首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 406 毫秒
1.
微型轴流血泵溶血的数值模拟   总被引:2,自引:1,他引:1  
基于N-S方程和标准K-ε湍流模型,采用非结构网格技术,对微型轴流血泵内部三维流场进行了数值模拟,得到了速度场、压力场等流场细节;同时采用Lagrange粒子追踪法获得了沿不同流线的剪应力以及红细胞暴露接触时间的分布,并引入溶血计算的经验公式,计算对比了不同转速条件下血泵的溶血指标,重点分析了血泵在5L/min、8000r/min工况下的溶血性能,对于血泵溶血的估算,本方法是可行的.  相似文献   

2.
目的应用计算流体动力学方法(computational fluid dynamics,CFD)对离心式双向液力悬浮人工心脏血泵流场进行仿真分析,通过改进叶轮入口结构来改善血液在血泵的流动状态,从而提升其抗溶血性能。方法从影响血泵溶血性能的角度考虑,基于N-S方程和k-ε标准双方程湍流模型,应用软件FLUENT6.3对离心式人工心脏血泵流场进行数值模拟,分析在设计工况下,叶轮入口处的结构变化对泵内流场的影响,以及流场中最大速度与溶血水平之间的关系,并根据流场分析结果对血泵叶轮入口进行优化。结果经过优化,血泵内流场紊乱现象得到改善,影响溶血值的切应力和曝光时间均有所降低,溶血性能得到改善。同时,对于离心式双向液力悬浮血泵,在设计工况下,其流场中最大速度有作为流场优化过程中的直观指标参数的潜力。结论该研究的仿真分析可为离心式双向液力悬浮人工心脏的设计积累一定经验。  相似文献   

3.
基于溶血性能的离心式旋转血泵设计   总被引:1,自引:0,他引:1  
溶血性能是衡量血泵性能的一个重要指标.基于平均剪切应力模型,通过减少红细胞流经叶轮的时间和降低它在此过程中所受平均剪切应力的方法,对离心血泵进行设计,进而改善溶血性能.采用商用流体仿真软件Fluent,对血泵内的三维不可压湍流流场进行数值模拟,得到红细胞在血泵内的流动迹线和流动参数;应用溶血估算公式,分析不同流量下血泵的溶血性能,计算得到溶血估算值在0.006-0.015之间,有较好的溶血性能,满足血泵对溶血性能的要求.  相似文献   

4.
叶轮设计对叶轮式人工心脏溶血性能的影响   总被引:3,自引:1,他引:2  
为了评价人工心脏的叶轮设计对血泵溶血性能的影响 ,笔者设计加工了叶片角和叶片数分别为(2 0° ,6 )、(30° ,6 )、(40° ,6 )、(30°,5 )和 (30°,7)的五个对数螺线等角叶轮 ,并基于不同扬程和流量下的体外溶血试验 ,探讨了叶轮设计参数与血泵溶血性能之间的相关性 ,从而系统地评价血泵各设计及运行参数对溶血破坏的影响 ,获取了血泵最佳设计参数及运行工况点等重要数据。实验结果表明 :血泵采用叶片角为 30°的六叶叶片 ,进出口压力差 10 0mmHg ,流量 4L/min时 ,其对血细胞破坏最小。  相似文献   

5.
轴流式血泵转速过高、离心式血泵容易产生流动死区是造成血液损伤的重要原因,而混流式血泵能有效缓解轴流式血泵的转速过高以及离心式血泵的流动死区问题。基于此,本研究旨在探究闭式叶轮混流式血泵的性能效果。通过数值模拟的方法对闭式叶轮混流式血泵进行数值模拟,分析该类型血泵的流场特性及压力分布情况,探讨其水力性能以及可能对红细胞造成的损伤程度,并与半开式叶轮结构混流式血泵的数值模拟结果进行性能对比。结果表明:本研究中的闭式叶轮混流式血泵具有良好的性能,能够安全高效运行。该泵在5 L/min下能够达到100 mm Hg的扬程,血泵内流动均匀,没有明显的涡流、回流以及流动停滞现象,压力分布均匀合理,可有效地避免血栓;溶血指数平均值(HI)为4.99×10^-4,具有良好的血液相容性;与半开式叶轮混流式血泵相比,闭式叶轮混流式血泵扬程和效率更高、溶血指数平均值更小,且具有更好的水力性能及避免血液损伤的能力。通过本文研究结果,或能为闭式叶轮混流式血泵的性能评价提供依据。  相似文献   

6.
五种叶轮血泵体外溶血试验的研究   总被引:2,自引:1,他引:2  
血泵的标准溶血指数反映了它对血液的破坏程度,是衡量血泵性能的一个重要指标,选用I型离心,II型轴流,磁耦合,I型和II型螺旋混流5种叶轮血泵,用新鲜抗凝羊血500ml,平均压力100mmHg,流量5L/min,在转泵0,0.5,1.0…4.0h后,测量血浆游离血红蛋白含量和血泵出口处的表面温度,计算标准溶血指数。结果表明,5种血泵的转速,温度变化与溶血指数是没有直接关系的,由结构形成的运动流场是对血液造成破坏的主要原因。本文对5种血泵的温度变化,转速和溶血之间的关系做一探讨。  相似文献   

7.
背景:心室辅助装置已广泛应用于心力衰竭患者的治疗。虽然有不同的血泵在国外应用于临床,却很少在国内应用,主要原因是其价格太高。因此在国内研制相对价格较低的能应用于临床的自主血泵迫在眉睫。 目的:测试置入式磁悬浮离心心室辅助装置主体血泵的溶血性能。 方法:通过计算流体力学方法,对磁悬浮离心式心室辅助装置主体血泵内部流场做初步分析。血泵在后负荷100 mm Hg     (1 mm Hg=0.133 kPa)、流量5 L/min 情况下,通过体外模拟血循环系统驱动羊血测试血泵体外溶血性能,计算血泵实际标准溶血指数NIH。 结果与结论:在设计工况下计算流体力学结果显示血泵内部流线平稳,整个流道内部壁面剪切力均在68.5 Pa以下,内部静压力分布均匀,过渡平稳,没有不良区域出现。体外溶血实验测得标准溶血指数NIH值为(0.075±0.017) mg/L。提示血泵驱动叶片及内部流道设计合理,同第3代血泵相比有较好溶血性能。血泵实验期间无不良状况发生,可以进行下一步长期的动物体内实验,进而评估血泵体内血流动力学性能和血泵置入对实验动物脏器的影响。  相似文献   

8.
根据中国终末期心衰患者对左心辅助泵辅助人体血液循环的要求,设计以3 L/min流量、100 mm Hg压升为设计点,流量范围为2~7 L/min的微型可植入轴流血泵。该血泵采用纺锤形的转子叶轮结构以及带分流叶片、悬臂叶片的尾导结构,以使血泵在较宽的压力流量范围内具有良好的溶血和抗血栓特性。本文用数值模拟及粒子成像测速(PIV)的方法分析血泵的水力学特性、流场及溶血特性。结果表明:血泵转速为7 000~11 000 r/min时,在2~7 L/min的流量范围内可提供60.0~151.3 mm Hg的压升;分流叶片抑制了尾导的尾缘吸力面处的流动分离;悬臂式叶片结构将转子叶片的叶尖间隙变为尾导叶片的叶根间隙,间隙的切线速度由6.2 m/s降至4.3~1.1 m/s;血泵的最大标量剪切应力值为897.3 Pa,平均剪切应力值为37.7 Pa;采用Heuser溶血模型得到的溶血指数为0.168%;PIV试验所得泵内尾导区域的流场速度分布与数值计算得到的流场特征吻合良好。本研究所设计的轴流血泵的尾导具有分流叶片和悬臂叶片,流道内血流无较大分离流动,降低了剪切力对血液的破坏,溶血性能良好,压力流量性能满足临床需要。  相似文献   

9.
计算流体力学分析评价XZ-Ⅱ型血泵的血液破坏   总被引:2,自引:0,他引:2  
目的运用计算机流体力学(CFD)分析评价XZ-Ⅱ型血泵的溶血情况.方法将XZ-Ⅱ型血泵的主体血泵CAD二维图采用Solid Work三维造型软件过渡生成几何数据文件,然后采用Fluent 6.1流场分析软件做计算和流场分析,同时进行体外溶血实验.结果CFD显示,在叶轮入口、叶轮的端面和叶轮与导流叶片间,有较大的剪切率产生,且后者引起流动分离,从而影响了出口流速和流动的稳定性;体外溶血实验示,标准溶血指数(NIH)为(0.0473±0.0165)mg/dL.结论采用湍流模型和非牛顿流体粘性系数公式进行CFD对血泵溶血情况的分析,基本反映了血泵内部血流特性,XZ-Ⅱ型血泵在叶轮入口、叶轮端面和导流叶片等处产生高剪切力,应进行相应的改进.  相似文献   

10.
目的采用计算流体力学(computational fluid dynamics, CFD)方法研究FDA标准离心血泵叶片倒角对流场和溶血的影响。方法针对FDA标准离心泵,模拟3个工况下水力学性能、流场形态、溶血指数等血泵关键性能,并进一步比较叶片结构有、无倒角时对前述模拟结果造成的影响。结果血泵叶轮倒角对血泵压头(无倒角特征与有倒角特征压头计算值最大百分比差异为57.38%)、流场等均有影响,从而导致溶血预测值也有显著差别(两者最大误差超过1个数量级)。结论对叶轮进行有倒角处理有助于优化血泵的性能。研究结果对更好使用CFD辅助血泵的血液相容性设计具有重要意义。  相似文献   

11.
血泵是心脏辅助循环装置的核心部件之一,其运行过程中所产生的血栓和溶血超出安全范围将会引发多种并发症,严重者甚至危及病人生命,因此血栓和溶血问题是衡量血泵性能的重要指标也是血泵的重要研究课题。研究表明,溶血主要是由血泵内叶轮的机械运动及血液的复杂流动的高剪切力引起。因此溶血多出现在血液与固壁接触面上及复杂流动的流体问。本次研究的目的是要探索用数值模拟的方法分析离心血泵内部的流场及溶血情况,在研究中通过与上海某医院合作实验采集一种叶片式离心血泵运行过程中的实验数据,再对该叶片式离心血泵内部流场进行数值模拟,通过对比血泵实际运行情况与数值计算结果对其内部血栓和溶血问题进行系统的分析研究,最终数值模拟分析的情况与该血泵在实际运行中的血栓和溶血情况基本相符。通过本次研究探索用数值模拟的方法对血泵的血栓和溶血现象进行分析,特别是对溶血现象进行一定程度的定量分析,此分析结果及分析方法可为血泵优化及临床应用做方法指导之用。  相似文献   

12.
A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.  相似文献   

13.
应用CFD对人工血泵流场进行数值仿真   总被引:6,自引:1,他引:6  
发展人工心脏以便在某些情况下代替心脏进行供血已成为医学界的普遍要求。血泵研制和改进中所面临的主要难点之一是血液在血泵中的流动分离等复杂流动情况 ,对人工血泵中血液的流体动力分析是发展先进人工血泵的前提。本文应用计算机求解三维Navier Stokes方程 ,对某型血泵叶片通道间内部流场进行了数值仿真。研究分析结果表明 ,血泵中流体具有非常复杂的流动情况。为避免流动中分离造成流体升压比下降和血细胞破坏 ,对通道的进口和小叶片的安放位置以及叶片高度的变化都提出了很高的要求。充分应用计算流体力学的发展来推动人工血泵的研究具有非常广阔的前景  相似文献   

14.
刘晨    张惟斌    衡亚光    江启峰    申坤    崔清清   《中国医学物理学杂志》2023,(4):496-502
人工心脏(血泵)一直存在泵体对血细胞剪切力过大和流速过快容易引起溶血的问题。为了研究人体正常血压情况下,血泵内部剪切力和速度场的分布情况,选择圆盘泵叶轮代替传统离心泵叶轮,对两种模型进行数值计算,分析不同叶轮内部剪切力和速度场的分布规律。研究表明传统离心泵内部流速高,叶片表面剪切力大,对血细胞的伤害大。圆盘泵相比传统离心泵,剪切力更小,流场速度分布均匀,流速更小。和传统离心泵相比,不同转速下圆盘泵能降低溶血的发生率。圆盘泵叶片数为6片时,抗溶血性能更好。研究结果为血泵的优化提供理论依据。  相似文献   

15.
溶血性能是判别血泵是否可靠的重要评价因素之一,也是血泵研发过程中的一大难题。本文基于介入式微型轴流血泵的结构特点对其溶血发生机理和关键影响因素进行探究和综述。首先,介绍介入式微型轴流血泵的结构特点:体积小、转速高、叶轮轮缘与泵壳间隙小。然后从剪力溶血和空化溶血两个方面对溶血发生机理进行阐述。最后重点分析导致介入式微型轴流血泵机械溶血的主要力学因素,即剪力和负压。泵内剪力过大或作用时间过长会导致红细胞受损而发生溶血,而负压可能引起血泵空化从而对血液造成损伤。总之,血泵结构设计不当会导致血液在机械运动和湍流运动过程中受到高剪切应力和局部负压的作用产生溶血,所以在设计阶段应全面考虑各因素对血泵溶血的影响。  相似文献   

16.
The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19?l/min against 100?mmHg of pressure head and 11?% maximum efficiency. The profile of the H?CQ (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000?rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days?14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203?days of pumping. In the second experiment, a white thrombus was found in the pump after 23?days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号