首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Acetylcholine functions as a neuromodulator in the mammalian brain by binding to specific receptors and thus bringing about profound changes in neuronal excitability. Activation of muscarinic receptors often results in an increased excitability of cortical cells. It is, however, unknown whether such an action is present in the subiculum, a limbic structure that may be involved in cognitive processes as well as in seizure propagation. Most rat subicular neurons are endowed of intrinsic membrane properties that make them fire action potential bursts. Using intracellular recordings from these bursting cells in a slice preparation, we report here that application of the cholinergic agonist carbachol (CCh, 30-100 microM) to medium containing ionotropic excitatory amino acid receptor antagonists reduces burst-afterhyperpolarizations (burst-AHPs) and discloses depolarizing plateau potentials that outlast the triggering current pulses by 140-2,800 ms. These plateau potentials appear with CCh concentrations >50 microM and are dependent on the resting membrane potential and on the intensity/duration of the triggering pulse; are recorded during application of tetrodotoxin (1 microM, n = 5 neurons); but are markedly reduced by replacing 82% of extracellular Na(+) with equimolar choline (n = 6). Plateau potentials also are abolished by Co(2+) (2 mM; n = 5) or Cd(2+) (1 mM; n = 2) application and by recording with electrodes containing the Ca(2+) chelator bis(2-aminophenoxy)ethane-N, N,N',N'-tetraacetic acid (0.2 M; n = 6). CCh-induced burst-AHP reduction and plateau potentials are reversed by the muscarinic antagonist atropine (0.5 microM, n = 7). In conclusion, our findings demonstrate a powerful muscarinic modulation of the intrinsic excitability of subicular bursting cells that is predominated by the appearance of plateau potentials. These changes in excitability may contribute to physiological processes such as learning or memory and play a role in the generation of epileptiform depolarizations. We propose that, as in other limbic structures, muscarinic plateau potentials in the subiculum are mainly due to a Ca(2+)-dependent nonselective cationic conductance.  相似文献   

3.
The origin of intracellular Ca2+ concentration ([Ca2+]i) transients stimulated by nicotinic (nAChR) and muscarinic (mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+]i increases that were reduced to approximately 60% of control in the presence of either atropine (1 microM) or mecamylamine (3 microM) and to <20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+]i response was reduced to 50% by 10 microM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+]i responses. Perforated-patch whole cell recording at -60 mV shows that the rise in [Ca2+]i is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+]i and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.  相似文献   

4.
5.
Cell bodies of afferent neurons located in lumbosacral dorsal root ganglia (DRG) provide Aδ- and C-fibres to the urinary bladder, reporting bladder wall tension, volume and noxious stimuli. Recent studies suggested an involvement of muscarinic acetylcholine receptors (mAChRs) not only in detrusor contractility but also in modulating afferent function, and this has been linked to the beneficial effects of muscarinic antagonists in the treatment of overactive bladder. Here, we aimed to determine the inventory of mAChR subtypes expressed by bladder afferent neurons in the mouse. Bladder afferent neurons were identified by retrograde neuronal tracing using Fast Blue (FB) or 1, 1′-dioctadecyl-3, 3, 3′, 3′-tetramethylindocarbocyanine perchlorhydrate (DiI) injection into the detrusor muscle. DRG L6-S1 were recognized as the major location of bladder afferent perikarya with an additional smaller peak at L1/L2. Retrogradely labelled bladder afferents located in DRG L4-S2 were subjected to immunohistochemistry or to laser-assisted microdissection with subsequent RT-PCR to study expression of mAChRs subtypes M1R–M5R. Immunolabelling for mAChR subtype M2R, validated on DRG from M2R gene-deficient mice, demonstrated this subtype on 35% of FB-labelled bladder afferents. RT-PCR demonstrated expression of subtypes M2R, M3R and M4R, but not of M1R and M5R, in pooled samples (30 section profiles each) of laser microdissected DiI-labelled bladder afferent cell bodies. In conclusion, bladder afferent neurons express different subtypes of mAChRs (M2R, M3R and M4R). Thus, processing of sensory information from the bladder appears to be under direct cholinergic control.  相似文献   

6.
In the present study, a cationic membrane conductance activated by the acetylcholine agonist carbachol was characterized in vitro in neurons of the basolateral amygdala. Extracellular perfusion of the K+ channel blockers Ba2+ and Cs+ or loading of cells with cesium acetate did not affect the carbachol-induced depolarization. Similarly, superfusion with low-Ca2+ solution plus Ba2+ and intracellular EGTA did not affect the carbachol-induced depolarization, suggesting a Ca2+-independent mechanism. On the other hand, the carbachol-induced depolarization was highly sensitive to changes in extracellular K+ or Na+. When the K+ concentration in the perfusion medium was increased from 4.7 to 10 mM, the response to carbachol increased in amplitude. In contrast, lowering the extracellular Na+ concentration from 143.2 to 29 mM abolished the response in a reversible manner. Results of coapplication of carbachol and atropine, pirenzepine or gallamine indicate that the carbachol-induced depolarization was mediated by muscarinic cholinergic receptors, but not the muscarinic receptor subtypes M1, M2 or M4, specifically. These data indicate that, in addition to the previously described reduction of a time- and voltage-independent K+ current (IKleak), a voltage- and time-dependent K+ current (IM), a slow Ca2+-activated K+ current (sIahp) and the activation of a hyperpolarization-activated inward rectifier K+ current (IQ), carbachol activated a Ca2+-independent non-selective cationic conductance that was highly sensitive to extracellular K+ and Na+ concentrations.  相似文献   

7.
Summary Neurons that project to the spinal cord were located in the mesencephalic reticular formation outside the interstitial nucleus of Cajal in cerebellectomized cats under chloralose anesthesia. Of these neurons 40% responded only at C1 (reticulospinal N cells) and the remaining 60% responded at C4 also (reticulospinal D cells). Conduction velocities of N cells were significantly slower than those of D cells. N cells and D cells responded similarly to stimulation of the whole vestibular nerves and vestibular nuclei. However, they differ in semicircular canal inputs; N cells were more responsive to canal stimulation. Comparison of properties between mesencephalic reticulospinal and interstitiospinal neurons (Fukushima et al. 1980) showed that many reticulospinal and interstitiospinal neurons have similar properties, suggesting that functionally similar neurons may be found distributed over more than one anatomically defined cell group.This study was supported in part by a Grant-in Aid for Scientific Research (No. 477063) from the Ministry of Education, Science, and Culture of Japan  相似文献   

8.
The effects of muscarinic stimulation on the membrane potential and current of in situ rat entorhinal-cortex layer-II principal neurons were analyzed using the whole cell, patch-clamp technique. In current-clamp experiments, application of carbachol (CCh) induced a slowly developing, prolonged depolarization initially accompanied by a slight decrease or no significant change in input resistance. By contrast, in a later phase of the depolarization input resistance appeared consistently increased. To elucidate the ionic bases of these effects, voltage-clamp experiments were then carried out. In recordings performed in nearly physiological ionic conditions at the holding potential of -60 mV, CCh application promoted the slow development of an inward current deflection consistently associated with a prominent increase in current noise. Similarly to voltage responses to CCh, this inward-current induction was abolished by the muscarinic antagonist, atropine. Current-voltage relationships derived by applying ramp voltage protocols during the different phases of the CCh-induced inward-current deflection revealed the early induction of an inward current that manifested a linear current/voltage relationship in the subthreshold range and the longer-lasting block of an outward K(+) current. The latter current could be blocked by 1 mM extracellular Ba(2+), which allowed us to study the CCh-induced inward current (I(CCh)) in isolation. The extrapolated reversal potential of the isolated I(CCh) was approximately 0 mV and was not modified by complete substitution of intrapipette K(+) with Cs(+). Moreover, the extrapolated I(CCh) reversal shifted to approximately -20 mV on removal of 50% extracellular Na(+). These results are consistent with I(CCh) being a nonspecific cation current. Finally, noise analysis of I(CCh) returned an estimated conductance of the underlying channels of approximately 13.5 pS. We conclude that the depolarizing effect of muscarinic stimuli on entorhinal-cortex layer-II principal neurons depends on both the block of a K(+) conductance and the activation of a "noisy" nonspecific cation current. We suggest that the membrane current fluctuations brought about by I(CCh) channel noise may facilitate the "theta" oscillatory dynamics of these neurons and enhance firing reliability and synchronization.  相似文献   

9.
10.
11.
Cholinergic activation of hippocampal targets can initiate and sustain network oscillations in vivo and in vitro , yet the impact of cholinergic modulation on the oscillatory properties of interneurones remains virtually unexplored. Using whole cell current clamp recordings in acute hippocampal slices, we investigated the influence of muscarinic receptor (mAChR) activation on the oscillatory properties of CA1 stratum oriens (SO) interneurones in vitro . In response to suprathreshold oscillatory input, mAChR activation increased spike reliability and precision, and extended the bandwidth that interneurone firing phase-locked. These suprathreshold effects were largest at theta frequencies, indicating that mAChR activation tunes active conductances to enhance firing reliability and precision to theta frequency input. Muscarinic tuning of the intrinsic oscillatory properties of interneurones is a novel mechanism that may be crucial for the genesis of the theta rhythm.  相似文献   

12.
When swimming, the lamprey maintains a definite orientation of its body in the vertical planes, in relation to the gravity vector, as the result of postural vestibular reflexes. Do the vestibular-driven mechanisms also play a role in the control of the direction of swimming in the horizontal (yaw) plane, in which the gravity cannot be used as a reference direction? In the present study, we addressed this question by recording responses to lateral turns in reticulospinal (RS) neurons mediating vestibulospinal reflexes. In intact lampreys, the activity of axons of RS neurons was recorded in the spinal cord by implanted electrodes. Vestibular stimulation was performed by periodical turns of the animal in the yaw plane (60 degrees peak to peak). It was found that the majority of responding RS neurons were activated by the contralateral turn. By removing one labyrinth, we found that yaw responses in RS neurons were driven mainly by input from the contralateral labyrinth. We suggest that these neurons, when activated by the contralateral turn, will elicit the ipsilateral turn and thus will compensate for perturbations of the rectilinear swimming caused by external factors. It is also known that unilateral eye illumination elicits a contralateral turn in the yaw plane (negative phototaxis). We found that a portion of RS neurons were activated by the contralateral eye illumination. By eliciting an ipsilateral turn, these neurons could mediate the negative phototaxis.  相似文献   

13.
In the swimming lamprey, a postural control system maintains a definite orientation of the animal's longitudinal axis in relation to the horizon (pitch angle). Operation of this system is based on vestibular reflexes. Important elements of the postural network are the reticulospinal (RS) neurons, which are driven by vestibular input and transmit commands for postural corrections from the brain stem to the spinal cord. Here we describe responses to vestibular stimulation (rotation of the animal in the pitch plane) in RS neurons of intact lampreys. The activity of neurons was recorded from their axons in the spinal cord by chronically implanted arrays of macroelectrodes. From the multielectrode recordings of mass activity, discharges in individual axons were extracted by means of a spike-sorting program, and the axon position in the spinal cord and its conduction velocity were determined. Vestibular stimulation was performed by rotating the animal in steps of 45 degrees throughout 360 degrees or by periodical "trapezoid" tilts between the nose-up and -down positions. Typically, the RS neurons exhibited both dynamic responses (activity during movement) and static responses (activity in a new sustained position). The neurons were classified into two groups according to their pattern of response. Group UP neurons responded preferentially to nose-up rotation with maximal activity at 0-135 degrees up. Group DOWN neurons responded preferentially to nose-down rotation with maximal activity at 0-135 degrees down. Neurons of the two groups also differed in the position of their axons in the spinal cord and axonal conduction velocity. An increase in water temperature, which presumably causes a downward turn in swimming lampreys, affected the activity in the UP and DOWN groups differently, so that the ratio UP responses to DOWN responses increased. We suggest that the UP and DOWN groups mediate the opposing vestibular reflexes and cause the downward and upward turns of the animal, respectively. The lamprey will stabilize the orientation in the pitch plane at which the effects of UP and DOWN groups are equal to each other. In addition to the main test (rotation in the pitch plane), the animals were also tested by rotation in the transverse (roll) plane. It was found that 22% of RS neurons responding to pitch tilts also responded to roll tilts. The overlap between the pitch and roll populations suggests that the RS pathways are partly shared by the pitch and roll control systems.  相似文献   

14.
In the frog, vestibular efferent fibers innervate only type-II vestibular hair cells. Through this direct contact with hair cells, efferent neurons are capable of modifying transmitter release from hair cells onto primary vestibular afferents. The major efferent transmitter, acetylcholine (ACh), is known to produce distinct pharmacological actions involving several ACh receptors. Previous studies have implicated the presence of muscarinic ACh receptors on vestibular hair cells, although, surprisingly, a muscarinic-mediated electrical response has not been demonstrated in solitary vestibular hair cells. This study demonstrates that muscarinic receptors can evoke transmitter release from vestibular hair cells. Detection of this release was obtained through patch-clamp recordings from catfish cone horizontal cells, serving as glutamate detectors after pairing them with isolated frog semicircular canal hair cells in a two-cell preparation. Although horizontal cells alone failed to respond to carbachol, application of 20 microM carbachol to the two-cell preparation resulted in a horizontal cell response that could be mimicked by exogenous application of glutamate. All of the horizontal cells in the two-cell preparation responded to 20 microM CCh. Furthermore, this presumed transmitter release persisted in the presence of d-tubocurarine at concentrations that block all known hair cell nicotinic ACh receptors. The effect on the detector cell, imparted by the carbachol application to the hair cell-horizontal cell preparation, was blocked both by 2-amino-5-phosphonopentanoic acid, a selective N-methyl-D-aspartate antagonist, and the muscarinic antagonist, atropine. Thus vestibular hair cells from the frog semicircular canal can be stimulated to release transmitter by activating their muscarinic receptors.  相似文献   

15.
The involvement of protein phosphorylation in cAMP-induced transmembrane current was tested electrophysiologically and pharmacologically in identified neurons of the Japanese land snail, Euhadra peliomphala. Intracellular injection of cAMP elicited a biphasic transmembrane current (cAMP current) which consisted of inward and outward components. The inward component was blocked with Na(+)-free, Ca2(+)-free saline and the outward component abolished by either application of tetraethylammonium or a long-lasting exposure to caffeine in Ca2(+)-free saline. The cAMP current was completely suppressed by the protein kinase inhibitors, protein kinase inhibitor isolated from rabbit muscle or isoquinoline sulfonamide (H-8). The catalytic subunit of cAMP-dependent protein kinase transiently restored the cAMP current suppressed by H-8 nearly to pre-H-8 level. These findings suggest that protein phosphorylation may be an intermediate step in the activation process of the cAMP current.  相似文献   

16.
The reticulospinal (RS) system is the main descending system transmitting commands from the brain to the spinal cord in the lamprey. It is responsible for initiation of locomotion, steering, and equilibrium control. In the present study, we characterize the commands that are sent by the brain to the spinal cord in intact animals via the reticulospinal pathways during locomotion. We have developed a method for recording the activity of larger RS axons in the spinal cord in freely behaving lampreys by means of chronically implanted macroelectrodes. In this paper, the mass activity in the right and left RS pathways is described and the correlations of this activity with different aspects of locomotion are discussed. In quiescent animals, the RS neurons had a low level of activity. A mild activation of RS neurons occurred in response to different sensory stimuli. Unilateral eye illumination evoked activation of the ipsilateral RS neurons. Unilateral illumination of the tail dermal photoreceptors evoked bilateral activation of RS neurons. Water vibration also evoked bilateral activation of RS neurons. Roll tilt evoked activation of the contralateral RS neurons. With longer or more intense sensory stimulation of any modality and laterality, a sharp, massive bilateral activation of the RS system occurred, and the animal started to swim. This high activity of RS neurons and swimming could last for many seconds after termination of the stimulus. There was a positive correlation between the level of activity of RS system and the intensity of locomotion. An asymmetry in the mass activity on the left and right sides occurred during lateral turns with a 30% prevalence (on average) for the ipsilateral side. Rhythmic modulation of the activity in RS pathways, related to the locomotor cycle, often was observed, with its peak coinciding with the electromyographic (EMG) burst in the ipsilateral rostral myotomes. The pattern of vestibular response of RS neurons observed in the quiescent state, that is, activation with contralateral roll tilt, was preserved during locomotion. In addition, an inhibition of their activity with ipsilateral tilt was clearly seen. In the cases when the activity of individual neurons could be traced during swimming, it was found that rhythmic modulation of their firing rate was superimposed on their tonic firing or on their vestibular responses. In conclusion, different aspects of locomotor activity-initiation and termination, vigor of locomotion, steering and equilibrium control-are well reflected in the mass activity of the larger RS neurons.  相似文献   

17.
Locomotor feedback signals from the spinal cord to descending brain stem neurons were examined in the lamprey using the uniquely identifiable reticulospinal neurons, the Müller and Mauthner cells. The same identified reticulospinal neurons were recorded in several preparations, under reduced conditions, to address whether an identified reticulospinal neuron shows similar locomotor-related oscillation timing from animal to animal and whether these timing signals can differ significantly from other identified reticulospinal neurons. Intracellular recordings of membrane potential in identified neurons were made in an isolated brain stem-spinal cord preparation with a high-divalent cation solution on the brain stem to suppress indirect neural pathways and with D-glutamate perfusion to the spinal cord to induce fictive swimming. Under these conditions, the identified reticulospinal neurons show significant clustering of the timings of the peaks and troughs of their locomotor-related oscillations. Whereas most identified neurons oscillated in phase with locomotor bursting in ipsilateral ventral roots of the rostral spinal cord, the B1 Müller cell, which has an ipsilateral descending axon, and the Mauthner cell, which has a contralateral descending axon, both had oscillation peaks that were out of phase with the ipsilateral ventral roots. The differences in oscillation timing appear to be due to differences in synaptic input sources as shown by cross-correlations of fast synaptic activity in pairs of Müller cells. Since the main source of the locomotor input under these experimental conditions is ascending neurons in the spinal cord, these experiments suggest that individual reticulospinal neurons can receive locomotor signals from different subsets of these ascending neurons. This result may indicate that the locomotor feedback signals from the spinal locomotor networks are matched in some way to the motor output functions of the individual reticulospinal neurons, which include command signals for turning and for compensatory movements.  相似文献   

18.
Feedback from the spinal locomotor networks provides rhythmic modulation of the membrane potential of reticulospinal (RS) neurons during locomotor activity. To further understand the origins of this rhythmic activity, the timings of the oscillations in spinobulbar (SB) neurons of the spinal cord and in RS neurons of the posterior and middle rhombencephalic reticular nuclei were measured using intracellular microelectrode recordings in the isolated brain stem-spinal cord preparation of the lamprey. A diffusion barrier constructed just caudal to the obex allowed induction of locomotor activity in the spinal cord by bath application of an excitatory amino acid to the spinal bath. All of the ipsilaterally projecting SB neurons recorded had oscillatory membrane potentials with peak depolarizations in phase with the ipsilateral ventral root bursts, whereas the contralaterally projecting SB neurons were about evenly divided between those in phase with the ipsilateral ventral root bursts and those in phase with the contralateral bursts. In the brain stem under these conditions, 75% of RS neurons had peak depolarizations in phase with the ipsilateral ventral root bursts while the remainder had peak depolarizations during the contralateral bursts. Addition of a high-Ca2+, Mg2+ solution to the brain stem bath to reduce polysynaptic activity had little or no effect on oscillation timing in RS neurons, suggesting that direct inputs from SB neurons make a major contribution to RS neuron oscillations under these conditions. Under normal conditions when the brain is participating in the generation of locomotor activity, these spinal inputs will be integrated with other inputs to RS neurons.  相似文献   

19.
Using [3H] quinuclidinyl benzylate ([3H] QNB) muscarinic cholinergic receptors have been demonstrated in crude membrane fractions of bovine retina. Specific [3H] QNB binding is saturable with a KD of 0.5 nM and a maximal number of muscarinic agonists and antagonists for displacing specific [3H] QNB binding closely parallel the affinities for muscarinic receptors in rat brain and guinea pig ileum. The findings may explain atropine sensitive effects of muscarinic agonists on the electroretinogram and on retinal cells in vitro.  相似文献   

20.
A lamprey maintains the dorsal-side-up orientation due to the activity of postural control system driven by vestibular input. Visual input can affect the body orientation: illumination of one eye evokes ipsilateral roll tilt. An important element of the postural network is the reticulospinal (RS) neurons transmitting commands from the brain stem to the spinal cord. Here we describe responses to vestibular and visual stimuli in RS neurons of the intact lamprey. We recorded activity from the axons of larger RS neurons with six extracellular electrodes chronically implanted on the surface of the spinal cord. From these multielectrode recordings of mass activity, discharges in individual axons were extracted by means of a spike-sorting program, and the axon position in the spinal cord and its conduction velocity were determined. Vestibular stimulation was performed by rotating the animal around its longitudinal axis in steps of 45 degrees through 360 degrees. Nonpatterned visual stimulation was performed by unilateral eye illumination. All RS neurons were classified into two groups depending on their pattern of response to vestibular and visual stimuli; the groups also differed in the axon position in the spinal cord and its conduction velocity. Each group consisted of two symmetrical, left and right, subgroups. In group 1 neurons, rotation of the animal evoked both dynamic and static responses; these responses were much larger when rotation was directed toward the contralateral labyrinth, and the dynamic responses to stepwise rotation occurred at any initial orientation of the animal, but they were more pronounced within the angular zone of 0-135 degrees. The zone of static responses approximately coincided with the zone of pronounced dynamic responses. The group 1 neurons received excitatory input from the ipsilateral eye and inhibitory input from the contralateral eye. When vestibular stimulation was combined with illumination of the ipsilateral eye, both dynamic and static vestibular responses were augmented. Contralateral eye illumination caused a decrease of both types of responses. Group 2 neurons responded dynamically to rotation in both directions throughout 360 degrees. They received excitatory inputs from both eyes. Axons of the group 2 neurons had higher conduction velocity and were located more medially in the spinal cord as compared with the group 1 neurons. We suggest that the reticulospinal neurons of group 1 constitute an essential part of the postural network in the lamprey. They transmit orientation-dependent command signals to the spinal cord causing postural corrections. The role of these neurons is discussed in relation to the model of the roll control system formulated in our previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号