areas, although not with equal density. The anterior dorsal nucleus projects primarily to the presubiculum and ventral retrosplenial cortex; the anterior ventral nucleus projects to the retrosplenial cortex and the presubiculum with apparently similar densities; and the anterior medial nucleus projects primarily to the cingulate areas. The projections from the lateral dorsal nucleus to these limbic cortical areas are organized in a loose topographic fashion. The projection to the presubiculum originates in the most dorsal portion of the lateral dorsal nucleus. The projection to the ventral retrosplenial cortex originates in rostral and medial portions of the nucleus, whereas afferents to the dorsal retrosplenial cortex originate in caudal portions of the lateral dorsal nucleus. The projection to the cingulate originates in the ventral portion of the lateral dorsal nucleus. Other projections from the thalamus originate in the intralaminar and midline nuclei, including the central lateral, central dorsal, central medial, paracentral, reuniens, and paraventricular nuclei, and the ventral medial and ventral anterior nuclei. In addition, projections to the medial limbic cortex from the basal forebrain originate in cells of the nucleus of the diagonal band. Projections to the presubiculum also originate in the medial septum. These results are discussed in regard to convergence of sensory and nonsensory information projecting to the limbic cortex and the types of visual and other sensory information that may be relayed to the limbic cortex by these projections.  相似文献   

4.
In the present study we report the immunolocalisation of gamma-aminobutyric acid (GABA)(B) receptors within the cerebral somatosensory cortex (S1) and thalamus of adult and young (1-22 postnatal days) rats. The antibody used recognises a peptide in the carboxy-terminal domain and therefore did not distinguish between the different isoforms GABA(B)1a or GABA(B)1b. The results showed that GABA(B) receptor protein was widely distributed in the brain of both adult and young rats, with different degrees of labelling in separate cerebral nuclei. Antibody labelling was localised both on cells and the neuropil. In the cerebral cortex of adult animals the highest immunolabelling was evident in layers V and VIb, although immunoreactivity was also present in the superficial layers. The strongest signal was evident in the medial habenula.The thalamus showed labelling in the reticular, ventrobasal and geniculate nuclei. In the first postnatal days GABA(B) expression was evident in the cortical cells of layer V, VIb and in the cortical plate. The pattern of labelling in the cerebral cortex of young rats became indistinguishable from that of adult rats by day 12. In the thalamus, the main difference compared to the adult pattern was observed in the mediodorsal nucleus which, in early development, showed a high immunosignal, however, by postnatal day 22 the immunoreactivity decreased with only some scattered cells labelled in the adult brain.  相似文献   

5.
The thalamic and cortical projections to acoustically responsive regions of the anterior ectosylvian sulcus were determined by identifying retrogradely labelled cells after physiologically guided iontophoretic injections of horseradish peroxidase. The medial division of the medial geniculate nucleus, the intermediate division of the posterior nuclear group, the principal division of the ventromedial nucleus, and the lateroposterior complex were consistently labelled after these injections, although each animal showed slightly different patterns of labelling. The suprageniculate nucleus and the lateral and medial divisions of the posterior nuclear group were also labelled in most experiments. The cortex of the suprasylvian sulcus was the most consistently and densely labelled cortical region; each experiment showed a slightly different pattern of labelling throughout the suprasylvian sulcus, with an overall tendency for greater labelling in the ventral (lateral) bank of the middle region of the sulcus. Other cortical regions labelled less consistently included the anterior ectosylvian sulcus itself, the insular cortex of the anterior sylvian gyrus, and the posterior rhinal sulcus. In three experiments the contralateral cortex was examined and a small number of labelled cells was located in the anterior ectosylvian and suprasylvian sulci. Input from extralemniscal auditory thalamus is compatible with previously described auditory response properties of anterior ectosylvian sulcus neurons. The results also confirm the presence of input from visual and multimodal regions of thalamus and cortex, and therefore support claims of overlap of modalities within the sulcus. This overlap, as well as input from motor regions, suggests that the anterior ectosylvian sulcal field serves a sensorimotor role.  相似文献   

6.
The present study investigated the topographical distribution of P2X(1)-P2X(6) receptor subtypes in the rat and common marmoset hindbrain by immunohistochemistry. In addition, double-labeling immunofluorescence was used to determine the extent of colocalization between catecholamine cell groups and the various P2X receptors. The data demonstrate a widespread distribution pattern for all six P2X receptors throughout both the rat hindbrain and the marmoset hindbrain, although distinctions between species, brain nuclei, and P2X receptor subtypes exist. In rat, dense staining for the P2X receptors was found in the nucleus of the solitary tract (NTS), medial vestibular nucleus, and medial and lateral parabrachial nuclei. Moderate staining was observed in the hypoglossal nucleus, cuneate nucleus, inferior olive, prepositus hypoglossi, rostral ventrolateral medulla (RVLM), and locus coeruleus. Staining was also observed in the gracile nucleus, the mesencephalic trigeminal nucleus, and the central pontine gray. In marmoset, prominent P2X receptor-like immunoreactivity occurred in the NTS, medial cuneate nucleus, prepositus hypoglossi, and medial vestibular nucleus. Moderate staining was observed in the area postrema, dorsal motor nucleus of the vagus, lateral cuneate, lateral reticular, spinal trigeminal nucleus, RVLM, and inferior olive. Immunofluorescent double labeling of tyrosine hydroxylase (TH)-containing cells revealed that all subtypes of P2X receptors show some degree of colocalization with TH. The highest proportion of TH and P2X receptor double labeling was in the A5 region (with the P2X(2) subunit), whereas the lowest proportion of double-labeled cells occurred in the C2 region of the NTS for the P2X(5) subunit. These findings support a role for extracellular adenosine 5'-triphosphate in fast synaptic neurotransmission within the brainstem.  相似文献   

7.
The nucleus of the solitary tract (NTS) regulates life-sustaining functions ranging from appetite and digestion to heart rate and breathing. It is also the brain's primary sensory nucleus for visceral sensations relevant to symptoms in medical and psychiatric disorders. To better understand which neurons may exert top-down control over the NTS, here we provide a brain-wide map of all neurons that project axons directly to the caudal, viscerosensory NTS, focusing on a medial subregion with aldosterone-sensitive HSD2 neurons. Injecting an axonal tracer (cholera toxin b) into the NTS produces a similar pattern of retrograde labeling in rats and mice. The paraventricular hypothalamic nucleus (PVH), lateral hypothalamic area, and central nucleus of the amygdala (CeA) contain the densest concentrations of NTS-projecting neurons. PVH afferents are glutamatergic (express Slc17a6/Vglut2) and are distinct from neuroendocrine PVH neurons. CeA afferents are GABAergic (express Slc32a1/Vgat) and are distributed largely in the medial CeA subdivision. Other retrogradely labeled neurons are located in a variety of brain regions, including the cerebral cortex (insular and infralimbic areas), bed nucleus of the stria terminalis, periaqueductal gray, Barrington's nucleus, Kölliker-Fuse nucleus, hindbrain reticular formation, and rostral NTS. Similar patterns of retrograde labeling result from tracer injections into different NTS subdivisions, with dual retrograde tracing revealing that many afferent neurons project axon collaterals to both the lateral and medial NTS subdivisions. This information provides a roadmap for studying descending axonal projections that may influence visceromotor systems and visceral “mind–body” symptoms.  相似文献   

8.
Nuclei of the thalamus that project to cingulate cortex have been implicated in responses to noxious stimuli, cholinergic and motor functions. The rabbit limbic thalamus may play an important role in these functions, but has not been studied extensively in terms of its cytoarchitecture, the topographical organization of its cortical projections, and differential transmitter regulation of its subnuclei. Therefore, the architecture, projections to cingulate cortex, and radioligand binding were investigated in the anterior, ventral, lateral, and midline nuclei of rabbit thalamus. The anterior nuclei are highly differentiated because both the dorsal and ventral nuclei have parvicellular and magnocellular divisions. Fluorescent dyes were injected into cingulate cortex to evaluate limbic thalamocortical connections. The anterior medial, submedial, and parafascicular nuclei project primarily to anterior cingulate cortex, while they have small or no projections to posterior areas. The ventral anterior and ventral lateral nuclei have a significant projection to dorsal cingulate cortex, including areas 24b and 29d. Projections of the anterior ventral nucleus are topographically organized, since medial parts of the parvicellular division project to rostral area 29, and lateral parts project to caudal area 29. The lateral nuclei and the parvicellular and magnocellular divisions of the anterior dorsal nucleus project with progressively higher densities in the rostrocaudal plane of area 29. Finally, the magnocellular division of the anterior ventral nucleus projects almost exclusively to caudal and ventral area 29, i.e., granular retrosplenial cortex. Ligand binding studies employed coverslip autoradiography and single grain counting techniques. Muscarinic receptor binding was moderate for both pirenzepine and oxotremorine-M in the parvicellular anterior ventral nucleus, while in other nuclei, there was an inverse relationship in the binding for these ligands. Most notably, the anterior dorsal nucleus, which receives no cholinergic input, had very high oxotremorine-M and low pirenzepine binding, while the anterior medial nucleus, which receives a moderate cholinergic input, had the highest pirenzepine binding and very low oxotremorine-M binding. Muscimol binding to GABAA receptors was highest in the anterior ventral nucleus, while it was at moderate levels in the anterior dorsal and lateral nuclei. The binding of Tyr-D-Ala-Gly-MePhe-Gly-ol to mu opioid receptors and 2-D-penicillamine-5-D-penicillamine-enkephalin to delta opioid receptors were both high in the parvicellular and low in the magnocellular divisions of the anterior dorsal nucleus. The magnocellular division of the anterior ventral, the lateral dorsal, and the parafascicular nuclei had high mu opioid binding, while the lateral dorsal and lateral magnocellular nuclei had low levels of delta opioid binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In this study the temporal cortex of the tree shrew was subdivided on the basis of cytoarchitectonic criteria, and the connections of each subdivision with the thalamus and midbrain were analyzed with retrograde and anterograde techniques. The results indicate that, with one exception, each subdivision of the medial geniculate body projects to a separate cortical area. The primary auditory cortex receives projections from the ventral nucleus. Surrounding the primary cortex are at least five additional cytoarchitectonically distinct areas which receive projections from the remaining medial geniculate subdivisions. The evidence suggests that there is very little overlap in the projections from each of these geniculate subdivisions. An exception is the projection of the caudal nucleus of the medial division. This subdivision apparently projects to most, if not all, of the cortical target of the medial geniculate body. Although the cortical projections of the caudal nucleus overlap those of the other medial geniculate subdivisions, the laminar distribution of its terminations in cortex is different. The caudal nucleus projects primarily to layer VI whereas the other subdivisions of the medial geniculate body project primarily to layer IV and the adjacent part of layer III. Anterograde techniques were also used to study the projections from the cortex back to the thalamus and to the midbrain. The projections to the thalamus precisely reciprocate the thalamocortical connections. The projections to the midbrain are to the same areas which the preceding study (Oliver and Hall, '78) showed give rise to ascending projections to the medial geniculate body. An exception is the central nucleus of the inferior colliculus which apparently does not receive a projection from the temporal cortex.  相似文献   

10.
Direct projections from the forebrain to the nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus in the rat medulla were mapped in detail using both retrograde axonal transport of the fluorescent tracer True Blue and anterograde axonal transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). In the retrograde tracing studies, cell groups in the medial prefrontal cortex, lateral prefrontal cortex (primarily ventral and posterior agranular insular cortex), bed nucleus of the stria terminalis, central nucleus of the amygdala, paraventricular, arcuate, and posterolateral areas of the hypothalamus were shown to project to the NTS and in some cases also to the dorsal motor nucleus of the vagus. The prefrontal cortical areas projecting to the NTS apparently overlap to a large degree with those cortical areas receiving mediodorsal thalamic and dopaminergic input. The retrogradely labeled cortical cells were situated in deep layers of the rat prefrontal cortex. The anterograde tracing studies revealed a prominent topography in the mediolateral termination pattern of forebrain projections to the rostral part of the NTS and to the dorsal pons. The projections to the NTS were generally bilateral, except for projections from the central nucleus of the amygdala and bed nucleus of the stria terminalis which were predominantly ipsilateral. The prefrontal cortical projections to the NTS travel through the cerebral peduncle and pyramidal tract and terminate throughout the rostrocaudal extent of the NTS. Specifically, the prefrontal cortex innervates dorsal portions of the NTS (lateral part of the dorsal division of the medial solitary nucleus, dorsal part of the lateral solitary nucleus and the caudal midline region of the commissural nucleus), areas which receive relatively sparse subcortical projections. These dorsal portions of the NTS receive major primary afferent projections from the vagal and glossopharyngeal nerves. In contrast, the subcortical projections, which travel through the midbrain and pontine tegmentum, terminate most heavily in the ventral portions of the NTS, i.e., the area immediately dorsal and lateral to the dorsal motor nucleus of the vagus. Only the paraventricular hypothalamic nucleus has substantial terminals throughout the dorsal motor nucleus of the vagus. Hypothalamic cell groups innervate the area postrema and, along with the prefrontal cortex, innervate the zone subjacent to the area postrema.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We utilized quantitative autoradiography to localize receptors for thyrotropin-releasing hormone (TRH) and substance P in individual subnuclei of the rat nucleus tractus solitarii (NTS) and the dorsal vagal complex. Within the NTS, TRH receptor concentrations were highest within the gelatinosus and centralis subnuclei and the medial subnucleus rostral to the area postrema, moderate within the intermediate subnucleus and the medial subnucleus adjacent to the area postrema, and low within the ventrolateral and commissural subnuclei and the medial subnucleus caudal to the area postrema. In contrast, substance P receptor concentrations were high throughout the medial subnucleus, moderate in all other subnuclei medial to the tractus solitarius, and relatively low in subnuclei lateral to the tractus solitarius. The dorsal motor nucleus of the vagus contained high concentrations of both TRH and substance P receptors, whereas we observed low TRH and moderate substance P receptors in the area postrema. High TRH and moderate substance P receptors were observed in the adjacent hypoglossal nucleus. In addition, we compared the concentrations of TRH receptors between chloroform-defatted and nondefatted tissue sections, and noted little effect of white matter tritium quench upon the observed TRH receptor concentrations. These results suggest that neurotransmitter receptors within the rat dorsal vagal complex are organized in a manner consistent with previous cytoarchitectural and hodological partitioning of the NTS and that the distribution of an individual neurotransmitter receptor in the NTS may correspond to the role of that transmitter in modulating autonomic function.  相似文献   

12.
The binding sites of nociceptin (also named orphanin FQ), the endogenous ligand of ORL1 (opiate receptor like 1), were localized in rat brain, using an autoradiographic procedure. High levels of binding were observed in the cingulate, retrosplenial, perirhinal, insular and occipital cortex, anterior and posteromedial cortical amygdaloid nuclei, basolateral amygdaloid nucleus, amygdaloid complex, posterior hippocampus, dorsal endopiriform, central medial thalamic, paraventricular, rhomboid thalamic, suprachiasmatic, ventromedial hypothalamic nuclei, mammillary complex, superficial gray layer of the superior colliculus, locus coeruleus, dorsal raphe nucleus. More moderate labelling was observed in the prefrontal, fronto–parietal, temporal, piriform cortex, dentate gyrus, anterior olfactory nucleus, olfactory tubercle, shell of nucleus accumbens, claustrum, lateral septum, laterodorsal thalamic, medial habenular, subthalamic, reuniens thalamic nuclei, subiculum, periaqueductal grey matter and pons. A lower binding site density was observed in the anterior and medial hippocampus, olfactory bulb, caudate putamen, the core of the nucleus accumbens, medial septum, ventrolateral, ventroposterolateral and mediodorsal thalamic nuclei, lateral and medial geniculate nuclei, hypothalamic area, substantia nigra, ventral tegmentum area and interpedoncular nucleus. A moderate and similar labelling was found in the dorsal and ventral horn of the spinal cord. No labelling was apparent in the corpus callosum. Thus, it appears that the ORL1 receptor is particularly abundant in the cerebral cortex, limbic system of the rat brain and some areas involved in pain perception.  相似文献   

13.
The retrograde transport of horseradish peroxidase (HRP) has been used in combination with peroxidase antiperoxidase (PAP) immunocytochemistry in order to investigate serotonin-containing projections to the thalamus of the rat. Sections were histochemically stained to reveal retrogradely transported HRP and then PAP immunostained using a monoclonal anti-serotonin (5-HT) antibody. Following HRP injections into the ventral thalamus, retrogradely labelled cells were observed in a number of sites in the brainstem and including areas known to be rich in 5-HT-containing neurons. At rostral levels of the dorsal raphe nucleus, retrogradely labelled cells were observed both on the midline and in a distinct lateral group extending diffusely into the periaqueductal gray (PAG). In both of these areas many 5-HT-immunoreactive HRP retrogradely labelled neurons were observed. However, except for the most rostral levels of the dorsal raphe nucleus, such double-labelled cells represented only a small proportion of the total population of 5-HT-immunoreactive neurons. In the lateral group, the retrograde labelling was mainly unilateral to the injection site but some contralateral labelling was also seen. At caudal levels of the dorsal raphe nucleus, retrogradely labelled cells were observed predominantly in the lateral group. At the level of the dorsolateral tegmental nucleus, few 5-HT of 5-HT/HRP labelled cells were observed in the lateral group, although HRP retrogradely labelled neurons were present. Double-stained cells were detected also in the medial raphe nucleus (corresponding to the B8 cell group according to the nomenclature of Dahlström and Fuxe13), among the fibres of the medial lemniscus (B9), and in nucleus raphe pontis (B5).  相似文献   

14.
Although the auditory cortex is believed to be the principal efferent target of the medial geniculate body (MG), our recent behavioral studies indicate that in rats the conditioned coupling of emotional responses to an acoustic stimulus is mediated by subcortical projections of the MG. In the present study we have therefore used WGA-HRP as an anterograde and retrograde axonal marker to (1) define the full range of subcortical efferent projections of the MG; (2) identify the cells of origin within the MG of each projection; and (3) determine whether the subregions of the MG that project to subcortical areas receive inputs from acoustic relay nuclei of the mid-brain, particularly the inferior colliculus. The rat MG was first parcelled into three major cytoarchitectural areas: the ventral, medial, and dorsal divisions. The suprageniculate nucleus, located within the body of the MG just dorsal to the medial division, was also identified. Efferent projections of the MG were determined by combined anterograde and retrograde tracing methods. Injections of WGA-HRP in the MG produced anterograde transport to cortex and several subcortical areas, including the posterior caudate-putamen and amygdala, the ventromedial nucleus of the hypothalamus, and the subparafascicular thalamic nucleus. The cells of origin of the subcortical projections were then mapped retrogradely after injections in the anterogradely labeled areas. Injections in the caudate-putamen or amygdala retrogradely labeled the medial division of the MG and the suprageniculate nucleus, as well as several adjacent areas of the posterior thalamus surrounding the MG. In contrast, injections in the ventromedial nucleus of the hypothalamus or the subparafascicular thalamic nucleus only produced labeling in the areas surrounding MG. Afferents to MG from the inferior colliculus were then identified. The central nucleus of the inferior colliculus, the main lemniscal acoustic relay nucleus in the midbrain, was found to project to the ventral and medial divisions of the MG. In contrast, the dorsal cortex and external nucleus of the inferior colliculus project to each division of the MG and to several additional nuclei in adjacent areas of the posterior thalamus. These data demonstrate that the medial division of MG, the suprageniculate nucleus, and immediately adjacent areas of the posterior thalamus provide a direct linkage between auditory neurons in the inferior colliculus and subcortical areas of the forebrain and thereby support the view that thalamic sensory nuclei relay afferent signals to subcortical as well as cortical areas.  相似文献   

15.
Horseradish peroxidase was injected into the cervical vagus nerve or stomach wall of adult squirrel monkeys. Following cervical vagus nerve injections, labelled afferent fibres were present in the tractus solitarius and labelled fibres and terminals were present in medial and lateral parts of the nucleus of the tractus solitarius (NTS) ipsilaterally. Afferent labelling was also seen in the ipsilateral commissural nucleus and in the area postrema. Labelling was present contralaterally in caudal levels of the medial parts of the NTS, in the commissural nucleus, and in the area postrema. Afferent projections to the ipsilateral pars interpolaris of the spinal trigeminal nucleus and to the substantia gelatinosa of the C1 segment of the spinal cord were also labelled. Following injections of HRP into the anterior and posterior stomach walls, the tractus solitarius was labelled bilaterally. Afferent labelling was concentrated bilaterally in the dorsal parts of the medial division of the NTS, i.e., in the subnucleus gelatinosus, and in the commissural nucleus. The regions of NTS immediately adjacent to the tractus solitarius were largely unlabelled. Injections of HRP into the cervical vagus nerve resulted in heavy retrograde labelling of neurons in the ipsilateral dorsal nucleus of the vagus (DMX) and in the nucleus ambiguus (NA). In addition a few neurones were labelled in the intermediate zone between these two nuclei. Retrogradely labelled neurons were also present in the nucleus dorsomedialis in the rostral cervical spinal cord and in the spinal nucleus of the accessory nerve. Injections of HRP into the left cricothyroid muscle in two cases resulted in heavy retrograde labelling of large neurons in the left NA. Following stomach wall injections of HRP retrograde labelling of neurons was seen throughout the rostrocaudal and mediolateral extent of the DMX; there was no apparent topographical organization of the projection. In these cases, a group of labelled smaller neurons was found lying ventrolateral to the main part of the NA through its rostral levels. This study in a primate indicates that a large vagal afferent projection originates in the stomach wall and terminates primarily in the subnucleus gelatinosus of the NTS and in the commissural nucleus with a distribution similar to that described previously in studies in several subprimate mammalian species. The present results and those of other studies suggest some degree of segregation of visceral input within different subnuclei of the NTS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The organization of the visual field representation within the thalamic reticular nucleus (TRN) of the rabbit was studied. Focal injections of horseradish peroxidase (HRP) and/or [3H]proline were made into visuocortical areas V1 and V2 and the dorsal lateral geniculate nucleus (dLGN). The resultant labelling in the thalamus was analysed. A single injection in V1 or V2 results in a single zone of terminal label within the TRN that is restricted to the dorsocaudal part of the sheet-like nucleus. In comparisons of the zones of label following injections at two different cortical sites in V1, a medial to lateral shift in label across the thickness of the TRN sheet is accompanied by a medial to lateral shift in label in the dLGN; a dorsal to ventral shift in label within the plane of the TRN sheet is accompanied by a dorsal to ventral shift in label in the dLGN. Thus, like the dLGN the TRN receives a precise topographic projection from V1. In reconstructions from horizontal sections the zones of label within the TRN resemble 'slabs', which lie within the plane of the nucleus parallel to its borders. Thus, the slabs of visuocortical terminals and reticular dendrites are similarly oriented. As revealed by the orientation of the slabs, the lines of projection representing points in visual space are represented by the oblique rostrocaudal dimension of the TRN. Injections restricted to V1 produce terminal labelling that is confined to the outer two-thirds of the TRN across its thickness, whilst those involving V2 result in terminal labelling within the inner one-third of the nucleus. Thus, the adjacent cortical areas V1 and V2 project in a continuous fashion across the mediolateral dimension of the TRN. The organization of the map within the TRN, which was revealed by visuocortical injections, was confirmed by the pattern of retrograde labelling within the nucleus following geniculate injections of HRP. On the basis of these findings and those in other mammalian species, two major conclusions can be reached that alter our view of the TRN. First, rather than mapping onto the whole nucleus in a continuous fashion, the cortical projection to the TRN has significant discontinuities. Second, rather than integrating efferents from widespread cortical areas, the reticular dendrites are related to focal areas of cortex.  相似文献   

17.
The cortical, thalamic, and amygdaloid connections of the rodent temporal cortices were investigated by using the anterograde transport of iontophoretically injected biocytin. Injections into area Te1 labeled axons and terminals in the ventral regions of the dorsal and ventral subnuclei of the medial geniculate complex, area Te3, the rostrodorsal part of area Te2, and the ventrocaudal caudate putamen. No amygdaloid labeling was observed. Thalamic projections from Te2 targeted the lateral posterior nucleus, the dorsal part of the dorsal subnucleus of the medial geniculate complex, and the peripeduncular nucleus. Corticocortical projections mainly terminated in the dorsal perirhinal cortex, but moderately dense projections were observed in medial and lateral peristriate cortex, and only light projections were observed to Te1 and Te3. Projections to these isocortical regions terminated in layers I and VI. Amygdaloid projections targeted the ventromedial subdivision of the lateral nucleus and the adjacent part of the anterior basolateral nucleus. Area Te3 was observed to project to the ventrolateral parts of the dorsal and ventral subnuclei of the medial geniculate complex, the dorsal perirhinal cortex, rostral Te2, and Te1. In the amygdala, labeled fibers and terminals were concentrated in the dorsolateral subdivision of the lateral nucleus. These data confirm that areas Te1 and Te3 are hierarchically organized cortical areas connected with auditory relay nuclei in the thalamus. Area Te2, in contrast, appears to be weakly connected with Te1 and Te3 but is heavily connected with the peristriate cortex and tectorecipient thalamic nuclei. Te2 appears to be a visually related cortical area. The data also indicate that projections from Te2 and Te3 target different subregions of the lateral nucleus and that Te2, but not Te3, projects to the basolateral nucleus. J. Comp. Neurol. 382:153-175, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Muscarinic cholinergic receptors were localized in human brainstem by quantitative autoradiography, using the radioligand [3H]quinuclidinyl benzilate. Receptor densities were highest in the hypoglossal nucleus. The second highest density was found in the medial region of the nucleus of the solitary tract (NTS). Moderately high numbers of receptors were present in the dorsal motor nucleus of the vagus, the dorsal NTS, subpostremal NTS, lateral NTS and ventral NTS. Intermediate densities were present in the dorsal and medial accessory nuclei of the inferior olive and the spinal trigeminal nucleus pars interpolaris. Low densities were found in the area postrema, principle nucleus of the inferior olive, gracile nucleus, cuneate nucleus and the tractus of the NTS. Muscarinic cholinergic receptors in the dorsal vagal complex are an important component of the neural substrate governing visceral function. These receptors may be the central site of action of anticholinergic medications in suppressing emesis.  相似文献   

19.
Two potent and highly selective nonpeptide antagonists, L-365,031 [1-methyl-3-(4-bromobenzoyl)amino-5-phenyl-3H-1,4 benzodiazepin-2-one] and 3H-L-364,718 [1-methyl-3-(2-indoloyl)amino-5-phenyl-3H-1,4 benzodiazepin-2-one] were used to localize "peripheral" CCK receptors in rat brain. In autoradiographic experiments, L-365,031 displaced 125I-Bolton Hunter CCK-8 binding from the interpeduncular nucleus (IPN) (IC50 = 7 X 10(-8) M), the area postrema (AP), and the nucleus tractus solitarius (NTS) without influencing specific binding to other areas, such as the cerebral cortex or the spinal tract of the trigeminal nerve. Desulfated CCK preferentially inhibited 125I-CCK binding to cerebral cortex (IC50 = 7 X 10(-8) M) rather than IPN (IC50 greater than 1 X 10(-6) M) or AP-NTS. In the medulla the localization of 3H-L-364,718 binding was similar to L-365,031-sensitive 125I-CCK-8 binding and was found in the AP and medial, but not lateral, aspects of the NTS. In membranes prepared from IPN, NTS, and AP, 3H-364,718 binding was of high affinity (Kd = 0.14 nM), saturable (Bmax = 20 fmol/mg protein), and inhibited by compounds previously shown to act at pancreatic CCK receptors. The receptors labeled by 3H-364,718 were modulated by guanyl nucleotide, which reduced agonist affinity 10-fold without affecting antagonist binding. The localization and high density of CCK receptors in AP and NTS suggest that these receptors may play an important role in processing sensory afferent information.  相似文献   

20.
The mRNA expression of three histamine receptors (H1, H2 and H3) and H1 and H3 receptor binding were mapped and quantified in normal human thalamus by in situ hybridization and receptor binding autoradiography, respectively. Immunohistochemistry was applied to study the distribution of histaminergic fibres and terminals in the normal human thalamus. mRNAs for all three histamine receptors were detected mainly in the dorsal thalamus, but the expression intensities were different. Briefly, H1 and H3 receptor mRNAs were relatively enriched in the anterior, medial, and part of the lateral nuclei regions; whereas the expression level was much lower in the ventral and posterior parts of the thalamus, and the reticular nucleus. H2 receptor mRNA displayed in general very low expression intensity with slightly higher expression level in the anterior and lateropolar regions. H1 receptor binding was mainly detected in the mediodorsal, ventroposterolateral nuclei, and the pulvinar. H3 receptor binding was detected mainly in the dorsal thalamus, predominantly the periventricular, mediodorsal, and posterior regions. Very high or high histaminergic fibre densities were observed in the midline nuclear region and other nuclei next to the third ventricle, ventroposterior lateral nucleus and medial geniculate nucleus. In most of the core structures of the thalamus, the fibre density was very low or absent. The results suggest that histamine in human brain regulates tactile and proprioceptory thalamocortical functions through multiple receptors. Also, other, e.g. visual areas and those not making cortical connections expressed histamine receptors and contained histaminergic nerve fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号