首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
内皮依赖性超极化因子在血管舒张中的作用   总被引:2,自引:1,他引:2  
目的研究内皮依赖性超极化因子(EDHF)在血管舒张中的作用及机制。方法测定各种内皮依赖性舒张因子抑制剂、钾通道抑制因子、细胞色素P450单氧化酶抑制剂作用下的血管环张力。结果EDHF的血管舒张作用在大鼠肠系膜微动脉明显大于胸主动脉。一氧化氮(NO)合成受到慢性抑制时,胸主动脉的EDHF作用有增加趋势,在肠系膜微动脉投药后3 d和1周的EDHF作用明显增加。ChTx部分抑制、TBA明显抑制EDHF在肠系膜微动脉的舒张作用。结论EDHF在大鼠肠系膜微动脉的内皮依赖性舒张反应中起主要作用;在NO合成受抑制时其作用明显增加;其作用介导于KCa通道。  相似文献   

2.
赵慧颖  刘全  迟宝荣 《药学学报》2005,40(6):491-495
目的研究内皮依赖性超极化因子(EDHF)在剪切应力引起的内皮依赖性舒张反应中的作用及机制。方法测定不同流量下的血管内径及各种内皮依赖性舒张因子抑制剂、钾通道抑制剂、细胞色素P450单氧化酶抑制剂作用下的血管内径。结果剪切应力在大鼠肠系膜微动脉引起的舒张反应是内皮依赖性的,且在大的肠系膜动脉明显大于小阻力型肠系膜动脉。EDHF在上述两种动脉的内皮依赖性舒张反应中作用均明显大于NO,起主要作用。剪切应力引起的内皮依赖性舒张反应不受SKF525A的抑制,ChTx加apamin明显抑制了此舒张反应,TBA则几乎完全抑制此舒张反应。结论在剪切应力引起的内皮依赖性舒张反应中EDHF起主要作用,钾通道特别是KCa通道的激活为主要机制。  相似文献   

3.
1. The role of the balance between nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), synthesized by cytochrome epoxygenase and acting through calcium-activated potassium channels, in the regulation of basal diameter and endothelium-dependent flow-mediated dilatation of conduit arteries has been poorly assessed in humans. 2. Radial artery diameter and flow (echotracking coupled to Doppler) were measured in healthy volunteers under basal conditions and during flow-mediated dilatation induced by hand skin heating, in the presence of saline and inhibitors of NO-synthase, N(G)-monomethyl-L-arginine (L-NMMA), calcium-activated potassium channels, tetraethylammonium (TEA) and cytochrome epoxygenases, fluconazole, infused alone and in combination. Mean wall shear stress, the flow-mediated dilatation stimulus, was calculated and taken as cofactor into statistical analysis. 3. Under basal conditions, the radial artery diameter was not affected by L-NMMA and fluconazole infused alone but was decreased by TEA, the combinations of L-NMMA + fluconazole and, to a greater extent, L-NMMA + TEA. During heating, radial artery diameter increased with temperature in all cases. This increase in diameter, compared with saline, was reduced by L-NMMA, TEA, fluconazole and to a greater extent, by L-NMMA + TEA and L-NMMA + fluconazole. 4. These data show that EDHF is involved in balance with NO in the regulation of basal diameter and endothelium-dependent dilatation of human peripheral conduit arteries. The alteration of this balance could play a major role in the physiopathology of the endothelial dysfunction, in particular during essential hypertension.  相似文献   

4.
  1. In the presence of NG-nitro-L-arginine (L-NOARG, 0.3 mM) and indomethacin (10 μM), the relaxations induced by acetylcholine and the calcium (Ca) ionophore A23187 are considered to be mediated by endothelium-derived hyperpolarizing factor (EDHF) in the guinea-pig basilar artery.
  2. Inhibitors of adenosine 5′-triphosphate (ATP)-sensitive potassium (K)-channels (KATP; glibenclamide, 10 μM), voltage-sensitive K-channels (KV; dendrotoxin-I, 0.1 μM or 4-aminopyridine, 1 mM), small (SKCa; apamin, 0.1 μM) and large (BKCa; iberiotoxin, 0.1 μM) conductance Ca-sensitive K-channels did not affect the L-NOARG/indomethacin-resistant relaxation induced by acetylcholine.
  3. Synthetic charybdotoxin (0.1 μM), an inhibitor of BKCa and KV, caused a rightward shift of the concentration-response curve for acetylcholine and reduced the maximal relaxation in the presence of L-NOARG and indomethacin, whereas the relaxation induced by A23187 was not significantly inhibited.
  4. A combination of charybdotoxin (0.1 μM) and apamin (0.1 μM) abolished the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187. However, the acetylcholine-induced relaxation was not affected by a combination of iberiotoxin (0.1 μM) and apamin (0.1 μM).
  5. Ciclazindol (10 μM), an inhibitor of KV in rat portal vein smooth muscle, inhibited the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187, and the relaxations were abolished when ciclazindol (10 μM) was combined with apamin (0.1 μM).
  6. Human pial arteries from two out of four patients displayed an L-NOARG/indomethacin-resistant relaxation in response to substance P. This relaxation was abolished in both cases by pretreatment with the combination of charybdotoxin (0.1 μM) and apamin (0.1 μM), whereas each toxin had little effect alone.
  7. The results suggest that KV, but not KATP and BKCa, is involved in the EDHF-mediated relaxation in the guinea-pig basilar artery. The synergistic action of apamin and charybdotoxin (or ciclazindol) could indicate that both KV and SKCa are activated by EDHF. However, a single type of K-channel, which may be structurally related to KV and allosterically regulated by apamin, could also be the target for EDHF.
  相似文献   

5.
Endothelial cells release endothelium-derived hyperpolarizing factor (EDHF), as well as nitric oxide (NO). It has recently been suggested that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) improve NO-mediated endothelial function, partially independently of their cholesterol-lowering effects. It is, however, unclear whether statins improve EDHF-mediated responses. Eight-month-old stroke-prone spontaneously hypertensive rats (SHRSP) were treated with fluvastatin (10 mg/kg per day) for 1 month. Age-matched, normotensive Wistar Kyoto (WKY) rats served as controls. Both EDHF- and NO-mediated relaxations were impaired in SHRSP compared with WKY rats. Fluvastatin treatment did not affect blood pressure and serum total cholesterol. The acetylcholine (ACh)-induced, EDHF-mediated hyperpolarization in mesenteric arteries did not significantly differ between fluvastatin-treated SHRSP and untreated SHRSP and the responses in both groups were significantly smaller compared with those of WKY rats. Endothelium-derived hyperpolarizing factor-mediated relaxations, as assessed by the relaxation to ACh in mesenteric arteries contracted with noradrenaline in the presence of N(G)-nitro-l-arginine and indomethacin, were virtually absent and similar in both SHRSP groups. In contrast, NO-mediated relaxation, as assessed by the relaxation in response to ACh in rings contracted with 77 mmol/L KCl, was improved in fluvastatin-treated SHRSP compared with untreated SHRSP (maximum relaxation in control and fluvastatin groups 42.0 +/- 5.2 and 61.2 +/- 3.8%, respectively; P < 0.05). Hyperpolarization and relaxation in response to levcromakalim, an ATP-sensitive K(+) channel opener, were similar between the two SHRSP groups. These findings suggest that fluvastatin improves NO-mediated relaxation, but not EDHF-mediated hyperpolarization and relaxation, in SHRSP. Thus, the beneficial effects of the statin on endothelial function may be mainly ascribed to an improvement in the NO pathway, but not EDHF.  相似文献   

6.
7.
1. The effects of chronic lithium administration on the relaxant responses of rat thoracic aortic rings in the presence of indomethacin (a cyclo-oxygenase inhibitor) and/or NG-nitro-L-arginine (L-NOARG; a nitric oxide synthase inhibitor) to acetylcholine (ACh) or sodium nitroprusside were investigated in the present study. 2. Acetylcholine produced a concentration-dependent relaxation in vessels precontracted by phenylephrine (PE), while in lithium-treated rats the maximal relaxation was significantly increased. 3. Indomethacin (20 mumol/L) significantly potentiated the ACh-induced relaxation in lithium-treated and control rats. 4. NG-Nitro-L-arginine (1 mumol/L) decreased the ACh-induced relaxation in both control and lithium-treated rats. In contrast, indomethacin (20 mumol/L) reversed the inhibitory effect of L-NOARG. 5. Sodium nitroprusside produced similar concentration-dependent relaxations of vessels from both control and lithium-treated rats, which was not affected by indomethacin. In endothelium-denuded rings, indomethacin (20 mumol/L) caused a rightward shift in the concentration-contraction curve to PE. 6. These data support evidence for a possible increase in endothelium-dependent relaxation induced by ACh during long-term administration of lithium in rat aortic rings.  相似文献   

8.
The present study was undertaken to investigate vascular function in hypercholesterolemic rabbits and also to characterize the effects of pioglitazone on it. Rabbits were fed normal, 0.5% cholesterol chow, or 0.5% cholesterol chow plus 300 ppm pioglitazone for 5 or 10 weeks. The tension of isolated renal artery rings was measured isometrically, and morphometric analysis was performed. The cholesterol chow diet administered for 5 weeks did not affect acetylcholine-induced relaxation in the renal artery but that for 10 weeks decreased it. The N(G)-nitro-L-arginine (L-NOARG)- and indomethacin-resistant endothelium-dependent relaxation induced by acetylcholine in the renal artery was enhanced in rabbits receiving the cholesterol chow for 5 or 10 weeks, as compared to rabbits receiving the control diet, and the percentage of plaque area formation was increased in the renal artery by the cholesterol chow for 10 weeks. Pioglitazone normalized them without lowering serum lipid levels. The resistant parts of acetylcholine-induced relaxation was significantly inhibited when the renal artery was treated with charybdotoxin, an inhibitor of large and intermediate conductance Ca(2+)-activated K(+) channels, or N,N-diethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF 525a), a cytochrome P-450 monooxygenase inhibitor. Results indicate that hypercholesterolemia enhances endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in the rabbit renal artery and pioglitazon normalizes it without lowering serum lipid levels, and suggest that the maintenance of endothelial function by pioglitazon is related to the mechanisms for its anti-atheromatous activity.  相似文献   

9.
目的探讨依达拉奉(edaravone,Eda)对溶血磷脂酰胆碱(lysophosphatidylcholine,LPC)所致家兔血管内皮损伤的影响及机制。方法家兔胸主动脉环分别与LPC(5 mg.L-1)和Eda(25~100μmol.L-1)单独孵育或共孵育,分别检测乙酰胆碱诱导的内皮依赖性舒张反应和硝普钠诱导的非内皮依赖性舒张反应,血管组织中一氧化氮(nitric oxide,NO)和丙二醛(malonaldehyde,MDA)含量以及超氧化物歧化酶(superoxide dismutase,SOD)的活性。结果 5 mg.L-1LPC孵育血管环30 min,明显抑制了乙酰胆碱诱导的内皮依赖性舒张反应,但没有影响硝普钠诱导的非内皮依赖性舒张反应,降低了血管组织中NO含量和SOD活性而增加了MDA含量。25~100μmol.L-1Eda分别孵育血管环15min,再与5 mg.L-1LPC共同孵育30 min,明显改善LPC所致的血管舒张功能的损害,升高了血管组织中NO含量和SOD活性而降低了MDA含量。结论 Eda对LPC所致的血管内皮依赖性舒张功能的损伤具有明显的保护作用,该效应可能与其抗氧化作用有关。  相似文献   

10.

Background and purpose:

Diabetes is a risk factor for the development of coronary artery disease but it is not known whether the functions of endothelium-derived nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in coronary arteries are altered in the early stage of diabetes. Such alterations and the effects of pravastatin were examined in left anterior descending coronary arteries (LAD) from Otsuka Long-Evans Tokushima Fatty (OLETF) rats (type 2 diabetes model) at the early hyperglycaemic stage [vs. non-diabetic Long-Evans Tokushima Otsuka (LETO) rats].

Experimental approach:

Isometric tension, membrane potential and superoxide production were measured, as were protein expression of NAD(P)H oxidase components and endothelial NO synthase (eNOS).

Key results:

Superoxide production and the protein expressions of both the nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] oxidase components and eNOS were increased in OLETF rats. These changes were normalized by pravastatin administration. Not only acetylcholine (ACh)-induced endothelial NO production but also functions of endothelium-derived NO [from (i) the absolute tension induced by epithio-thromboxane A2 (STA2) or high K+; (ii) enhancement of the STA2-contraction by a nitric oxide synthase (NOS) inhibitor; and (iii) the ACh-induced endothelium-dependent relaxation of high K+-induced contraction] or EDHF [from (iv) ACh-induced endothelium-dependent smooth muscle cell hyperpolarization and relaxation in the presence of a NOS inhibitor] were similar between LETO and OLETF rats [whether or not the latter were pravastatin-treated or -untreated].

Conclusions and implications:

Under conditions of increased vascular superoxide production, endothelial function is retained in LAD in OLETF rats at the early hyperglycaemic stage, partly due to enhanced endothelial NOS protein expression. Inhibition of superoxide production may contribute to the beneficial vascular effects of pravastatin.  相似文献   

11.
  1. Some cardiovascular disturbances which occur in diabetics are a consequence of alterations in vascular contractility as well as in endothelium-dependent relaxation.
  2. Calcium dobesilate (DOBE) is a drug used in diabetic retinopathy and its mechanism of action is not yet understood.
  3. The aim of this study was to investigate the effects of DOBE on synthesis and release of endothelium-dependent relaxing factor (EDRF) and endothelium-dependent hyperpolarizing factor (EDHF) in rabbit isolated aorta.
  4. Endothelium-dependent relaxation induced by acetylcholine (ACh) (10−8–10−5M) increased in the presence of DOBE 10−5M only when vascular endothelium was kept intact.
  5. NG-nitro-L-arginine methyl ester (L-NAME; 10−8–10−4M progressively decreased the enhancing effect of DOBE on endothelium-dependent relaxation whereas it was progressively increased by L-Arg.
  6. DOBE 10−5M increased in a non-significant manner endothelium-dependent relaxation induced by ACh when the arteries were incubated with both L-NAME 10−4M and indomethacin 10−6M.
  7. DOBE (10−6M and 10−5M) was able to scavenge superoxide anion radicals generated by the hypoxanthine/xanthine oxidase reaction.
  8. These results provide evidence that DOBE is able to affect the vascular disorders associated with diabetes mellitus since it enhances the synthesis of endothelium-dependent relaxing factors.
  相似文献   

12.
  1. The effects of the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine (L-NOARG), the NO scavenger, oxyhaemoglobin (HbO) and high extracellular K+ upon endothelium-dependent relaxation to bradykinin were investigated in human isolated small coronary arteries.
  2. Endothelium-dependent relaxations to bradykinin were compared in vessels contracted to ∼50% of their maximum contraction to 124 mM KCl Krebs solution, regardless of treatments, with the thromboxane A2 mimetic, U46619 and acetylcholine. All relaxations were expressed as percentage reversal of the initial level of active force.
  3. L-NOARG (100 μM) caused a small but significant, 12% (P<0.01), decrease in the maximum relaxation (Rmax: 91.5±5.4%) to bradykinin but did not significantly affect the sensitivity (pEC50: 8.08±0.17). Increasing the concentration of L-NOARG to 300 μM had no further effect on the pEC50 or Rmax to bradykinin. HbO (20 μM) and a combination of HbO (20 μM) and L-NOARG (100 μM) reduced Rmax to bradykinin by 58% (P<0.05) and 54% (P<0.05), respectively. HbO (20 μM) and L-NOARG (100 μM, combined but not HbO (20 μM) alone, caused a significant 11 fold (P<0.05) decrease in sensitivitiy to bradykinin. HbO (20 μM) decreased the sensitivity to the endothelium-independent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), approximately 17 fold (P<0.05).
  4. Raising the extracellular concentration of K+ isotonically to 30 mM, reduced the Rmax to bradykinin from 96.6±3.1% to 43.9±10.1% (P<0.01) with no significant change in sensitivity. A combination of HbO, L-NOARG and high K+ (30 mM) abolished the response to bradykinin. High K+ did not change either the sensitivity or maximum relaxation to SNAP.
  5. In conclusion, L-NOARG does not completely inhibit endothelial cell NO synthesis in human isolated small coronary arteries. By comparison, HbO appeared to block all the effects of NO in this tissue and revealed that most of the relaxation to bradykinin was due to NO. The non-NO -dependent relaxation to bradykinin in the human isolated small coronary arteries appeared to be mediated by a K+-sensitive vasodilator mechanism, possibly endothelium-derived hyperpolarizing factor (EDHF).
  相似文献   

13.
BACKGROUND AND PURPOSE: We previously reported that ascorbate inhibits flow- and agonist-induced, EDHF-mediated vasodilatation in the bovine ciliary circulation. This study examined whether ascorbate had similar actions in the rat mesenteric vasculature. EXPERIMENTAL APPROACH: The effects of ascorbate were examined both in rat second order mesenteric arterial rings suspended in a static wire myograph and the rat mesentery perfused at different rates of flow. KEY RESULTS: Ascorbate (50 microM) had no effect on U46619-induced tone or acetylcholine-induced, EDHF-mediated vasodilatation in either rings of mesenteric artery or the perfused mesentery at rates of flow below 10 ml min(-1). At higher rates of flow, ascorbate produced two distinct effects in the rat mesentery: a rapid and maintained enhancement of vasoconstrictor tone and a slow (max at 3 h) inhibition of acetylcholine-induced, EDHF-mediated vasodilatation. The enhancement of vasoconstrictor tone appeared to be due to inhibition of flow-induced EDHF-like activity, since it was endothelium-dependent, but could be elicited during blockade of nitric oxide synthase and cyclooxygenase. Despite this, the classical inhibitors of EDHF, apamin and charybdotoxin, failed to affect the ascorbate-induced enhancement of tone, although they inhibited acetylcholine-induced vasodilatation. CONCLUSIONS AND IMPLICATIONS: Ascorbate inhibits both flow- and agonist-induced EDHF in the rat mesentery. The strikingly different timecourses of these two effects, together with their differential sensitivity to apamin and charybdotoxin, suggest that the flow- and agonist-induced EDHFs in the rat mesenteric vasculature may either be different entities or operate by different mechanisms.  相似文献   

14.
Our previous studies have proven that crocetin (CCT), extracted from Gardenia jasminoides Ellis, possesses the anti-atherosclerotic effect. Because endothelial dysfunction strongly contributes to the initiation and progression of atherosclerosis, the present study aims to investigate whether CCT is capable of improving this dysfunction and to explore the possible mechanisms. Endothelial dysfunction was induced by in vivo feeding high cholesterol diet (HCD) to rabbit and by in vitro treating bovine aortic endothelial cells (BAECs) with oxidized LDL (oxLDL). Endothelium-dependent relaxation (EDR) evoked by acetylcholine (Ach) and endothelium-independent relaxation (RIDR) mediated by sodium nitroprusside (SNP) of thoracic aorta isolated from rabbit were measured. The results indicated that the EDR in HCD alone treated rabbits was seriously impaired and the maximal relaxation induced by Ach (10(-5.5) M) was only 54% that in control rabbit fed with regular diet. Oral complementation with CCT (15, 30 mg/kg) dose-dependently improved this impairment and restored the maximal relaxation to 68% and 80% that in control group, respectively. However, the EIDR maintained comparable in all groups. Complementation with CCT (15, 30 mg/kg) simultaneously increased serum level of nitric oxide (NO), upregulated vessel activity and mRNA expression of endothelial NO synthase (eNOS) as well as vessel cyclic GMP (cGMP) content compared with those in rabbit treated with HCD alone. Inducible NOS (iNOS) activity remained unchangeable in all groups. In BAECs, oxLDL treatment decreased NO production, downregulated both activity and mRNA expression of eNOS. While those decrease or downregulation were inhibited by co-treatment with CCT (0.1, 1, 10 microM) in a dose-dependent manner. These findings suggested that CCT significantly restored the EDR of thoracic aorta in hypercholesterolemic rabbit, which might be explained by its action to increase the vessel eNOS activity, leading to elevation of NO production.  相似文献   

15.
Siberian ginseng (SG) has been widely and historically consumed as a health food product for the improvement of self well-being, but whether vascular relaxation may contribute to such a therapeutic health effect has not been studied. We therefore investigated the vasorelaxant effect of the aqueous extract of the roots of SG (Eleutherococcus senticosus Maxim) using several in vitro vascular rings prepared from dog carotid artery, rat aorta and rat mesenteric artery. SG extract (0.04–0.8 mg/ml) caused concentration-dependent relaxation in dog carotid arterial rings pre-contracted with 100 M phenylephrine (PE), and the relaxation was primarily endothelium-dependent. Treatment with 100 M L-NOARG (a nitric oxide synthase inhibitor) either prevented or totally reverted SG-induced relaxation, suggesting that the endothelium-dependent relaxation was mediated by NO. Similar endothelium-dependent vascular relaxant responses were also obtained with rat aortic and mesenteric arterial rings, except that it occurred over a relatively higher concentration range of SG (0.5–2.0 mg/ml). When tested in the presence of 300 M L-NAME, the vasorelaxant effect of SG was inhibited totally in rat aorta but only partially in rat mesenteric artery. The relaxation to SG that was insensitive to L-NAME in rat mesenteric arterial rings was eliminated when the rings (both proximal and distal ends) were pre-treated with a combination of 300 M L-NAME and 15 mM KCl indicating the involvement of endothelium-derived hyperpolarizing factor (EDHF). This vasorelaxant response of the SG extract was inhibited partially by atropine (1 M), completely by TEA (5 mM), but not by indomethacin (1 M) or propranolol (10 M). SG up to 2 mg/ml had no effect on KCl-induced contraction in any of the vascular rings studied. When compared with carbachol-induced (CCh) relaxation, SG resembles CCh in that the sensitivity to L-NAME inhibition is dependent on vascular size, i.e. aorta >proximal end of mesenteric artery >distal end of mesenteric artery. However, SG exhibited different potencies to relaxation while CCh showed similar potency (EC50 of about 0.2 M) in all three vascular segments. In conclusion, we have demonstrated that the vascular effect of SG is endothelium-dependent and mediated by NO and/or EDHF depending on the vessel size. Other vasorelaxation pathways, such as inhibition of K+-channels and activation of muscarinic receptors, may also be involved.  相似文献   

16.
1. In the present study, endothelium-derived relaxing factor (EDRF/nitric oxide (NO)), conversion of big endothelin (ET)-1 to endothelin-1 (ET-1) and the role of reactive oxygen species were investigated in kidneys isolated from glycerol (GLY)-pretreated rabbits. 2. Acetylcholine (ACh)-induced vasodilation that is due to the release of EDRF/NO is significantly decreased, whereas big ET-1-induced vasoconstriction was increased in kidneys isolated from GLY-pretreated rabbits. 3. Pretreatment of rabbits with the xanthine oxidase inhibitor allopurinol and the NO precursor L-arginine reversed the inhibition of ACh-induced vasodilation due to GLY and protects the kidney vasculature. 4. Big ET-1, but not ET-1, responses were found to be significantly increased in kidneys isolated from GLY-pretreated rabbits. This increase is attributed to the higher conversion rate of big ET-1 to ET-1 because the ET-converting enzyme (ECE) inhibitor phosphoramidon, at a concentration of 10(-6) mol/L, causes an inhibition in the response to big ET-1 by 52.6% in normal kidneys, whereas this inhibition with the same concentration of phosphoramidon was found to be significantly decreased in kidneys isolated from GLY-pretreated rabbits. 5. The non-selective NO synthase inhibitor N(G)-nitro-L- arginine methyl ester (L-NAME) caused a significant potentiation in the vasoconstrictor response to ET-1 in normal isolated perfused rabbit kidneys. However, L-NAME did not alter the responses to ET-1 in GLY-pretreated kidneys. 6. These results indicate that accumulation of reactive oxygen species causes an inhibition in NO bioavailability. Increased conversion of big ET-1 to ET-1 may also contribute to the mechanism of vascular damage due to GLY.  相似文献   

17.
  1. We have used the isolated, buffer-perfused, superior mesenteric arterial bed of male and female rats to assess the relative contributions of nitric oxide (NO) and the endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxations to carbachol.
  2. Carbachol caused dose-related relaxations of methoxamine-induced tone in mesenteric vascular beds from male rats described by an ED50(M) of 0.43±0.15 nmol and a maximum relaxation (Rmax(M) of 89.6±1.2% (n=28) which were not significantly different from those observed in mesenteries from female rats (ED50(F)=0.72±0.19 nmol and Rmax(F)=90.7±0.9%; n=22).
  3. In the males, the addition of 100 μM NG-nitro-L-arginine methyl ester (L-NAME) caused the dose-response curve to carbachol to be significantly (P<0.001) shifted to the right 15 fold (ED50(M)=6.45±3.53 nmol) and significantly (P<0.01) reduced Rmax(M) (79.7±2.8%, n=13). By contrast, L-NAME had no effect on vasorelaxation to carbachol in mesenteries from female rats (ED50(F)=0.89±0.19 nmol, Rmax(F)=86.9±2.3%, n=9).
  4. Raising tone with 60 mM KCl significantly reduced the maximum relaxation to carbachol in mesenteries from male rats 2 fold (Rmax(M)=40.3±9.2%, n=4; P<0.001) and female rats by 1.5 fold (Rmax(F)=55.3±3.3%, n=6; P<0.001), compared with methoxamine-induced tone. The potency of carbachol was also significantly reduced 1.2 fold in preparations from males (ED50(M)=0.87±0.26 nmol; P<0.01) but not the females (ED50(F)=4.04±1.46 nmol). In the presence of both 60 mM KCl and L-NAME, the vasorelaxation to carbachol was completely abolished in mesenteries from both groups.
  5. The cannabinoid receptor antagonist SR141716A (1 μM), which is also a putative EDHF antagonist, had no significant effect on the responses to carbachol in mesenteries from males or females (ED50(M)=1.41±0.74 nmol, Rmax(M)=89.4±2.5%, n=7; ED50(F)=2.17±0.95 nmol, Rmax(F)=89.9±1.8%, n=9). In mesenteries from male rats, in the presence of 100 μM L-NAME, SR141716A significantly (P<0.05) shifted the dose-response curve to carbachol 8 fold further to the right than that seen in the presence of L-NAME alone (ED50(M)=53.8±36.8 nmol) without affecting Rmax(M) (72.4±4.8%, n=10). In mesenteries from female rats, the combined presence of L-NAME and SR141716A, significantly (P<0.01) shifted the dose-response curve to carbachol 7.5 fold, (ED50(F)=6.66±2.46 nmol), as compared to L-NAME alone and significantly (P<0.001) decreased Rmax(F) (70.1±5.5%, n=8).
  6. Vasorelaxations to the nitric oxide donor sodium nitroprusside (SNP), to the endogenous cannabinoid, anandamide (a putative EDHF) and to the ATP-sensitive potassium channel activator, levcromakalim, did not differ significantly between male and female mesenteric vascular beds.
  7. The continuous presence of sodium nitroprusside (SNP; 20–60 nM) had no effect on vasorelaxation to carbachol in mesenteries from either males or females. In the presence of L-NAME, SNP significantly (P<0.05) reduced the potency of carbachol 6 fold, without affecting the maximal relaxation in mesenteries from male rats (ED50(M)=40.9±19.6 nmol, Rmax(M)=79.4±2.5%, n=11). Similarly in mesenteries from female rats, the ED50(F) was also significantly (P<0.01) increased 7 fold (6.24±2.02 nmol), while the Rmax(F) was unaffected (81.9±11.0%; n=4).
  8. The results of the present investigation demonstrate that the relative contributions of agonist-stimulated NO and EDHF to endothelium-dependent relaxations in the rat isolated mesenteric arterial bed, differ between males and females. Specifically, although both NO and EDHF appear to contribute towards endothelium-dependent relaxations in males and females, blockade of NO synthesis alone has no effect in the female. This suggests that EDHF is functionally more important in females; one possible explanation for this is that in the absence of NO, the recently identified ability of EDHF to compensate for the loss of NO, is functionally more important in females than males.
  相似文献   

18.
  1. The characteristic features of the endothelium-mediated regulation of the electrical and mechanical activity of the smooth muscle cells of cerebral arteries were studied by measuring membrane potential and isometric force in endothelium-intact and -denuded strips taken from the rabbit middle cerebral artery (MCA).
  2. In endothelium-intact strips, histamine (His, 3–10 μM) and high K+ (20–80 mM) concentration-dependently produced a transient contraction followed by a sustained contraction. Noradrenaline (10 μM), 5-hydroxytryptamine (10 μM) and 9,11-epithio-11, 12-methano-thromboxane A2 (10 nM) each produced only a small contraction (less than 5% of the maximum K+-induced contraction).
  3. NG-nitro-L-arginine (L-NOARG, 100 μM), but not indomethacin (10 μM), greatly enhanced the phasic and the tonic contractions induced by His (1–10 μM) in endothelium-intact, but not in endothelium-denuded strips, suggesting that spontaneous or basal release of nitric oxide (NO) from endothelial cells potently attenuates the His-induced contractions. Acetylcholine (ACh, 0.3–3 μM) caused concentration-dependent relaxation (maximum relaxation by 89.7±7.5%, n=4, P<0.05) when applied to endothelium-intact strips precontracted with His. L-NOARG had little effect on this ACh-induced relaxation (n=4; P<0.05). Apamin (0.1 μM), but not glibenclamide (3 μM), abolished the relaxation induced by ACh (0.3–3 μM) in L-NOARG-treated strips (n=4, P<0.05).
  4. In endothelium-intact tissues, His (3 μM) depolarized the smooth muscle membrane potential (by 4.4±1.8 mV, n=12, P<0.05) whereas ACh (3 μM) caused membrane hyperpolarization (−20.9±3.0 mV, n=25, P<0.05). The ACh-induced membrane hypepolarization persisted after application of L-NOARG (−23.5±5.9 mV, n=8, P<0.05) or glibenclamide (−20.6±5.4 mV, n=5, P<0.05) but was greatly diminished by apamin (reduced to −5.8±3.2 mV, n=3, P<0.05).
  5. Sodium nitroprusside (0.1–10 μM) did not hyperpolarize the smooth muscle cell membrane potential (0.2±0.3 mV, n=4, P>0.05) but it greatly attenuated the His-induced contraction in endothelium-denuded strips (n=4, P<0.05).
  6. These results suggest that, under the present experimental conditions: (i) spontaneous or basal release of NO from endothelial cells exerts a significant negative effect on agonist-induced contractions in rabbit MCA, and (ii) ACh primarily activates the release of endothelium-derived hyperpolarizing factor (EDHF) in rabbit MCA.
  相似文献   

19.
目的:探讨大鼠大脑中动脉(middle cerebral artery,MCA)内皮源性超极化因子(endo-thelium-derived hyperpolarizing factor,EDHF)介导的平滑肌细胞(VSMC)静息膜电位超极化作用与硫化氢(hydrogen sulfide,H2S)的关系。方法:采用大鼠离体MCA的VSMC静息膜电位记录实验,观察乙酰胆碱(ACh)、硫氢化钠(NaHS,H2S外源性供体)等的超极化作用。结果:ACh可使大鼠MCA的VSMC发生浓度依赖性超极化,用NO合酶抑制剂(-LNAME,3×10-5mol/L)和前列环素(PGI2)合成酶抑制剂(Indo,10-5mol/L)预处理后,ACh对大鼠MCA的VSMC仍有明显的超极化,即非NO、非PG2介导的超极化。钙激活钾通道的阻断剂四乙胺(TEA,1×10-3mol/L)或H2S合成酶(胱硫醚-γ-裂解酶,CSE)的抑制剂DL-炔丙基甘氨酸(PPG,10-4mol/L)均可明显取消这种非NO、非PG2介导的超极化。H2S供体NaHS[(10-5~10-2.5)mol/L]对大鼠MCA的VSMC产生浓度依赖性的超极化作用,而1×10-3mol/L TEA可以抑制其超极化作用。结论:大鼠MCA非NO、非PGI2介导的VSMC超极化作用,即EDHF反应可能是H2S介导的。  相似文献   

20.
目的研究他汀类药物治疗慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)合并肺动脉高压(pulmonary hypertension,PH)的疗效和机制。方法选择2007年1月至2010年5月在我院诊治的COPD合并PH 100例,随机分为治疗组和对照组各50例。对照组给予常规治疗;治疗组在常规治疗基础上加用阿托伐他汀,首剂10~20 mg/d,若无不良反应,则维持剂量10 mg/d,疗程6个月,观察一氧化氮(nitric oxide,NO)、内皮素(endotheli,ET)、肺动脉收缩压(pulmonary artery systolicpressure,PAP)、6分钟步行距离(6-minute walking distance6,MWD)的变化。结果治疗后,两组6MWD、NO较治疗前升高,PAP、ET降低,差异有统计学意义(P〈0.01),但治疗组较对照组更明显,差异有统计学意义(P〈0.01)。Spearman相关分析:ET与PAP呈正相关(r=0.452),NO数值与PAP呈负相关(r=-0.557)。结论阿托伐他汀能降低COPD合并PH患者肺动脉压,改善患者心肺功能及运动耐量。其机制可能与阿托伐他汀能增加NO含量,降低ET的分泌,改善内皮功能有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号