首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Recombination hotspot in NF1 microdeletion patients.   总被引:6,自引:0,他引:6  
Neurofibromatosis type 1 (NF1) patients that are heterozygous for an NF1 microdeletion are remarkable for an early age at onset and an excessive burden of dermal neurofibromas. Microdeletions are predominantly maternal in origin and arise by unequal crossover between misaligned NF1REP paralogous sequence blocks which flank the NF1 gene. We mapped and sequenced the breakpoints in several patients and designed primers within each paralog to specifically amplify a 3.4 kb deletion junction fragment. This assay amplified a deletion junction fragment from 25 of the 54 unrelated NF1 microdeletion patients screened. Sequence analysis demonstrated that each of the 25 recombination events occurred in a discrete 2 kb recombination hotspot within each of the flanking NF1REPs. Two recombination events were accompanied by apparent gene conversion. A search for recombination-prone motifs revealed a chi-like sequence; however, it is unknown whether this element stimulates recombination to occur at the hotspot. The deletion-junction assay will facilitate the prospective identification of patients with NF1 microdeletion at this hotspot for genotype-phenotype correlation studies and diagnostic evaluation.  相似文献   

2.
NF1 microdeletion breakpoints are clustered at flanking repetitive sequences   总被引:13,自引:0,他引:13  
Neurofibromatosis type 1 patients with a submicroscopic deletion spanning the NF1 tumor suppressor gene are remarkable for an early age at onset of cutaneous neurofibromas, suggesting the deletion of an additional locus that potentiates neurofibromagenesis. Construction of a 3.5 Mb BAC/PAC/YAC contig at chromosome 17q11.2 and analysis of somatic cell hybrids from microdeletion patients showed that 14 of 17 cases had deletions of 1.5 Mb in length. The deletions encompassed the entire 350 kb NF1 gene, three additional genes, one pseudogene and 16 expressed sequence tags (ESTs). In these cases, both proximal and distal breakpoints mapped at chromosomal regions of high identity, termed NF1REPs. These REPs, or clusters of paralogous loci, are 15-100 kb and harbor at least four ESTs and an expressed SH3GL pseudogene. The remaining three patients had at least one breakpoint outside an NF1REP element; one had a smaller deletion thereby narrowing the critical region harboring the putative locus that exacerbates neurofibroma development to 1 Mb. These data show that the likely mechanism of NF1 microdeletion is homologous recombination between NF1REPs on sister chromatids. NF1 microdeletion is the first REP-mediated rearrangement identified that results in loss of a tumor suppressor gene. Therefore, in addition to the germline rearrangements reported here, NF1REP-mediated somatic recombination could be an important mechanism for the loss of heterozygosity at NF1 in tumors of NF1 patients.  相似文献   

3.
Human chromosomes 1q21-q25, 6p21.3-22.2, 9q33-q34, and 19p13.1-p13.4 carry clusters of paralogous loci, to date best defined by the flagship 6p MHC region. They have presumably been created by two rounds of large-scale genomic duplications around the time of vertebrate emergence. Phylogenetically, the 1q21-25 region seems most closely related to the 6p21.3 MHC region, as it is only the MHC paralogous region that includes bona fide MHC class I genes, the CD1 and MR1 loci. Here, to clarify the genomic structure of this model MHC paralogous region as well as to gain insight into the evolutionary dynamics of the entire quadriplication process, a detailed analysis of a critical 1.7 megabase (Mb) region was performed. To this end, a composite, deep, YAC, BAC, and PAC contig encompassing all five CD1 genes and linking the centromeric +P5 locus to the telomeric KRTC7 locus was constructed. Within this contig a 1.1-Mb BAC and PAC core segment joining CD1D to FCER1A was fully sequenced and thoroughly analyzed. This led to the mapping of a total of 41 genes (12 expressed genes, 12 possibly expressed genes, and 17 pseudogenes), among which 31 were novel. The latter include 20 olfactory receptor (OR) genes, 9 of which are potentially expressed. Importantly, CD1, SPTA1, OR, and FCERIA belong to multigene families, which have paralogues in the other three regions. Furthermore, it is noteworthy that 12 of the 13 expressed genes in the 1q21-q22 region around the CD1 loci are immunologically relevant. In addition to CD1A-E, these include SPTA1, MNDA, IFI-16, AIM2, BL1A, FY and FCERIA. This functional convergence of structurally unrelated genes is reminiscent of the 6p MHC region, and perhaps represents the emergence of yet another antigen presentation gene cluster, in this case dedicated to lipid/glycolipid antigens rather than antigen-derived peptides.  相似文献   

4.
Neurofibromatosis type I (NF1) is an autosomal dominant familial tumor syndrome characterized by the presence of multiple benign neurofibromas. In 95% of NF1 individuals, a mutation is found in the NF1 gene, and in 5% of the patients, the germline mutation consists of a microdeletion that includes the NF1 gene and several flanking genes. We studied the frequency of loss of heterozygosity (LOH) in the NF1 region as a mechanism of somatic NF1 inactivation in neurofibromas from NF1 patients with and without a microdeletion. There was a statistically significant difference between these two patient groups in the proportion of neurofibromas with LOH. None of the 40 neurofibromas from six different NF1 microdeletion patients showed LOH, whereas LOH was observed in 6/28 neurofibromas from five patients with an intragenic NF1 mutation (P = 0.0034, Fisher's exact). LOH of the NF1 microdeletion region in NF1 microdeletion patients would de facto lead to a nullizygous state of the genes located in the deletion region and might be lethal. The mechanisms leading to LOH were further analyzed in six neurofibromas. In two out of six neurofibromas, a chromosomal microdeletion was found; in three, a mitotic recombination was responsible for the observed LOH; and in one, a chromosome loss with reduplication was present. These data show an important difference in the mechanisms of second hit formation in the 2 NF1 patient groups. We conclude that NF1 is a familial tumor syndrome in which the type of germline mutation influences the type of second hit in the tumors.  相似文献   

5.
Large microdeletions encompassing the neurofibromatosis type‐1 (NF1) gene and its flanking regions at 17q11.2 belong to the group of genomic disorders caused by aberrant recombination between segmental duplications. The most common NF1 microdeletions (type‐1) span 1.4‐Mb and have breakpoints located within NF1‐REPs A and C, low‐copy repeats (LCRs) containing LRRC37‐core duplicons. We have identified a novel type of recurrent NF1 deletion mediated by nonallelic homologous recombination (NAHR) between the highly homologous NF1‐REPs B and C. The breakpoints of these ~1.0‐Mb (“type‐3”) NF1 deletions were characterized at the DNA sequence level in three unrelated patients. Recombination regions, spanning 275, 180, and 109‐bp, respectively, were identified within the LRRC37B‐P paralogues of NF1‐REPs B and C, and were found to contain sequences capable of non‐B DNA formation. Both LCRs contain LRRC37‐core duplicons, abundant and highly dynamic sequences in the human genome. NAHR between LRRC37‐containing LCRs at 17q21.31 is known to have mediated the 970‐kb polymorphic inversions of the MAPT‐locus that occurred independently in different primate species, but also underlies the syndromes associated with recurrent 17q21.31 microdeletions and reciprocal microduplications. The novel NF1 microdeletions reported here provide further evidence for the unusually high recombinogenic potential of LRRC37‐containing LCRs in the human genome. Hum Mutat 31:742–751, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Human phosphoglucomutase (PGM1) is a highly poly-morphic protein. Three mutations and four intragenic recombination events between the three mutation sites generate eight protein variants including the four universally common alleles, 1+, 1 -, 2+ and 2 -, and four others that are polymorphic in some Oriental populations, 3+, 3-, 7+ and 7-. The mutations 3/7, 2/1 and +/-are in exons 1A, 4 and 8, and are 40 and 18 kb apart, respectively. Using 12 polymorphic markers, including 2/1 and +/-, we have now obtained direct evidence for a high rate of intragenic recombination across this 58 kb region. From segregation analysis of PGM1 haplotypes in CEPH families, the recombination frequency was estimated to be 1.7%. We have also used a population genetics approach to map the patterns of linkage disequilibrium across the PGM1 gene in three diverse population samples (Caucasian, Chinese and Vietnamese). This has allowed us to compare indirect estimates of intragenic recombination with the meiotic data from family studies. Comprehensive pairwise allelic association analysis of the markers indicated the presence of two recombi-nation 'hotspots': one between exons 1A and 4 and the other in the region of exon 7. These locations are in keeping with the meiotic data and with the original hypothesis of intragenic recombination based on PGM1 isozyme analysis.  相似文献   

7.
Gross deletions of the NF1 gene at 17q11.2 belong to the group of 'genomic disorders' characterized by local sequence architecture that predisposes to genomic rearrangements. Segmental duplications within regions associated with genomic disorders are prone to non-allelic homologous recombination (NAHR), which mediates gross rearrangements. Copy number variants (CNVs) without obvious phenotypic consequences also occur frequently in regions of genomic disorders. In the NF1 gene region, putative CNVs have been reportedly detected by array comparative genomic hybridization (array CGH). These variants include duplications and deletions within the NF1 gene itself (CNV1) and a duplication that encompasses the SUZ12 gene, the distal NF1-REPc repeat and the RHOT1 gene (CNV2). To explore the possibility that these CNVs could have played a role in promoting deletion mutagenesis in type-1 deletions (the most common type of gross NF1 deletion), non-affected transmitting parents of patients with type-1 NF1 deletions were investigated by multiplex ligation-dependent probe amplification (MLPA). However, neither CNV1 nor CNV2 were detected. This would appear to exclude these variants as frequent mediators of NAHR giving rise to type-1 deletions. Using MLPA, we were also unable to confirm CNV1 in healthy controls as previously reported. We conclude that locus-specific techniques should be used to independently confirm putative CNVs, originally detected by array CGH, to avoid false-positive results. In one patient with an atypical deletion, a duplication in the region of CNV2 was noted. This duplication could have occurred concomitantly with the deletion as part of a complex rearrangement or may alternatively have preceded the deletion.  相似文献   

8.
Nonallelic homologous recombination (NAHR) is one of the major mechanisms underlying copy number variation in the human genome. Although several disease‐associated meiotic NAHR breakpoints have been analyzed in great detail, hotspots for mitotic NAHR are not well characterized. Type‐2 NF1 microdeletions, which are predominantly of postzygotic origin, constitute a highly informative model with which to investigate the features of mitotic NAHR. Here, a custom‐designed MLPA‐ and PCR‐based approach was used to identify 23 novel NAHR‐mediated type‐2 NF1 deletions. Breakpoint analysis of these 23 type‐2 deletions, together with 17 NAHR‐mediated type‐2 deletions identified previously, revealed that the breakpoints are nonuniformly distributed within the paralogous SUZ12 and SUZ12P sequences. Further, the analysis of this large group of type‐2 deletions revealed breakpoint recurrence within short segments (ranging in size from 57 to 253‐bp) as well as the existence of a novel NAHR hotspot of 1.9‐kb (termed PRS4). This hotspot harbored 20% (8/40) of the type‐2 deletion breakpoints and contains the 253‐bp recurrent breakpoint region BR6 in which four independent type‐2 deletion breakpoints were identified. Our findings indicate that a combination of an open chromatin conformation and short non‐B DNA‐forming repeats may predispose to recurrent mitotic NAHR events between SUZ12 and its pseudogene. Hum Mutat 33:1599–1609, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
11.
12.
Characterization of a recurrent 15q24 microdeletion syndrome   总被引:8,自引:0,他引:8  
We describe multiple individuals with mental retardation and overlapping de novo submicroscopic deletions of 15q24 (1.7-3.9 Mb in size). High-resolution analysis showed that in three patients both proximal and distal breakpoints co-localized to highly identical segmental duplications (>51 kb in length, > 94% identity), suggesting non-allelic homologous recombination as the likely mechanism of origin. Sequencing studies in a fourth individual provided base pair resolution and showed that both breakpoints in this case were located in unique sequence. Despite the differences in the size and location of the deletions, all four individuals share several major features (growth retardation, microcephaly, digital abnormalities, hypospadias and loose connective tissue) and resemble one another facially (high anterior hair line, broad medial eyebrows, hypertelorism, downslanted palpebral fissures, broad nasal base, long smooth philtrum and full lower lip), indicating that this represents a novel syndrome caused by haploinsufficiency of one or more dosage-sensitive genes in the minimal deletion region. Our results define microdeletion of 15q24 as a novel recurrent genomic disorder.  相似文献   

13.
Meiotic DNA double-stranded breaks (DSBs) initiate genetic recombination in discrete areas of the genome called recombination hotspots. DSBs can be directly mapped using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Nevertheless, the genome-wide mapping of recombination hotspots in mammals is still a challenge due to the low frequency of recombination, high heterogeneity of the germ cell population, and the relatively low efficiency of ChIP. To overcome these limitations we have developed a novel method--single-stranded DNA (ssDNA) sequencing (SSDS)--that specifically detects protein-bound single-stranded DNA at DSB ends. SSDS comprises a computational framework for the specific detection of ssDNA-derived reads in a sequencing library and a new library preparation procedure for the enrichment of fragments originating from ssDNA. The use of our technique reduces the nonspecific double-stranded DNA (dsDNA) background >10-fold. Our method can be extended to other systems where the identification of ssDNA or DSBs is desired.  相似文献   

14.
The specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter constructs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of genomic sites using the Sleeping Beauty transposase. Deconvolution of reporter activity by genomic position reveals distinct expression patterns subject to genomic context, including a compartment of enhancer blocker reporter integrations with robust expression. The high density of integration sites permits quantitative delineation of characteristic genomic context sensitivity profiles and their decomposition into sensitivity to both local and distant DNase I hypersensitive sites. Furthermore, using a single-cell expression approach to test the effect of integrated reporters for differential expression of nearby endogenous genes reveals that CTCF insulator elements do not completely abrogate reporter effects on endogenous gene expression. Collectively, our results lend new insight into genomic regulatory compartmentalization and its influence on the determinants of promoter–enhancer specificity.

A boundary model offers an attractive paradigm for understanding regulatory specificity in mammalian genomes through the delineation of independent regulatory domains. Insulators are a class of genomic regulatory elements that block interaction of enhancers with their cognate promoters (Phillips and Corces 2009). Enhancer blocker activity is canonically defined by a reporter assay that interposes a candidate insulator element between a weak promoter and an enhancer (Chung et al. 1993), while barrier insulators protect transgenes from silencing owing to spreading of heterochromatin (West et al. 2002). Insulators have also been used to counter genotoxicity from transgene enhancer activation of endogenous oncogenes (Li et al. 2009; Liu et al. 2015). Known insulators such as the chicken beta-globin hypersensitive site 4 element or the Igf2/H19 imprinting control region (Bell and Felsenfeld 2000) are composite elements with enhancer blocker, barrier, and other activities (Dickson et al. 2010), and often have secondary functions, such as silencers (Qi et al. 2015).The architectural protein CTCF is the only known vertebrate insulator protein, and its binding can confer a potent enhancer blocking effect (Phillips and Corces 2009). Additionally, binding sites for CTCF colocalize with genomic features such as topologically associated domain boundaries (Dixon et al. 2012), but direct functional analysis of these sites is impeded by the difficulty of genome engineering at the relevant scales. Although binding affinity, DNA methylation, and recognition sequence orientation appear to confer some specificity for CTCF sites involved in domain organization (de Wit et al. 2015; Guo et al. 2015; Sanborn et al. 2015), these factors alone remain inadequate to distinguish true insulator elements impacting expression of nearby genes from the ∼100,000 CTCF sites genome-wide (Maurano et al. 2015; Tycko et al. 2019). Stably integrated reporter assays have shed light on the mechanics of insulator function, but such methods do not assess interaction with the surrounding endogenous genomic elements (Walters et al. 1999). In contrast, integrated barcoded reporter assays (Akhtar et al. 2013; Maricque et al. 2019; Moudgil et al. 2020) offer the potential to directly assess the interaction between novel CTCF sites and the endogenous genomic landscape.Here, we aim to functionally characterize endogenous genomic regulatory elements through their effect on integrated reporters. We describe a high-throughput randomly integrated barcoded reporter platform based on a previously described enhancer blocker construct interposing a potent CTCF insulator element (Liu et al. 2015) between a weak promoter and a potent enhancer. We integrate these reporters, both with and without insulator elements, randomly throughout the genome of K562 erythroleukemia cells using the Sleeping Beauty transposase system. We use the unique reporter barcodes to map individual insertion locations and enable position-specific readout of genomic context effects. Finally, we apply single-cell RNA-seq (scRNA-seq) to detect specific reporter integrations that perturb endogenous gene expression.  相似文献   

15.
16.
Concurrence of distinct genetic conditions in the same patient is not rare. Several cases involving neurofibromatosis type 1 (NF1) have recently been reported, indicating the need for more extensive molecular analysis when phenotypic features cannot be explained by a single gene mutation. Here, we describe the clinical presentation of a boy with a typical NF1 microdeletion syndrome complicated by cleft palate and other dysmorphic features, hypoplasia of corpus callosum, and partial bicoronal craniosynostosis caused by a novel 2bp deletion in exon 2 of Meis homeobox 2 gene (MEIS2) inherited from the mildly affected father. This is only the second case of an inherited MEIS2 intragenic mutation reported to date. MEIS2 is known to be associated with cleft palate, intellectual disability, heart defects, and dysmorphic features. Our clinical report suggests that this gene may also have a role in cranial morphogenesis in humans, as previously observed in animal models.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders in humans, affecting 1 in 3500 individuals. NF1 is a fully penetrant exhibiting a mutation rate some 10-fold higher compared to most other disease genes. As a consequence, a high number of cases (up to 50%) are sporadic. Mutation detection is complex due to the large size of NF1 gene, the presence of pseudogenes and the great variety of lesions. In the present study we attempted to delineate the NF1 mutational spectrum in the Italian population reporting four-year experience with the direct analysis of the whole NF1 coding region in 110 unrelated subjects affected by NF1. For each patient, the whole coding sequence and all splice sites were studied for mutations, either by the protein truncation test (PTT), or, most often, by denaturing high performance liquid chromatography (DHPLC). Mutations were identified in 75 (68%) patients. Twenty-two mutations were found to be novel. The detection rate for the different methods was 7/18 (39%) for PTT, and 68/103 (66%) for DHPLC. The mutations were evenly distributed along the NF1 coding sequence. Thirty-two of the 75 unrelated NF1 patients in which germline mutations were identified (32/75, 43%) harbour 23 different recurrent mutations. Fifteen sequence variants likely to represent non-pathogenic polymorphisms were observed at the NF1 locus. Genotype-phenotype analysis was unable to detect any obvious correlation.  相似文献   

18.
Nonallelic homologous recombination (NAHR) is the major mechanism underlying recurrent genomic rearrangements, including the large deletions at 17q11.2 that cause neurofibromatosis type 1 (NF1). Here, we identify a novel NAHR hotspot, responsible for type-3 NF1 deletions that span 1.0 Mb. Breakpoint clustering within this 1-kb hotspot, termed PRS3, was noted in 10 of 11 known type-3 NF1 deletions. PRS3 is located within the LRRC37B pseudogene of the NF1-REPb and NF1-REPc low-copy repeats. In contrast to other previously characterized NAHR hotspots, PRS3 has not developed on a preexisting allelic homologous recombination hotspot. Furthermore, the variation pattern of PRS3 and its flanking regions is unusual since only NF1-REPc (and not NF1-REPb) is characterized by a high single nucleotide polymorphism (SNP) frequency, suggestive of unidirectional sequence transfer via nonallelic homologous gene conversion (NAHGC). By contrast, the previously described intense NAHR hotspots within the CMT1A-REPs, and the PRS1 and PRS2 hotspots underlying type-1 NF1 deletions, experience frequent bidirectional sequence transfer. PRS3 within NF1-REPc was also found to be involved in NAHGC with the LRRC37B gene, the progenitor locus of the LRRC37B-P duplicons, as indicated by the presence of shared SNPs between these loci. PRS3 therefore represents a weak (and probably evolutionarily rather young) NAHR hotspot with unique properties.  相似文献   

19.
Programmed double-strand breaks (DSBs), which initiate meiotic recombination, arise through the activity of the evolutionary conserved topoisomerase homolog Spo11. Spo11 is believed to catalyze the DNA cleavage reaction in the initial step of DSB formation, while at least a further 11 factors assist in Saccharomyces cerevisiae. Using chromatin-immunoprecipitation (ChIP), we detected the transient, noncovalent association of Spo11 with meiotic hotspots in wild-type cells. The establishment of this association requires Rec102, Rec104, and Rec114, while the timely removal of Spo11 from chromatin depends on several factors, including Mei4 and Ndt80. In addition, at least one further component, namely, Red1, is responsible for locally restricting Spo11's interaction to the core region of the hotspot. In chromosome spreads, we observed meiosis-specific Spo11-Myc foci, independent of DSB formation, from leptotene until pachytene. In both rad50S and com1Delta/sae2Delta mutants, we observed a novel reaction intermediate between Spo11 and hotspots, which leads to the detection of full-length hotspot DNA by ChIP in the absence of artificial cross-linking. Although this DNA does not contain a break, its recovery requires Spo11's catalytic residue Y135. We propose that detection of uncross-linked full-length hotspot DNA is only possible during the reversible stage of the Spo11 cleavage reaction, in which rad50S and com1Delta/sae2Delta mutants transiently arrest.  相似文献   

20.
Chlamydia trachomatis is an obligate intracellular bacterium of major public health significance, infecting over one-tenth of the world's population and causing blindness and infertility in millions. Mounting evidence supports recombination as a key source of genetic diversity among free-living bacteria. Previous research shows that intracellular bacteria such as Chlamydiaceae may also undergo recombination but whether this plays a significant evolutionary role has not been determined. Here, we examine multiple loci dispersed throughout the chromosome to determine the extent and significance of recombination among 19 laboratory reference strains and 10 present-day ocular and urogenital clinical isolates using phylogenetic reconstructions, compatibility matrices, and statistically based recombination programs. Recombination is widespread; all clinical isolates are recombinant at multiple loci with no two belonging to the same clonal lineage. Several reference strains show nonconcordant phylogenies across loci; one strain is unambiguously identified as recombinantly derived from other reference strain lineages. Frequent recombination contrasts with a low level of point substitution; novel substitutions relative to reference strains occur less than one per kilobase. Hotspots for recombination are identified downstream from ompA, which encodes the major outer membrane protein. This widespread recombination, unexpected for an intracellular bacterium, explains why strain-typing using one or two genes, such as ompA, does not correlate with clinical phenotypes. Our results do not point to specific events that are responsible for different pathogenicities but, instead, suggest a new approach to dissect the genetic basis for clinical strain pathology with implications for evolution, host cell adaptation, and emergence of new chlamydial diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号