首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adult hippocampal neurogenesis is affected by vitamin E deficiency. In the present investigation we examined if neural precursor proliferation, newborn cell survival or both are altered by vitamin E deficiency. 5-Bromo-2'-deoxyuridine (BrdU) was employed as a marker of proliferating cells. BrdU-labelled cells were revealed 1 and 30 days after BrdU administration in order to evaluate proliferation and newborn cell survival, respectively. Cell proliferation decreased in controls from juvenile to adult age, and the decrease was lesser in vitamin E deficiency. Thus we found a higher number of proliferating cells in vitamin E-deficient rats than in age-matched controls at 5 months of age. Comparing the number of BrdU-positive cells between 1 and 30 days after the last BrdU injection revealed a remarkable decrease in all groups; this is the greatest in vitamin E-deficient rats and the lowest in control rats. Consistently cell death in the dentate gyrus, assessed by TUNEL technique, was found to decrease from 1 to 5 months of age, but at 5 months it was significantly higher in vitamin E-deficient rats than in age-matched controls. These data show that vitamin E deficiency enhances neural precursor proliferation and cell death during adult neurogenesis.  相似文献   

2.
We studied hippocampal cellular proliferation and neurogenesis processes in a model of transient global cerebral ischemia in gerbils by labelling dividing cells with 5'-Bromo-2'-deoxyuridine (BrdU). Surrounding the region of selective neuronal death (CA1 pyramidal layer of the hippocampus), an important increase in reactive astrocytes and BrdU-labelled cells was detected 5 days after ischemia. A similar result was found in the dentate gyrus (DG) 12 days after ischemia. The differentiation of the BrdU+ cells was investigated 28 days after BrdU administration by analyzing the morphology, anatomic localization and cell phenotype by triple fluorescent labelling (BrdU, adult neural marker NeuN and DNA marker TOPRO-3) using confocal laser-scanning microscopy. This analysis showed increased neurogenesis in the DG in case of ischemia and triple positive labelling in some newborn cells in CA1. Seven brain hemispheres from gerbils subjected to ischemia did not develop CA1 neuronal death; hippocampus from these hemispheres did not show any of the above mentioned findings. Our results indicate that ischemia triggers proliferation in CA1 and neurogenesis in the DG in response to CA1 pyramidal neuronal death, independently of the reduced cerebral blood flow or the cell migration from subventricular zone (SVZ).  相似文献   

3.
The main olfactory bulb (MOB) is the first relay station of the olfactory system: it receives afferents from sensory neurons and sends efferents to the primary olfactory cortex. The MOB also receives many centrifugal afferents from various regions. Transection of peripheral afferents to the MOB has been reported to induce cell death in granule cells. However, little is known about the effect of transection of these central connections of the MOB in adult rats. Here, we used a unilateral olfactory peduncle transection model in the adult rat to examine neuronal degeneration in the MOB. In the MOB ipsilateral to the surgery, the granule cell layer (GCL) was smaller, and the number of mitral cells was decreased compared with the contralateral MOB at 7 days after surgery. Many degenerating cells were present in both the mitral cell layer (MCL) and GCL in the ipsilateral MOB at 3 days after surgery, although there were no obvious changes in the gross morphology. We also found terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick end labeling (TUNEL)-positive cells in the MCL and GCL in the ipsilateral MOB at 3 days after surgery. The majority of the degenerating and TUNEL-positive cells were located in the deep, rather than the superficial, GCL. Immunohistochemistry for activated caspase-9 further supported the occurrence of apoptotic cell death in the mitral and deeply located granule cells. These results indicate that not only axotomized mitral cells, but also deeply located granule cells that were not directly injured, underwent apoptosis after transection of the central connections, and suggest that sensitivities to transection of the central connections differ among granule cells according to their depth in the GCL.  相似文献   

4.
We previously obtained evidence for reduced cell proliferation in the dentate gyrus (DG) of fetuses with Down syndrome (DS), suggesting that the hippocampal hypoplasia seen in adulthood may be caused by defective early neuron production. The goal of this study was to establish whether DS fetuses (17-21 weeks of gestation) exhibit reduction in total cell number in the DG, hippocampus and parahippocampal gyrus (PHG). Volumes of the cellular layers and cell number were estimated with Cavalieri's principle and the optical fractionator method, respectively. We found that in DS fetuses all investigated structures had a reduced volume and cell number. Analysis of cell phenotype showed that DS fetuses had a higher percentage of cells with astrocytic phenotype but a smaller percentage of cells with neuronal phenotype. Immunohistochemistry for Ki-67, a marker of cycling cells, showed that DS fetuses had less proliferating cells in the germinal zones of the hippocampus and PHG. We additionally found that in the hippocampal region of DS fetuses there was a higher incidence of apoptotic cell death. Results show reduced neuron number in the DS hippocampal region and suggest that this defect is caused by disruption of neurogenesis and apoptosis, two fundamental processes underlying brain building.  相似文献   

5.
In adult hippocampus, neural progenitor cells give rise to neurons throughout life, and the neurogenesis is modulated by various intrinsic and extrinsic factors. Recent reports showed that lesion of septal cholinergic nuclei projecting to hippocampus suppressed the survival of newborn cells in the dentate gyrus (DG) of hippocampus. Here, we studied whether pharmacological treatment to activate or inhibit the cholinergic system could modulate adult hippocampal neurogenesis. 5'-Bromo-2'-deoxyuridine (BrdU) was injected to label dividing cells before the drug treatment. Immunohistochemical analysis was performed in normal rats chronically treated with an acetylcholinesterase inhibitor donepezil or a muscarinic acetylcholine receptor blocker scopolamine for four weeks. Donepezil increased, but scopolamine decreased, the number of BrdU-positive cells in the DG as compared with the control. Neither drug altered the percentage of BrdU-positive cells that were also positive for a neuronal marker neuronal nuclei, nor net population of proliferative cells labeled with proliferating cell nuclear antigen. We also found that donepezil enhanced, and scopolamine suppressed, the expression level of phosphorylated cAMP response element binding protein (CREB), which is related to cell survival, in the DG. These results indicate that donepezil enhances and scopolamine suppresses the survival of newborn cells in the DG via CREB signaling without affecting neural progenitor cell proliferation and the neuronal differentiation. This is the first evidence that pharmacological manipulation of the cholinergic system can modulate adult hippocampal neurogenesis.  相似文献   

6.
Changes in the number of satellite cells in neuron body sheaths in dorsal root ganglia (DRGs) were studied from 1 to 5 months of age in control and in vitamin E-deficient rats; furthermore, the satellite cell proliferation rate was detected in the same groups of animals with immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU). The number of satellite cells in sheaths of DRG neurons increased in the period of life considered both in control and in vitamin E-deficient rats. Satellite cell proliferation was observed in both groups, but its rate was found to be higher in vitamin E-deficient rats. The results obtained in control rats confirm that mitotic ability is retained by satellite cells in adulthood and show that at least some of newborn satellite cells add to the pre-existing population. The results obtained in vitamin E-deficient rats suggest that a faster turnover in satellite cell population takes place in these animals and support the idea that vitamin E could be an exogenous factor controlling cell proliferation.  相似文献   

7.
The adult hippocampal dentate gyrus (DG) exhibits cell proliferation and neurogenesis throughout life. We examined the effects of daily administration of eszopiclone (Esz), a commonly used hypnotic drug and γ‐aminobutyric acid (GABA) agonist, compared with vehicle, on DG cell proliferation and neurogenesis, and on sleep–wake patterns. Esz was administered during the usual sleep period of rats, to mimic typical use in humans. Esz treatment for 7 days did not affect the rate of cell proliferation, as measured by 5‐bromo‐2′‐deoxyuridine (BrdU) immunostaining. However, twice‐daily Esz administration for 2 weeks increased survival of newborn cells by 46%. Most surviving cells exhibited a neuronal phenotype, identified as BrdU–neuronal nuclei (NeuN) double‐labeling. NeuN is a marker of neurons. Non‐rapid eye movement sleep was increased on day 1, but not on days 7 or 14 of Esz administration. Delta electroencephalogram activity was increased on days 1 and 7 of treatment, but not on day 14. There is evidence that enhancement of DG neurogenesis is a critical component of the effects of antidepressant treatments of major depressive disorder (MDD). Adult‐born DG cells are responsive to GABAergic stimulation, which promotes cell maturation. The present study suggests that Esz, presumably acting as a GABA agonist, has pro‐neurogenic effects in the adult DG. This result is consistent with evidence that Esz enhances the antidepressant treatment response of patients with MDD with insomnia.  相似文献   

8.
The production of new neurons declines during adulthood and persists, although at very low levels, in the aged hippocampus. Since neurogenesis in young adults has been related to learning and memory, its reduction may contribute to the age-related impairments in these abilities. Adrenalectomy (ADX) enhances neurogenesis in the aged hippocampus, although it also induces neuronal cell death. Since the administration of an NMDA receptor antagonist enhances neurogenesis in young adult rats without deleterious morphological effects, we have tested whether neurogenesis could be reactivated in aged rats. Our study shows that cell proliferation, cell death, neurogenesis and the number of radial glia-like nestin immunoreactive cells decrease in middle-age (10 months) and remain very low in the aged hippocampus. Injection of the NMDA receptor antagonist to aged rats increases significantly the number of proliferating cells, new neurons and radial glia-like cells in the hippocampus.  相似文献   

9.
Running is known to promote neurogenesis. Besides being exercise, it results in a reward, and both of these factors might contribute to running-induced neurogenesis. However, little attention has been paid to how reward and exercise relate to neurogenesis. The present study is an attempt to determine whether a reward, in the form of intracranial self-stimulation (ICSS), influences neurogenesis in the hippocampus of adult rodents. We used bromodeoxyuridine labeling to quantify newly generated cells in mice and rats that experienced ICSS for 1 h per day for 3 days. ICSS increased the number of 5-bromodeoxyuridine (Brdu)-labeled cells in the hippocampal dentate gyrus (DG) of both species. The effect, when examined at 1 day, 1 week, and 4 weeks post-ICSS, was predominantly present in the side ipsilateral to the stimulation, although it was distributed to the contralateral side. We also found in rats that, 4 weeks after Brdu injection, surviving newborn cells in the hippocampal DG of the ICSS animals co-localized with a mature neuron marker, neuronal nuclei (NeuN), and these surviving cells in rats were double-labeled with Fos, a marker of neuronal activation, after the rats had been trained to perform a spatial task. The results demonstrate that ICSS can increase newborn neurons in the hippocampal DG that endure into maturity.  相似文献   

10.
Postischemic exercise decreases neurogenesis in the adult rat dentate gyrus   总被引:1,自引:0,他引:1  
Running exercise enhances neurogenesis in the normal adult and aged hippocampus. However, the effect of exercise on neurogenesis in the ischemic hippocampus is unclear. Here, we show that running exercise has different effects on ischemic and non-ischemic brain. Young (3-4-month-old) normotensive Wistar rats were used for this study. We administered bromodeoxyuridine (BrdU) to rats 7 days after the induction of transient forebrain ischemia or sham operation. BrdU-labeled cells were increased in the ischemic subgranular zone (SGZ) and granule cell layer (GCL) and double immunofluoresence showed approximately 80% of BrdU-labeled cells expressed neuronal markers. To assess the effect of running exercise on neurogenesis, BrdU-labeled cells in these regions were quantified after 1 day and 14 days. In sham-operated rats, the numbers of BrdU-labeled cells were significantly increased (2.2-fold) in the SGZ and GCL in response to running exercise. The numbers of BrdU-labeled cells were increased in response to ischemia, however, they were decreased 14 days after BrdU administration and running exercise accelerated the reduction in BrdU-labeled cells in ischemic rats. These findings suggest that running exercise has a negative effect on neurogenesis in the ischemic hippocampus. This may be important with respect to assessment of therapeutic approaches for functional recovery after stroke.  相似文献   

11.
The adult hippocampal dentate gyrus (DG) is a site of continuing neurogenesis. This process is influenced by a variety of physiological and experiential stimuli including total sleep deprivation (TSD). In humans, sleep fragmentation (SF) is a more common sleep condition than TSD. SF is associated with several prevalent diseases. We assessed a hypothesis that SF would suppress adult neurogenesis in the DG of the adult rat. An intermittent treadmill system was used; the treadmill was on for 3 s and off for 30 s (SF). For sleep fragmentation control (SFC), the treadmill was on for 15 min and off for 150 min. SF was conducted for three durations: 1, 4 and 7 days. To label proliferating cells, the thymidine analog, 5-bromo-2-deoxyuridine (BrdU), was injected 2 h prior to the end of each experiment. Expression of the intrinsic proliferative marker, Ki67, was also studied. SF rats exhibited an increased number of non-rapid eye movement (NREM) sleep bouts with no change in the percent of time spent in this stage. The numbers of both BrdU-positive cells and Ki67-positive cells were reduced by approximately 70% (P<0.05) in the SF groups after 4 and 7 days of experimental conditions whereas no differences were observed after 1 day. In a second experiment, we found that the percentage of new cells expressing a neuronal phenotype 3 weeks after BrdU administration was lower in the SF in comparison with the SFC group for all three durations of SF. We also examined the effects of SF on proliferation in adrenalectomized (ADX) animals, with basal corticosterone replacement. ADX SF animals exhibited a 55% reduction in the number of BrdU-positive cells when compared with ADX SFC. Thus, elevated glucocorticoids do not account for most of the reduction in cell proliferation induced by the SF procedure, although a small contribution of stress is not excluded. The results show that sustained SF induced marked reduction in hippocampal neurogenesis.  相似文献   

12.
Duchenne muscular dystrophy (DMD) results from null mutation of dystrophin, a membrane-associated structural protein that is expressed in skeletal muscle. Dystrophin deficiency causes muscle membrane lesions, muscle degeneration and eventually death in afflicted individuals. However, dystrophin deficiency also causes cognitive defects that are difficult to relate to the loss of dystrophin. We assayed neurogenesis in the dentate gyrus (DG) in the mdx mouse model of DMD, using bromodeoxyuridine incorporation as a marker of proliferation and NeuN expression as a marker of differentiation. Our findings show that dystrophin mutation disrupts adult neurogenesis by promoting cell proliferation in the DG and suppressing neuronal differentiation. Because loss of dystrophin from muscle results in the secondary loss of neuronal nitric oxide synthase (nNOS), and NO is able to modulate neurogenesis, we assayed whether the genetic restoration of nNOS to mdx muscles corrected defects in adult, hippocampal neurogenesis. Assays of NO in the sera of active mice showed significant reductions in NO caused by the dystrophin mutation. However, over-expression of nNOS in the muscles of mdx mice increased serum NO and normalized cell proliferation and neuronal differentiation in the DG. These findings indicate that muscle-derived NO regulates adult neurogenesis in the brain and loss of muscle nNOS may underlie defects in the central nervous system in DMD.  相似文献   

13.
Neurogenesis occurs in the adult brain throughout the lives of all mammals. The dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles have been established as the primary sites of adult neurogenesis, and recent studies have shown that inflammation has a modulating effect on adult neurogenesis. However, only limited studies have investigated how neurogenesis is affected during sepsis and sepsis-associated encephalopathy. Therefore, we investigated adult neurogenesis in the cecal ligation and puncture (CLP) model of sepsis using a cell proliferation marker, 5-bromo-2′-deoxyuridine (BrdU). Twenty-four rats were placed into the following three groups: an un-operated control group, a sham-operated group that underwent exactly the same procedures except for CLP, and a CLP group that survived surgical procedures and developed signs of sepsis. Rats were monitored for twenty-four hours before they were euthanized and their brains were harvested. Significantly higher numbers of BrdU-immunoreactive cells were observed in the SVZ of the lateral ventricles in the CLP group as compared with both control groups, while no significant difference was found in the number of DG granule cells between the three groups. The majority of BrdU-positive cells in the SVZ co-expressed the neuronal marker doublecortin but not the astrocytic marker glial fibrillary acidic protein. Taken together, our results suggest that sepsis induced by CLP in rats increases region-specific cellular regeneration, in a possible attempt to compensate for the devastating effect of sepsis and sepsis-associated encephalopathy on the brain.  相似文献   

14.
We investigated patterns of cell death in the turtle retina that could potentially be associated with the innervation of the optic tectum, and looked for mechanisms of retinal development that might be common to reptilian and homeotherm vertebrates. We used retinas of turtle embryos between the 23rd day of incubation (E23) (before the first optic fibres reach the optic tectum) and hatching (when all the optic fibres have established synaptic connections). Dying retinal neurons were identified in paraffin sections by the TUNEL technique, which specifically labels fragmented DNA. Apoptotic cells were found in the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL). Cell death in the GCL was intense between E29 and E47, and had disappeared by the day of hatching. In the INL, dead and dying cells were most abundant between E31 and E34, and progressively disappeared. The temporal pattern in the ONL was similar to the INL although the density was very low. In all the nuclear layers cell death spread from the dorso-temporal area of the central retina to the periphery. Additional dorsal to ventral and temporal to nasal gradients were distinguishable in a quantitative TUNEL analysis. The patterns of cell death observed in the developing turtle retina were thus similar to those found in birds and mammals. This process could be under the control of differentiation gradients in all the vertebrate classes.  相似文献   

15.
The kainate class of ionotropic glutamate receptors is involved in the regulation of neuronal transmission and synaptic plasticity. Previously we reported that a deletion variant within the gene GRIK4, which encodes the KA1 kainate receptor subunit, was associated with a reduced risk of bipolar disorder and increased GRIK4 mRNA abundance. Using a high resolution immunohistochemistry technique, we characterized KA1 protein localization in human brain and performed a genotype-protein expression correlation study. KA1 was expressed in specific populations of neuronal cells in the cerebellum and all layers of the frontal and parahippocampal cortices. In the hippocampus, strong KA1 expression was observed in the stratum pyramidale and stratum lucidum of CA3 and CA2, in cell processes in CA1, in the neuropil of the CA4 region, in polymorphic cells including mossy fiber neurons in the hilus, and dentate gyrus (DG) granule cells. Mean counts of KA1 positive DG granule cells, hippocampal CA3 pyramidal cells, and layer 1 of the frontal cortex were significantly increased in subjects with the deletion allele (P?=?0.0005, 0.018, and 0.0058, respectively) compared to subjects homozygous for the insertion. Neuronal expression levels in all regions quantified were higher in the deletion group. These results support our hypothesis that the deletion allele affords protection against bipolar disorder through increased KA1 protein abundance in neuronal cells. Biological mechanisms which may contribute to this protective effect include KA1 involvement in adult hippocampal neurogenesis, HPA axis activation, or plasticity processes affecting neuronal circuitry.  相似文献   

16.
为了观察营养不良对幼鼠海马齿状回 (DG)和脑室下层 (SVZ)的细胞增殖和神经发生的影响 ,采用 5 -溴 -2 -脱氧尿苷(Brd U)标记结合免疫组织化学方法对脑切片分别进行 Brd U、Tu J1(β tubulin,β微管蛋白 )及 GFAP(胶质纤维酸性蛋白 )反应或双重反应。结果表明 ,营养不良幼鼠齿状回的细胞增殖和神经生发明显高于营养良好的幼鼠而脑室下层的细胞增殖数量在两者却无明显差异。在齿状回 ,新生的细胞中大约有 5 0 %为新生的神经元 ,10~ 2 0 %为神经胶质细胞。本文结果提示 ,幼鼠海马齿状回的细胞增殖和神经生发可能因营养不良而增加 ,这些新生的细胞可能对日后某些海马依赖性行为产生一定的影响  相似文献   

17.
This study was aimed to determine whether imipramine chronic treatment promotes neurogenesis in the dentate gyrus (DG) and interferes with neuronal death in the CA1 subfield of the hippocampus after transient global cerebral ischemia (TGCI) in rats. After TGCI, animals were treated with imipramine (20 mg/kg, i.p.) or saline during 14 days. 5-Bromo-2′-deoxyuridine-5′-monophosphate (BrdU) was injected 24 h after the last imipramine or saline injection to label proliferating cells. In order to confirm the effect of TGCI on neuronal death and cell proliferation, a group of animals was sacrificed 7 days after TGCI. Neurogenesis and neurodegeneration were evaluated by doublecortin (DCX)-immunohistochemistry and Fluoro-Jade C (FJC)-staining, respectively. The rate of cell proliferation increases 7 days but returns to basal levels 14 days after TGCI. There was a significant increase in the number of FJC-positive neurons in the CA1 of animals 7 and 14 days after TGCI. Chronic imipramine treatment increased cell proliferation in the SGZ of DG and reduced the neurodegeneration in the CA1 of the hippocampus 14 days after TGCI. Immunohistochemistry for DCX detected an increased number of newly generated neurons in the hippocampal DG 14 days after TGCI, which was not affected by imipramine treatment. Further studies are needed to evaluate whether imipramine treatment for longer time would be able to promote survival of newly generated neurons as well as to improve functional recovery after TGCI.  相似文献   

18.
Verina T  Rohde CA  Guilarte TR 《Neuroscience》2007,145(3):1037-1047
Exposure to environmentally relevant levels of lead (Pb(2+)) during early life produces deficits in hippocampal synaptic plasticity in the form of long-term potentiation (LTP) and spatial learning in young adult rats [Nihei MK, Desmond NL, McGlothan JL, Kuhlmann AC, Guilarte TR (2000) N-methyl-D-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience 99:233-242; Guilarte TR, Toscano CD, McGlothan JL, Weaver SA (2003) Environmental enrichment reverses cognitive and molecular deficits induced by developmental lead exposure. Ann Neurol 53:50-56]. Other evidence suggests that the performance of rats in the Morris water maze spatial learning tasks is associated with the level of granule cell neurogenesis in the dentate gyrus (DG) [Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza P-V, Abrous DN (2003) Spatial memory performance of aged rats in the water maze predicts level of hippocampal neurogenesis. Proc Natl Acad Sci U S A 100:14385-14390]. In this study, we examined whether continuous exposure to environmentally relevant levels of Pb(2+) during early life altered granule cell neurogenesis and morphology in the rat hippocampus. Control and Pb(2+)-exposed rats received bromodeoxyuridine (BrdU) injections (100 mg/kg; i.p.) for five consecutive days starting at postnatal day 45 and were killed either 1 day or 4 weeks after the last injection. The total number of newborn cells in the DG of Pb(2+)-exposed rats was significantly decreased (13%; P<0.001) 1 day after BrdU injections relative to controls. Further, the survival of newborn cells in Pb(2+)-exposed rats was significantly decreased by 22.7% (P<0.001) relative to control animals. Co-localization of BrdU with neuronal or astrocytic markers did not reveal a significant effect of Pb(2+) exposure on cellular fate. In Pb(2+)-exposed rats, immature granule cells immunolabeled with doublecortin (DCX) displayed aberrant dendritic morphology. That is, the overall length-density of the DCX-positive apical dendrites in the outer portion of the DG molecular layer was significantly reduced up to 36% in the suprapyramidal blade only. We also found that the area of Timm's-positive staining representative of the mossy fibers terminal fields in the CA3 stratum oriens (SO) was reduced by 26% in Pb(2+)-exposed rats. These findings demonstrate that exposure to environmentally relevant levels of Pb(2+) during early life alters granule cell neurogenesis and morphology in the rat hippocampus. They provide a cellular and morphological basis for the deficits in synaptic plasticity and spatial learning documented in Pb(2+)-exposed animals.  相似文献   

19.
Injury to the brain often results in loss of synapses or cell death in the damaged area. Subsequent to the injury, the areas that are not directly affected often exhibit enhanced neuronal plasticity. Although there are many reports of morphological changes resulting from such plasticity, their functional consequences are poorly understood. In this study we examined electrophysiological changes associated with ischemia-induced neurogenesis in the hippocampus, a brain region that is particularly vulnerable but also exceptionally plastic. Transient global ischemia was induced in Sprague-Dawley rats by occlusion of both carotid arteries and a reduction in blood pressure for 12 min. The procedure resulted in delayed cell death in the CA1 field of the hippocampus while the dentate gyrus (DG) was spared. To assess neurogenesis and synaptic changes in parallel we used both hemispheres from each animal. One side was used for immunohistochemistry and the other for in vitro electrophysiological experiments in brain slices. Synaptic field responses and synaptic plasticity (LTP) in perforant path within the DG were reduced by 50% at 10 days after the ischemic injury but recovered at 35 days. Synaptic responses in non-neurogenic CA1 were abolished in parallel with cell death and did not recover. Gamma irradiation applied focally to the head selectively prevented neurogenesis and the synaptic recovery in the DG. These experiments reveal electrophysiological changes associated with reactive neural plasticity in the hippocampus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号