首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu X  Meng W  Dong Z  Pan W  Sun C  Chen L 《Virus research》2011,155(1):156-162
Recent outbreaks of highly pathogenic avian influenza (HPAI) H5N1 viruses in poultry and their subsequent transmission to humans have highlighted an urgent need to develop preventive vaccines in the event of a pandemic. In this paper we constructed recombinant adenovirus (rAd)-vectored influenza vaccines expressing different forms of H5 hemagglutinin (HA) from the A/Vietnam/1194/04 (VN/1194/04) virus, a wild-type HA, a sequence codon-optimized HA and a transmembrane (TM) domain-truncated HA. Compared to the rAd vectors expressing the wild-type HA (rAd-04wtHA) and the TM-truncated form of HA (rAd-04optHA-dTM), the rAd vectored vaccine with the sequence codon-optimized HA (rAd-04optHA) showed a tendency to induce much higher hemagglutinin inhibition (HI) antibody titers in mice immunized with a prime-boost vaccine. Furthermore, administration of the rAd-04optHA vaccine to mice could elicit cross-reactive immune responses against the antigenically distinct HK/482/97 virus. Additionally, we constructed another vector containing the codon-optimized HA of the A/Hong Kong/482/97 (HK/482/97) virus. Administration of a bivalent immunization formulation including the rAd-04optHA and rAd-97optHA vaccines to mice induced a stronger immune response against HK/482/97 virus than the monovalent formulation. Taken together, these findings may have some implications for the development of rAd-vectored vaccines in the event of the pandemic spread of HPAI.  相似文献   

2.
The immune system responds to influenza infection by producing neutralizing antibodies to the viral surface protein, hemagglutinin (HA), which regularly changes its antigenic structure. Antibodies that target the highly conserved stem region of HA neutralize diverse influenza viruses and can be elicited through vaccination in animals and humans. Efforts to develop universal influenza vaccines have focused on strategies to elicit such antibodies; however, the concern has been raised that previous influenza immunity may abrogate the induction of such broadly protective antibodies. We show here that prime-boost immunization can induce broadly neutralizing antibody responses in influenza-immune mice and ferrets that were previously infected or vaccinated. HA stem-directed antibodies were elicited in mice primed with a DNA vaccine and boosted with inactivated vaccine from H1N1 A/New Caledonia/20/1999 (1999 NC) HA regardless of preexposure. Similarly, gene-based vaccination with replication-defective adenovirus 28 (rAd28) and 5 (rAd5) vectors encoding 1999 NC HA elicited stem-directed neutralizing antibodies and conferred protection against unmatched 1934 and 2007 H1N1 virus challenge in influenza-immune ferrets. Indeed, previous exposure to certain strains could enhance immunogenicity: The strongest HA stem-directed immune response was observed in ferrets previously infected with a divergent 1934 H1N1 virus. These findings suggest that broadly neutralizing antibodies against the conserved stem region of HA can be elicited through vaccination despite previous influenza exposure, which supports the feasibility of developing stem-directed universal influenza vaccines for humans.  相似文献   

3.
We have prepared a virus-like particle (VLP) vaccine bearing the surface glycoproteins HA and NA of the 1918 influenza A virus by infecting Sf9 cells with a quadruple recombinant baculovirus that expresses the four influenza proteins (HA, NA, M1, and M2) required for the assembly and budding of the VLPs. The presence of HA and M1 in the purified VLPs was confirmed by Western blot, and that of NA by a neuraminidase enzymatic assay. For in vivo studies, the 1918 VLP vaccine was formulated with or without an oligonucleotide containing two CpG motifs and administered in two doses 2 wk apart via the intranasal route. The antibody titers in mice immunized with VLP vaccines were higher than in mice vaccinated with an inactivated swine virus (H1N1) control, when CHO cells expressing 1918 HA were used as antigen. The opposite result was obtained when disrupted swine virus was the antigen for the ELISA test. Vaccine efficacy was evaluated by challenging immunized mice with the 1918 antigenically related influenza virus A/swine/Iowa/15/30 (H1N1) and measuring viral titers in the upper and lower respiratory tract. Mice immunized with VLP vaccine plus CpG demonstrated significantly lower viral titers in the nose and lungs than did the control on days 2 and 4 postchallenge and completely cleared the virus by day 6. Furthermore, they did not show symptoms of disease although there was a minor decrease in body weight. Mice vaccinated with VLP alone also demonstrated significantly lower viral titers in the nose and lungs than did the placebo group as well as the inactivated virus group on days 4 and 6 postchallenge. These results suggest that it is feasible to make a safe and immunogenic vaccine to protect against the extremely virulent 1918 virus, using a novel and safe cell-based technology.  相似文献   

4.
Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P < 0.01) than those of the control groups. Complete protection of guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.  相似文献   

5.
In order to evaluate the immunogenicity and the effect of a virosomal influenza vaccine on viral replication and T-cell activation in HIV-infected children receiving highly active antiretroviral therapy (HAART), 29 children infected with HIV-1 vertically (19 primed with a previous influenza vaccination and 10 who were not been immunized against influenza) were immunized with an intramuscular virosome-adjuvanted influenza vaccine. According to the European Agency for Evaluation of Medical Products (EMEA) criteria, the immunogenicity of the vaccine was adequate against all three influenza strains (A H1N1, A H3N2, and B) in the primed children, and against A H1N1 and A H3N2 in the unprimed children. After in vitro stimulation with vaccine antigens, the IFN-gamma levels in the peripheral blood mononuclear cells cultures increased significantly from a baseline level of 103.0 +/- 229.8 pg/ml to a 30-day level of 390.7 +/- 606.3 pg/ml (P < 0.05), with concentrations significantly higher (P < 0.05) in the primed children than in the unprimed children. No increase in plasma HIV-1 RNA or HIV-1 proviral DNA was observed in either subgroup, and the immunophenotype analyses demonstrated that the CD4+ cell counts and percentages, the CD4/CD8 ratio and activated lymphocytes remained stable in either group from baseline to 1 month after each vaccine dose. This study showed that the virosomal influenza vaccine does seem to be immunogenic in the majority of HIV-infected children receiving HAART and does not induce viral replication or T-cell activation. Given the possible influenza-related complications in children infected with HIV, these results support the use of this influenza vaccine in such patients.  相似文献   

6.
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.  相似文献   

7.
Luo M  Tao P  Li J  Zhou S  Guo D  Pan Z 《Journal of virological methods》2008,154(1-2):121-127
DNA vaccination is an effective means of eliciting both humoral and cellular immunity. Most of influenza vaccines targeted at hemagglutinin (HA) show efficient immunogenicity for protecting subjects against influenza virus infection. However, major antigenic variations of HA may facilitate the virus in developing resistance against such vaccines. DNA vaccines encoding conserved antigens protect animals against diverse viral subtypes, but their potency requires further improvement. In the present study, a DNA vaccine encoding the conserved nucleoprotein (NP) with a tissue plasminogen activator (tPA) signal sequence (ptPAs/NP) was generated, and immune responses were examined in vaccinated mice. A higher level of NP expression and secretion was observed in lysates and supernatants of the cells transfected with ptPAs/NP when compared to a plasmid encoding the wild-type full-length NP (pflNP). Immunofluorescence studies showed the cytoplasmic localization of the NP protein expressed from ptPAs/NP, but not from pflNP. In mice, the ptPAs/NP vaccine elicited higher levels of the NP-specific IgG and CD8(+) T cell-stimulating responses than that of pflNP. Vaccination with ptPAs/NP efficiently cleared the homologous H5N1 influenza virus in the infected lungs and induced partial cross-protection against heterologous, highly pathogenic H5N1 strains in mice. Our results may contribute to the development of protective immunity against diverse, highly pathogenic H5N1 virus subtypes.  相似文献   

8.
9.
Anti-haemagglutinin monoclonal antibodies were prepared and their HA1 or HA2 specificity was determined by solid phase radioimmunoassay (RIA) using purified viral haemagglutinin (HA) and haemagglutinin glycopolypeptides HA1 and HA2, by radioimmunoprecipitation followed with SDS-PAGE, by immunoblotting and by inhibition of virus-induced haemagglutination. The capacity of these methods to estimate HA1 or HA2 specificity of anti-HA monoclonal antibodies (MoAb) was compared. HA1 specificity was demonstrated for all hybridomas originating from lymphocytes of mice immunized with complete influenza virus, except IIF4 hybridoma which was HA2-specific. All hybridomas obtained with lymphocytes from mice immunized with HA glycopolypeptide HA2 were HA2-specific. Anti-HA2 MoAb neither inhibit haemagglutination induced by the virus or by HA subunits nor neutralized viral infectivity, either alone or in mixture. As expected, all anti-HA1 MoAb were H3 subtype-specific, showing usually good reactivity only with viruses close to the virus strain used for immunization. Two anti-HA1 MoAb (IVA1 and IVG6) showed unusual cross-reactivity within the H3 subtype. All anti-HA2 MoAb were broadly cross-reactive within the H3 subtype. Moreover, a half of them showed high cross-reactivity with influenza viruses of the H7 HA subtype. But the same antibodies did not react with HA of H1, H2 and H8 subtypes.  相似文献   

10.
Recombinant vaccinia viruses enable studies of immune recognition of antigens expressed from single viral genes. We have constructed recombinants expressing the haemagglutinin (HA) and nucleoprotein (NP) genes of the influenza virus A/PR/8/34 (H1N1). These recombinant viruses together with a recombinant expressing the HA from influenza virus A/JAP/305/57 (H2N2) have been used to examine the cytotoxic T lymphocyte (CTL) response to these influenza virus antigens. Both antigens are recognised by murine CTL and recognition of HA is influenza virus subtype-specific, whereas recognition of NP is crossreactive. In limiting dilution studies approximately 10% of the influenza CTL response is HA-specific, while approximately 30% of the response is NP-specific. Despite the ability of NP to stimulate a significant CTL response, mice immunised with the NP-vaccinia recombinant are not as well protected from subsequent lethal challenge with influenza virus, as mice immunised with the HA vaccinia recombinant. These studies demonstrate that viral antigens expressed from vaccine recombinants can provide protective immunity and that the influenza-poxvirus recombinants can provide data on protective immunity generated by individual viral proteins.  相似文献   

11.
Hyperimmune rabbit serum to A/PR8/34 virus was analysed by selective adsorption of antibody by viruses belonging to hemagglutinin subtypes H0, H1 and Hsw1. The presence of three antigenic determinants was demonstrated in viral HA: one was common for HA of H0, H1, and Hsw1 viruses, the other was common for HA of H0, H1 and Hsw1 viruses, and the third was strain-specific for this virus. The protective effect of formalin-inactivated influenza vaccines prepared from virus variants with H0 and H1 hemagglutinins against challenge with A/PR8/34 virus was studied. The presence in the vaccine influenza virus of at least one antigenic determinant common with that of the challenge virus was shown to create a certain degree of protection in mice against influenza. The presence of two antigenic determinants in HA of vaccine and challenge virus increased considerably the protective effect of the vaccine.  相似文献   

12.
采用反向遗传学技术构建H5亚型禽流感疫苗株   总被引:2,自引:2,他引:2  
目的构建重组H5亚型禽流感疫苗株。方法采用RT-PCR技术,分别扩增鹅源高产禽流感病毒A/Goose/Dalian/3/01(H9N2)的6条内部基因片段、高致病性禽流感病毒株A/Goose/HLJ/QFY/04(H5N1)的血凝素(HA)基因和N3亚型参考株A/Duck/Germany/1215/73(H2N3)的神经氨酸酶(NA)基因,并对HA1和HA2连接肽处的5个碱性氨基酸(R-R-R-K-K)的编码序列进行缺失与修饰,然后分别构建这8个基因的转录与表达载体,将其共转染293T/MDCK混合培养细胞单层,对拯救出的重组病毒进行表型分析。结果利用反向遗传学技术拯救出了全部基因都源于禽流感病毒的疫苗株,其基因序列符合设计要求包括删除HA基因的毒力相关序列,疫苗株的表型为H5N3。结论构建成功重组禽流感疫苗株rH5N3,为制备H5亚型禽流感疫苗打下了坚实的基础。  相似文献   

13.
The 2009 pandemic H1N1 (pH1N1) influenza virus carried a swine-origin hemagglutinin (HA) that was closely related to the HAs of pre-1947 H1N1 viruses but highly divergent from the HAs of recently circulating H1N1 strains. Consequently, prior exposure to pH1N1-like viruses was mostly limited to individuals over the age of about 60 years. We related age and associated differences in immune history to the B cell response to an inactivated monovalent pH1N1 vaccine given intramuscularly to subjects in three age cohorts: 18 to 32 years, 60 to 69 years, and ≥70 years. The day 0 pH1N1-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers were generally higher in the older cohorts, consistent with greater prevaccination exposure to pH1N1-like viruses. Most subjects in each cohort responded well to vaccination, with early formation of circulating virus-specific antibody (Ab)-secreting cells and ≥4-fold increases in HAI and MN titers. However, the response was strongest in the 18- to 32-year cohort. Circulating levels of HA stalk-reactive Abs were increased after vaccination, especially in the 18- to 32-year cohort, raising the possibility of elevated levels of cross-reactive neutralizing Abs. In the young cohort, an increase in MN activity against the seasonal influenza virus A/Brisbane/59/07 after vaccination was generally associated with an increase in the anti-Brisbane/59/07 HAI titer, suggesting an effect mediated primarily by HA head-reactive rather than stalk-reactive Abs. Our findings support recent proposals that immunization with a relatively novel HA favors the induction of Abs against conserved epitopes. They also emphasize the need to clarify how the level of circulating stalk-reactive Abs relates to resistance to influenza.  相似文献   

14.
Chinese painted quails immunized with a single dose (6 μg HA) of inactivated H5N1 (clade 1) influenza vaccine NIBRG-14 and challenged with 100 LD50 of the heterologous A/Swan/Nagybaracska/01/06(H5N1) (clade 2.2) strain were protected, whereas unvaccinated quails died after challenge. No viral antigens or RNA were detected in cloacal swabs from immunized animals. Sera obtained post-immunization gave low titres in serological assays against the vaccine and the challenge viruses. Our results demonstrate the protective efficacy of the NIBRG-14 strain against the challenge virus and the usefulness of these small birds in protection studies of influenza vaccines.  相似文献   

15.
The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics.  相似文献   

16.
Antigenic reactivity of a set of monoclonal antibodies (MAb) raised against the HA2 subunit of hemagglutinin of H3 subtype was characterized in a rapid culture assay. MAbs FC12 and FE1, known to recognize the same antigenic site (IV), cross-reacted with influenza viruses of H3 and H4 subtypes, regardless of their host origin. No cross-reactivity was detected with other antigenic subtypes tested (H1-H13). The involvement of conserved residues D160, N168, and F171 in the differential recognition of H3 and H4 subtypes is proposed. In contrast, MAb IIF4 that recognizes antigenic site II exhibited a broader inter-subtype reactivity including subtypes H3, H4, H5, H8 and some viruses of H2, H6 and H13 subtypes. The ability of HA2-specific antibodies to differentially react with distinct antigenic subtypes can be utilized in development of diagnostics and in the influenza virus surveillance.  相似文献   

17.
Grippovac SE-AZh a polytype, subunit influenza virus vaccine containing H1N1 and H3N2 influenza A virus strains and one influenza B virus strain has been tested in 80 volunteers. The trials demonstrated the harmlessness, the absence of adverse reactions, and except of the B type, the high antigenicity of vaccine preparation when administered in two injections. The optimal dose of each viral strain haemagglutinin (HA) was 15 micrograms in 0.5 ml.  相似文献   

18.
Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8+ T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.  相似文献   

19.
Summary Monoclonal antibodies raised against the separated hemagglutinin subunits (HA1 and HA2) of influenza A/Vic/3/75 (H3N2) virus were tested against a large panel of human and avian strains. The epitopes recognized by most antibodies were conserved among subtype H3 viruses, but reactivity of some antibodies with members of other subtypes was also observed. Particularly, the H4 virus reacted with most antibodies directed against the HA2 subunit. These results are discussed in terms of sequence similarities between subtypes and application of these antibodies as subtyping reagents.  相似文献   

20.
A safe and effective adjuvant is necessary to enhance mucosal immune responses for the development of an inactivated intranasal influenza vaccine. The present study demonstrated the effectiveness of surf clam microparticles (SMP) derived from natural surf clams as an adjuvant for an intranasal influenza vaccine. The adjuvant effect of SMP was examined when co-administered intranasally with inactivated A/PR8 (H1N1) influenza virus hemagglutinin vaccine in BALB/c mice. Administration of the vaccine with SMP induced a high anti-PR8 haemagglutinin (HA)-specific immunoglobulin A (IgA) response in the nasal wash and immunoglobulin G (IgG) response in the serum, resulting in protection against both nasal-restricted infection and lethal lung infection by A/PR8 virus. In addition, administration of SMP with A/Yamagata (H1N1), A/Beijing (H1N1), or A/Guizhou (H3N2) vaccine conferred complete protection against A/PR8 virus challenge in the nasal infection model, suggesting that SMP adjuvanted vaccine can confer cross-protection against variant influenza viruses. The use of SMP is suggested as a new safe and effective mucosal adjuvant for nasal vaccination against influenza virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号