首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothiocyanates are electrophiles that are able to induce phase II biotransformation enzyme gene expression via an electrophile-responsive element (EpRE) in the gene regulatory region. To study the potency of different isothiocyanates to induce the expression of EpRE-regulated genes, a Hepa-1c1c7 luciferase reporter cell line was exposed to structurally different isothiocyanates. The reporter cell line, EpRE(mGST-Ya)–LUX, contains the EpRE from the regulatory region of the mouse glutathione S-transferase Ya gene. Isothiocyanates containing a methyl-sulfur side chain, e.g. sulforaphane, showed a lower EC50 (0.8–3.2 μM) and a comparable induction factor (17–22.4) compared to the structurally different isothiocyanates containing an alkyl or aromatic side chain, e.g. allyl and phenylethyl isothiocyanate (EC50 3.9–6.5 μM, induction factor 17.5–23). After 24 h of exposure, on average (±SD) 23 ± 5% of the isothiocyanate was found in the cells and 77% in the cell medium. Isothiocyanates prove to be strong inducers of electrophile-responsive element-mediated gene expression at physiological concentrations. The here described luciferase reporter cell line is a suitable assay to measure the potency of compounds to induce EpRE-regulated gene expression.  相似文献   

2.
In this work, we have examined the neuromuscular activity of Micrurus laticollaris (Mexican coral snake) venom (MLV) in vertebrate isolated nerve-muscle preparations. In chick biventer cervicis preparations, the MLV induced an irreversible concentration- and time-dependent (1–30 µg/mL) neuromuscular blockade, with 50% blockade occurring between 8 and 30 min. Muscle contractures evoked by exogenous acetylcholine were completely abolished by MLV, whereas those of KCl were also significantly altered (86% ± 11%, 53% ± 11%, 89% ± 5% and 89% ± 7% for one, three, 10 and 30 µg of venom/mL, respectively; n = 4; p < 0.05). In mouse phrenic nerve-diaphragm preparations, MLV (1–10 µg/mL) promoted a slight increase in the amplitude of twitch-tension (3 µg/mL), followed by neuromuscular blockade (n = 4); the highest concentration caused complete inhibition of the twitches (time for 50% blockade = 26 ± 3 min), without exhibiting a previous neuromuscular facilitation. The venom (3 µg/mL) induced a biphasic modulation in the frequency of miniature end-plate potentials (MEPPs)/min, causing a significant increase after 15 min, followed by a decrease after 60 min (from 17 ± 1.4 (basal) to 28 ± 2.5 (t15) and 12 ± 2 (t60)). The membrane resting potential of mouse diaphragm preparations pre-exposed or not to d-tubocurarine (5 µg/mL) was also significantly less negative with MLV (10 µg/mL). Together, these results indicate that M. laticollaris venom induces neuromuscular blockade by a combination of pre- and post-synaptic activities.  相似文献   

3.
Fusariotoxins such as fumonisin B1 (FB1) and deoxynivalenol (DON) cause deleterious effects on the intestine of pigs. The aim of this study was to evaluate the effect of these mycotoxins, alone and in combination, on jejunal explants from piglets, using histological, immunohistochemical and ultrastructural assays. Five 24-day old pigs were used for sampling the explants. Forty-eight explants were sampled from each animal. Explants were incubated for 4 hours in culture medium and medium containing FB1 (100 µM), DON (10 µM) and both mycotoxins (100 µM FB1 plus 10 µM DON). Exposure to all treatments induced a significant decrease in the normal intestinal morphology and in the number of goblet cells, which were more severe in explants exposed to DON and both mycotoxins. A significant reduction in villus height occurred in groups treated with DON and with co-contamination. Expression of E-cadherin was significantly reduced in explants exposed to FB1 (40%), DON (93%) and FB1 plus DON (100%). The ultrastructural assay showed increased intercellular spaces and no junction complexes on enterocytes exposed to mycotoxins. The present data indicate that FB1 and DON induce changes in cell junction complexes that could contribute to increase paracellular permeability. The ex vivo model was adequate for assessing intestinal toxicity induced by exposure of isolated or associated concentrations of 100 µM of FB1 and 10 µM of DON.  相似文献   

4.
Yingying Wang  Zhaonong Hu  Wenjun Wu 《Toxins》2015,7(12):5448-5458
Bacillus thuringiensis (Bt) Cry toxins from the Cry1A family demonstrate significantly different toxicities against members of the family Noctuidae for unknown reasons. In this study, membrane potential was measured and analyzed in freshly isolated midgut samples from Mythimna separata and Agrotis ipsilon larvae under oral administration and in vitro incubation with Bt toxin Cry1Ab to elucidate the mechanism of action for further control of these pests. Bioassay results showed that the larvae of M. separata achieved a LD50 of 258.84 ng/larva at 24 h after ingestion; M. separata larvae were at least eightfold more sensitive than A. ipsilon larvae to Cry1Ab. Force-feeding showed that the observed midgut apical-membrane potential (Vam) of M. separata larvae was significantly depolarized from −82.9 ± 6.6 mV to −19.9 ± 7.2 mV at 8 h after ingestion of 1 μg activated Cry1Ab, whereas no obvious changes were detected in A. ipsilon larvae with dosage of 5 μg Cry1Ab. The activated Cry1Ab caused a distinct concentration-dependent depolarization of the apical membrane; Vam was reduced by 50% after 14.7 ± 0.2, 9.8 ± 0.4, and 7.6 ± 0.6 min of treatment with 1, 5, and 10 μg/mL Cry1Ab, respectively. Cry1Ab showed a minimal effect on A. ipsilon larvae even at 20 μg/mL, and Vam decreased by 26.3% ± 2.3% after 15 min. The concentrations of Cry1Ab displayed no significant effect on the basolateral side of the epithelium. The Vam of A. ipsilon (−33.19 ± 6.29 mV, n = 51) was only half that of M. separata (−80.94 ± 6.95 mV, n = 75). The different degrees of sensitivity to Cry1Ab were speculatively associated with various habits, as well as the diverse physiological or biochemical characteristics of the midgut cell membranes.  相似文献   

5.
Taipans (Oxyuranus spp.) are elapids with highly potent venoms containing presynaptic (β) and postsynaptic (α) neurotoxins. O. temporalis (Western Desert taipan), a newly discovered member of this genus, has been shown to possess venom which displays marked in vitro neurotoxicity. No components have been isolated from this venom. We describe the characterization of α-elapitoxin-Ot1a (α-EPTX-Ot1a; 6712 Da), a short-chain postsynaptic neurotoxin, which accounts for approximately 30% of O. temporalis venom. α-Elapitoxin-Ot1a (0.1–1 µM) produced concentration-dependent inhibition of indirect-twitches, and abolished contractile responses to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The inhibition of indirect twitches by α-elapitoxin-Ot1a (1 µM) was not reversed by washing the tissue. Prior addition of taipan antivenom (10 U/mL) delayed the neurotoxic effects of α-elapitoxin-Ot1a (1 µM) and markedly attenuated the neurotoxic effects of α-elapitoxin-Ot1a (0.1 µM). α-Elapitoxin-Ot1a displayed pseudo-irreversible antagonism of concentration-response curves to carbachol with a pA2 value of 8.02 ± 0.05. De novo sequencing revealed the main sequence of the short-chain postsynaptic neurotoxin (i.e., α-elapitoxin-Ot1a) as well as three other isoforms found in O. temporalis venom. α-Elapitoxin-Ot1a shows high sequence similarity (i.e., >87%) with other taipan short-chain postsynaptic neurotoxins.  相似文献   

6.
The aim of this study was to investigate the toxic effects of aflatoxins and evaluate the effectiveness of Bacillus subtilis ANSB060 in detoxifying aflatoxicosis in broilers. A total of 360 one-week-old male broilers (Ross 308) were assigned to six dietary treatments for five weeks. The treatment diets were: C0 (basal diet); C1.0 (C0 + 1.0 g B. subtilis ANSB060/kg diet); M0 (basal diet formulated with moldy peanut meal); M0.5, M1.0 and M2.0 (M0 + 0.5, 1.0 and 2.0 g B. subtilis ANSB060/kg diet, respectively). The contents of aflatoxin B1, B2, G1 and G2 in the diets formulated with moldy peanut meal were 70.7 ± 1.3, 11.0 ± 1.5, 6.5 ± 0.8 and 2.0 ± 0.3 µg/kg, respectively. The results showed that aflatoxins increased (p < 0.05) serum aspartate transaminase activity, decreased (p < 0.05) serum glutathione peroxidase activity, and enhanced (p < 0.05) malondialdehyde contents in both the serum and liver. Aflatoxins also caused gross and histological changes in liver tissues, such as bile duct epithelium hyperplasia, vacuolar degeneration and lymphocyte infiltration. The supplementation of ANSB060 reduced aflatoxin levels in the duodenum and counteracted the negative effects of aflatoxins, leading to the conclusion that ANSB060 has a protective effect against aflatoxicosis and this protection is dose-related.  相似文献   

7.
This study investigated the in vitro toxic effects of Bitis arietans venom and the ability of antivenom produced by the South African Institute of Medical Research (SAIMR) to neutralize these effects. The venom (50 µg/mL) reduced nerve-mediated twitches of the chick biventer muscle to 19% ± 2% of initial magnitude (n = 4) within 2 h. This inhibitory effect of the venom was significantly attenuated by prior incubation of tissues with SAIMR antivenom (0.864 µg/µL; 67% ± 4%; P < 0.05; n = 3–5, unpaired t-test). Addition of antivenom at t50 failed to prevent further inhibition or reverse the inhibition of twitches and responses to agonists. The myotoxic action of the venom (50 µg/mL) was evidenced by a decrease in direct twitches (30% ± 6% of the initial twitch magnitude) and increase in baseline tension (by 0.7 ± 0.3 g within 3 h) of the chick biventer. Antivenom failed to block these effects. Antivenom however prevented the venom induced cytotoxic effects on L6 skeletal muscle cells. Venom induced a marginal but significant reduction in plasma clotting times at concentrations above 7.8 µg/100 µL of plasma, indicating poor procoagulant effects. In addition, the results of western immunoblotting indicate strong immunoreactivity with venom proteins, thus warranting further detailed studies on the neutralization of the effects of individual venom toxins by antivenom.  相似文献   

8.
Methanol extracts of seven edible fruits found in southern Brazil: Garcinia achachairu, Rubus imperialis, Rubus rosaefolius, Solanum quitoense, Solanum sessiliflorun, Diospyros inconstans and Plinia glomerata, were evaluated for their total phenol content and antioxidant activity in different in vitro free radical scavenging models. In addition, studies were performed on cell viability of extracts of the seeds of G. achachairu against murine melanoma cells. The fruits peel and seeds of G. achachairu were very promising in terms of total phenol content (data in gallic acid equivalent per gram), as assessed by the Folin-Ciocalteu method, with values of 9.70±3.2 and 8.40±1.1, respectively. On the other hand, antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay showed that the fruit pulp and peel of P. glomerata presented the best profile, with values of the 16.3±1.8 and 15.9±2.4 μg/ml, respectively. Regarding the cytotoxic effect of methanol extract and guttiferone A from G. achachairu, we have observed that both inhibit the growth of B16F10 tumor cells, with calculated IC50 values of 49.6±2.1 mg/ml and 48.6±5.4 mM, respectively.  相似文献   

9.
Long-chain scorpion toxins with four disulfide bridges exhibit various pharmacological features towards the different voltage-gated sodium channel subtypes. However, the toxin production still remains a huge challenge. Here, we reported the effects of different expression vectors on the pharmacological properties of a novel toxin BmαTX47 from the scorpion Buthus martensii Karsch. The recombinant BmαTX47 was obtained using the expression vector pET-14b and pET-28a, respectively. Pharmacological experiments showed that the recombinant BmαTX47 was a new α-scorpion toxin which could inhibit the fast inactivation of rNav1.2, mNav1.4 and hNav1.5 channels. Importantly, the different expression vectors were found to strongly affect BmαTX47 pharmacological activities while toxins were obtained by the same expression and purification procedures. When 10 µM recombinant BmαTX47 from the pET-28a vector was applied, the values of I5ms/Ipeak for rNav1.2, mNav1.4 and hNav1.5 channels were 44.12% ± 3.17%, 25.40% ± 4.89% and 65.34% ± 3.86%, respectively, which were better than those values of 11.33% ± 1.46%, 15.96% ± 1.87% and 5.24% ± 2.38% for rNav1.2, mNav1.4 and hNav1.5 channels delayed by 10 µM recombinant BmαTX47 from the pET-14b vector. The dose-response experiments further indicated the EC50 values of recombinant BmαTX47 from the pET-28a vector were 7262.9 ± 755.9 nM for rNav1.2 channel and 1005.8 ± 118.6 nM for hNav1.5 channel, respectively. Together, these findings highlighted the important role of expression vectors in scorpion toxin pharmacological properties, which would accelerate the understanding of the structure-function relationships of scorpion toxins and promote the potential application of toxins in the near future.  相似文献   

10.

Background

Melia azedarach L. is an important medicinal plant that is used for variety of ailments in Iranian traditional medicine. Azadirachta indica A. Juss is its allied species and possesses similar properties and effects. The present study was undertaken to investigate anticancer activity of these M. azedarach in comparison with A. indica on cancer cell lines and also to evaluate their safety in humans by testing them on normal cell line. The study also aimed to determine the active components that are responsible for medicinal effects of M. azedarach in traditional usages.

Methods

In this study, the cytotoxic activity of crude extracts from M. azedarach and A. indica leaves, pulps and seeds as well as three main fractions of their leaf extracts were assayed against HT-29, A-549, MCF-7 and HepG-2 and MDBK cell lines. MTT assay was used to evaluate their cytotoxic activities. Methanol leaf fraction of M. azedarach as the safest leaf fraction in terms of cytotoxicity was subjected for phytochemical study.

Results

Results of the present study indicated that seed kernel extract of M. azedarach had the highest cytotoxic activity and selectivity to cancer cell lines (IC50 range of 8.18- 60.10 μg mL-1). In contrast to crude seed extract of A. indica, crude pulp and crude leaf extracts of this plant showed remarkably stronger anti-prolifrative activity (IC50 ranges of 83.45 - 212.16 μg mL-1 and 34.11- 95.51 μg mL-1 respectively) than those of M. azedarach (all IC50 values of both plants > 650 μg mL-1). The phytochemical analysis led to the isolation of four flavonol 3-O-glycosides including rutin, kaempferol-3-O-robinobioside, kaempferol-3-O-rutinoside and isoquercetin along with a purin nucleoside, β-adenosine.

Conclusions

The anti-prolifrative potentials of extracts from different parts of M. azedarach and A. indica were determined. By comparison, methanol leaf fraction of M. azedarach seems to be safer in terms of cytotoxicity. Our study shows that flavonols are abundant in the leaves of M. azedarach and these compounds seem to be responsible for many of medicinal effects exploited in the traditional uses.  相似文献   

11.
In this study, oils from Asarum heterotropoides were extracted by traditional solvent extraction and supercritical CO2 (SC-CO2) extraction methods and their antioxidant activities along with antimicrobial and inhibitory activities against five human body odor-producing bacteria (Staphylococcus epidermidis, Propionibacterium freudenreichii, Micrococcus luteus, Corynebacterium jeikeium, and Corynebacterium xerosis) were evaluated. The oil was found to contain 15 components, among which the most abundant component was methyl eugenol (37.6%), which was identified at every condition studied in different extraction methods. The oil extracted with n-hexane and ethanol mixture exhibited a strong antioxidant activity (92% ± 2%) and the highest ABTS and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (89% ± 0.2%). The highest amounts of total phenolic content and total flavonoid content were 23.1 ± 0.4 mg/g and 4.9 ± 0.1 mg/g, respectively, in the traditional method. In the SC-CO2 method performed at 200 bar/50°C using ethanol as an entrainer, the highest inhibition zone was recorded against all the aforementioned bacteria. In particular, strong antibacterial activity (38 ± 2 mm) was found against M. luteus. The minimum inhibitory concentration (MIC) for the oil against bacteria ranged from 10.1 ± 0.1 μg/mL to 46 ± 2 μg/mL. The lowest MIC was found against M. luteus. Methyl eugenol was found to be one of the major compounds working against human body odor-producing bacteria.  相似文献   

12.
The purpose of the present investigation was to prepare an intranasal in situ gel with increased nasal residence time in order to improve bioavailability of metoprolol tartrate. The in situ gel systems containing carbopol, hydroxypropyl methylcellulose K4M and K15M in different concentrations were prepared. The samples were characterized for viscosity, rheological behavior, gelation behavior, gel strength, and mucoadhesion. The formulations F10 (0.4% w/v carbopol, 1% w/v hydroxylpropyl methylcellulose K15M) and F13 (0.3% w/v carbopol, 1% w/v hydroxypropyl methylcellulose K15M) showed gel strength of 40.33±0.47 and 43.00±1.41, respectively, and mucoadhesion strength 31.48±0.14×103 and 32.12±0.05×103 dyne/cm2, respectively. In vitro release profiles showed initial burst followed by slow release. F10 and F13 released 88.08±0.98 and 91.18±1.09% drug in 8 h. R2 value for F10 (0.9953) and F13 (0.9942) was maximum for Higuchi, showing mixed order kinetics while n value obtained on treatment with Korsemayer Pappas equation were near to 0.5, suggesting release by fickian diffusion mechanism. The nasal permeability of formulations F10 and F13 were found to be 0.057 and 0.063 cm/s, respectively. Histopathological examination revealed slight degeneration of nasal epithelium with increased vascularity by F10 but no inflammation by formulation F13. Thus, a pH triggered in situ gel system containing low concentration (0.3% w/v) of carbopol demonstrated sustained release of metoprolol tartrate without any destructive effect on the mucosa.  相似文献   

13.
Withania somnifera Dunal (WS), commonly known as Ashwagandha in India, belongs to the family Solanaceae. It is extensively used in most of the Indian herbal pharmaceuticals and nutraceuticals. In the current study, the in vitro cytotoxic activity of methanolic, ethanolic, and aqueous extracts of WS stems was evaluated using cytometry and the MTT assay against the MDA-MB-231 human breast cancer cell line. Methanolic and ethanolic extracts of WS showed potent anticancer activity on the MDA-MB-231 human breast cancer cell line, whereas the aqueous extract did not exhibit any significant activity at 100 µg/ml. The percentage viability of the cell lines was determined by using the Trypan blue dye exclusion method. Cell viability was reduced to 21% and 0% at 50 and 100 µg/ml of the methanolic extract, respectively, as compared to 19% and 0% at 50 and 100 µg/ml for the ethanolic extract and 37% at 100 µg/ml in sterile Milli-Q water after 48 hours of treatment. Methanolic and ethanolic extracts of WS were shown to possess IC50 values of 30 and 37 µg/ml, respectively, by the MTT assay and cytometer-based analysis, with the methanolic extract being more active than the other two. On the other hand, methanolic and ethanolic extracts of WS did not exhibit any significant in vitro activity against the normal epithelial cell line Vero at 50 µg/ml. HPLC was carried out for the analysis of its phytochemical profile and demonstrated the presence of the active component Withaferin A in both extracts. The methanolic and ethanolic extracts of Withania should be studied further for the isolation and characterization of the active components to lead optimization studies.  相似文献   

14.
The essential oils of the flowering aerial parts of two Ocimum species viz., Ocimum gratissimum and O. sanctum were analyzed by gas chromatography and gas chromatography/mass spectroscopy. The principal constituent of O. gratissimum and O. sanctum was eugenol (75.1%) and methyl eugenol (92.4%), comprising 99.3 and 98.9% of the total oils, respectively. In vitro antimicrobial activity of the essential oils of O. gratissimum, O. sanctum and their major compounds eugenol and methyl eugenol were screened by using tube dilution methods. O. gratissimum oil was found highly active against S. marcescens while O. sanctum oil showed significant activity against A. niger and S. faecalis. Methyl eugenol exhibited significant activity against P. aeruginosa while eugenol was effective only against S. aureus. Antioxidant activity of oils, eugenol, and methyl eugenol was determined by 2,2-diphenyl-1-picrylhydrazyl and 2,2’- azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) assays. Essential oil of O. gratissimum showed comparative antioxidant activity with IC50 values 23.66±0.55 and 23.91±0.49 μg/ml in 2,2-diphenyl-1-picrylhydrazyl and 2,2’- azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) models, respectively. Eugenol showed slightly weaker antioxidant activity compared to oil of O. gratissimum, while O. sanctum oil demonstrated very feeble antioxidant activity and methyl eugenol did not show any activity. Eugenol and methyl eugenol would be elite source from O. gratissimum and O. sanctum, respectively, of this region could be consider as a source of natural food antioxidant, preservatives, and as an antiseptic.  相似文献   

15.
The antioxidant and anti-inflammatory effects of hexane (HEXA), chloroform (CHLORO), ethyl acetate (EA) and total alcoholic (T. ALCOH) extracts of Marrubium alysson in hypercholesterolemic-fed rabbits were evaluated. Hypercholesterolemia was induced in male rabbits by high cholesterol diet (HCD) (350 mg/kg) for 8 weeks. Hypercholesterolemic rabbits were allocated into groups, treated with simvastatin (SIM 5 mg/kg), different extracts of M. alysson at two doses of 250, 500 mg/kg. A normal control group and an HCD control one were used for comparison. Lipid profile, as well as oxidized low density lipoprotein-cholesterol (ox-LDL-C), myeloperoxidase activity (MPO) and superoxide anion production (O2), C-reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) were also evaluated. In addition, histological examination of ascending aorta was performed. We found dyslipidemia associated with significant increases in ox-LDL-C 123.5 ± 9.8 nmol MDA/mg non-HDL, MPO activity 0.08 ± 0.05 U/100 mg tissue and O2 production 3.5 ± 0.3 nmol cytochrome C reduced/min/g tissue × 10−4 in hypercholerterolemic rabbits. In addition, there was a significant increase in CRP 6.6 ± 0.49 μmol/L and MCP-1 190.9 ± 6.4 pg/ml and its mRNA expression in HCD. Intima appeared thick with thick plaques surrounding the intima and luminal narrowing. SIM, EA and HEXA extracts of M. alysson had lipid lowering effect, decrease in ox-LDL-C, MPO, O2, CRP and MCP-1 mRNA expression with improvement of the pathological picture. M. alysson enhanced the stability of plaque, had lipid lowering, anti-inflammatory and antioxidant activities.  相似文献   

16.
In the present study, ethanol and aqueous extracts of leaf galls of Cinnamomum verum were prepared to evaluate the antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and superoxide radical scavenging assay with ascorbic acid as a standard, and analgesic activity by tail immersion test and acetic acid-induced writhing test methods using diclofenac sodium as the reference drug. Swiss albino mice maintained under standard laboratory conditions were used for analgesic tests. In the 2,2-diphenyl-1-picrylhydrazyl assay it was found that the aqueous and the ethanol extract possessed almost equal capacity to inhibit free radicals (IC50=13.3 and 13.53 µg/ml) but found less than ascorbic acid (IC50=9.96 µg/ml). And in superoxide assay the ethanol extract was found to be more potent in scavenging super oxide radicals when compared to ascorbic acid and the aqueous extract (IC50=237.1 and 197.8 µg/ml) with the IC50=119.7 µg/ml. For analgesic activity, ethanol extract showed the maximum time required for response against thermal stimuli (6.75±0.47 s) and maximum % of writhing inhibition (44.57%) when compared to aqueous extract (5.25±0.48 s and 32.61%), whereas diclofenac showed response in 7.25±0.25 s 67.39% inhibition in tail immersion and writhing tests, respectively. These results demonstrate that the ethanol extracts of leaf galls possessed high antioxidant and analgesic activity.  相似文献   

17.
This work was to investigate the hypoglycemic and antioxidant activities of the exopolysaccharides produced in a stirred-tank bioreactor by Inocutus hispidus. The exopolysaccharides showed significant antioxidant activities, up to 70.7±2.5% inhibition of hydroxyl radicals, 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radicals, and a Trolox equivalent antioxidant capacity of 3.3 mM. The exopolysaccharide also showed notable hypoglycemic effects in streptozotocin-induced diabetic mice, reducing the plasma glucose, total cholesterol and triacylglycerol concentrations by 18.2±1.5, 20.9±0.8 and 14.4±0.4, respectively. The results demonstrated the potential of this EPS for human health protection against oxidative damage and hyperglycemia.  相似文献   

18.
Soxhlet extractor was used in the extraction of oil from milled seeds of Terminalia catappa using petroleum ether (40-60°). The optimal oil yield was 56.71±1.66% with a viscosity of 40.79±1.05 centipoises. Other parameters of the oil were found as follows; specific gravity-0.9248, refractive index-1.4646, acid value-3.35, peroxide value-8.6, saponification value-166.2, and unsaponifiable matter-1.46. The crude oil extract was water-degummed, bleached and deodorized to generate what we called refined oil. Autoxidation of the crude and refined T. catappa oil extract was done at five different temperatures of 0±0.1°, 20±0.1°, 40±0.1°, 60±0.1° and 80±0.1° and also in the presence of pure α-tocopherol at a concentration of 1.0% (w/v) by measuring peroxide value variations over 96 h. In all evaluations, the refined oil exhibited lower tendency towards autoxidation but not at temperatures above 60±0.1°. The use of Arrhenius equation revealed generally very low activation energies of 0.0261 cal/deg×mol and 0.0122cal/deg×mol for crude oil and antioxidant-treated crude oil, respectively and 0.0690 cal/deg×mol and 0.0177 cal/deg×mol for the refined oil. This study indicates T. catappa seed oil to be potential pharmaceutical oil with excellent characteristics.  相似文献   

19.
The essential oil from the leaves of Curcuma longa L. Kasur variety grown in Pakistan was extracted by hydro-distillation. Chemical constituents of the essential oil were identified by gas chromatography/mass spectrometry. The chromatographic analysis of oil showed 25 constituents, out of which nine chemical constituents were identified. The eucalyptol (10.27%) was the major component of the essential oil. α-pinene (1.50%), β-phellandrene (2.49%), β-pinene (3.57%), limonene (2.73%), 1,3,8-p-menthatriene (1.76%), ascaridole epoxide (1.452%), 2-methylisoborneol (2.92%), 5-isopropyl-6-methyl-hepta-3, dien-2-ol (2.07%) were also present in considerable quantity. The antimicrobial properties of leaves of Curcuma longa were tested by disc diffusion method against various human pathogens, including eight fungal and five bacterial strains. Essential oil showed maximum resistance against Fusarium miniformes MAY 3629 followed by Bacillus subtilis ATCC 6633 whereas; it exhibited least resistance against Fusarium oxysporium ATCC 48122. The results of the antimicrobial assay revealed that essential oil showed significant inhibitory activity against the tested organisms.  相似文献   

20.
The present research was aimed to develop luteolin (LL) loaded pegylated bilosomes (PG-BLs) for oral delivery. The luteolin bilosomes (BLs) were prepared by the thin-film hydration method and further optimized by the Box–Behnken design (four-factors at three-levels). The prepared LL-BLs were evaluated for vesicle size (VS), PDI, zeta potential (ZP), and entrapment efficiency to select the optimized formulation. The optimized formulation was further assessed for surface morphology, drug release, gut permeation, antioxidant, and antimicrobial study. The cytotoxicity study was conducted on breast cancer cell lines (MDA-MB-231 and MCF7). The optimized formulation LL-PG-BLs-opt exhibited a VS of 252.24 ± 3.54 nm, PDI of 0.24, ZP of −32 mV with an encapsulation efficiency of 75.05 ± 0.65%. TEM study revealed spherical shape vesicles without aggregation. The DSC and XRD results revealed that LL was encapsulated into a PG-BLs matrix. LL-PG-BLs-opt exhibited a biphasic release pattern as well as significantly high permeation (p<.05) was achieved vis-a-vis LL-BL-opt and LL dispersion. The antioxidant activity result revealed 70.31 ± 3.22%, 83.76 ± 2.56%, and 96.87 ± 2.11% from LL-dispersion, LL-BLs-opt, and LL-PG-BLs-opt, respectively. Furthermore, LL-PG-BLs-opt exhibited high cell viability on both cell lines than LL-BL-opt and pure LL. The IC50 value was found to be 390 µM and 510 µM against MCF7 and MDA-MB-231 cancer cells, respectively. The antimicrobial activity result exhibited LL-PG-BLs-opt had better antibacterial activity than pure LL against Staphylococcus aureus and Escherichia coli. Hence, PG-BLs might provide an efficient nano oral delivery for the management of the different diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号