首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
Modern electroencephalographic (EEG) technology contributed to the appreciation that the EEG signal outside the classical Berger frequency band contains important information. In epilepsy, research of the past decade focused particularly on interictal high‐frequency oscillations (HFOs) > 80 Hz. The first large application of HFOs was in the context of epilepsy surgery. This is now followed by other applications such as assessment of epilepsy severity and monitoring of antiepileptic therapy. This article reviews the evidence on the clinical use of HFOs in epilepsy with an emphasis on the latest developments. It highlights the growing literature on the association between HFOs and postsurgical seizure outcome. A recent meta‐analysis confirmed a higher resection ratio for HFOs in seizure‐free versus non–seizure‐free patients. Residual HFOs in the postoperative electrocorticogram were shown to predict epilepsy surgery outcome better than preoperative HFO rates. The review further discusses the different attempts to separate physiological from epileptic HFOs, as this might increase the specificity of HFOs. As an example, analysis of sleep microstructure demonstrated a different coupling between HFOs inside and outside the epileptogenic zone. Moreover, there is increasing evidence that HFOs are useful to measure disease activity and assess treatment response using noninvasive EEG and magnetoencephalography. This approach is particularly promising in children, because they show high scalp HFO rates. HFO rates in West syndrome decrease after adrenocorticotropic hormone treatment. Presence of HFOs at the time of rolandic spikes correlates with seizure frequency. The time‐consuming visual assessment of HFOs, which prevented their clinical application in the past, is now overcome by validated computer‐assisted algorithms. HFO research has considerably advanced over the past decade, and use of noninvasive methods will make HFOs accessible to large numbers of patients. Prospective multicenter trials are awaited to gather information over long recording periods in large patient samples.  相似文献   

3.
In patients being evaluated for epilepsy and in animal models of epilepsy, electrophysiological recordings are carried to capture seizures to determine the existence of epilepsy. Electroencephalography recordings from the scalp, or sometimes directly from the brain, are also used to locate brain areas where seizure begins, and in surgical treatment help plan the area for resection. As seizures are unpredictable and can occur infrequently, ictal recordings are not ideal in terms of time, cost, or risk when, for example, determining the efficacy of existing or new anti-seizure drugs, evaluating potential anti-epileptogenic interventions, or for prolonged intracerebral electrode studies. Thus, there is a need to identify and validate other electrophysiological biomarkers of epilepsy that could be used to diagnose, treat, cure, and prevent epilepsy. Electroencephalography recordings in the epileptic brain contain other interictal electrophysiological disturbances that can occur more frequently than seizures, such as interictal spikes (IIS) and sharp waves, and from invasive studies using wide bandwidth recording and small diameter electrodes, the discovery of pathological high-frequency oscillations (HFOs) and microseizures. Of IIS, HFOs, and microseizures, a significant amount of recent research has focused on HFOs in the pathophysiology of epilepsy. Results from studies in animals with epilepsy and presurgical patients have consistently found a strong association between HFOs and epileptogenic brain tissue that suggest HFOs could be a potential biomarker of epileptogenicity and epileptogenesis. Here, we discuss several aspects of HFOs, as well as IIS and microseizures, and the evidence that supports their role as biomarkers of epilepsy.  相似文献   

4.
The discovery that electroencephalography (EEG) contains useful information at frequencies above the traditional 80Hz limit has had a profound impact on our understanding of brain function. In epilepsy, high-frequency oscillations (HFOs, >80Hz) have proven particularly important and useful. This literature review describes the morphology, clinical meaning, and pathophysiology of epileptic HFOs. To record HFOs, the intracranial EEG needs to be sampled at least at 2,000Hz. The oscillatory events can be visualized by applying a high-pass filter and increasing the time and amplitude scales, or EEG time-frequency maps can show the amount of high-frequency activity. HFOs appear excellent markers for the epileptogenic zone. In patients with focal epilepsy who can benefit from surgery, invasive EEG is often required to identify the epileptic cortex, but current information is sometimes inadequate. Removal of brain tissue generating HFOs has been related to better postsurgical outcome than removing the seizure onset zone, indicating that HFOs may mark cortex that needs to be removed to achieve seizure control. The pathophysiology of epileptic HFOs is challenging, probably involving populations of neurons firing asynchronously. They differ from physiological HFOs in not being paced by rhythmic inhibitory activity and in their possible origin from population spikes. Their link to the epileptogenic zone argues that their study will teach us much about the pathophysiology of epileptogenesis and ictogenesis. HFOs show promise for improving surgical outcome and accelerating intracranial EEG investigations. Their potential needs to be assessed by future research.  相似文献   

5.
Purpose: We developed a technique to produce images of dynamic changes in ictal high‐frequency oscillations (HFOs) >40 Hz recorded on subdural electroencephalography (EEG) that are time‐locked to the ictal EEG and ictal semiology video. We applied this technique to Jacksonian seizures to demonstrate ictal HFO propagation along the homunculus in the primary sensory‐motor cortex to visualize the underlying epileptic network. Methods: We analyzed intracranial ictal EEGs from two patients with intractable Jacksonian seizures who underwent epilepsy surgery. We calculated the degrees of increase in amplitude within 40–80, 80–200, and 200–300 Hz frequency bands compared to the interictal period and converted them into topographic movies projected onto the brain surface picture. We combined these data with the ictal EEGs and video of the patient demonstrating ictal semiology. Key Findings: The ictal HFOs began in the sensory cortex and appeared concomitantly with the sensory aura. They then propagated to the motor cortex at the same time that focal motor symptoms evolved. As the seizure progressed, the ictal HFOs spread or reverberated in the rolandic region. However, even when the seizure became secondarily generalized, the ictal HFOs were confined to the rolandic region. In both cases, there was increased amplitude of higher frequency bands during seizure initiation compared to seizure progression. Significance: This combined movie showed the ictal HFO propagation corresponding to the ictal semiology in Jacksonian seizures and revealed the epileptic network involved in seizure initiation and progression. This method may advance understanding of neural network activities relating to clinical seizure generation and propagation.  相似文献   

6.
Currently, approximately 30% of patients with epilepsy do not have adequate seizure control. A greater understanding of the underlying mechanisms by which seizures start or propagate could lead to new therapeutic strategies. The recent development of optogenetics, because of its unprecedented precision for controlling activity within distinct neuronal populations, has revolutionized neuroscience, including epilepsy research. This Review discusses recent breakthroughs made with optogenetics in epilepsy research. These breakthroughs include new insights into the key roles that different cell types play in mediating seizures as well as in the development of epilepsy. Subsequently, we discuss how targeting different brain regions and cell populations has opened up the possibility of highly specific therapies that can stop seizures on demand. Finally, we illustrate how combining newly available neuroscience tools with whole‐brain imaging techniques will allow researchers to understand better the spread of seizures on a network level. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.  相似文献   

7.
Pathological high-frequency electrographic activity (pHFA, >80Hz) represents one of the major discoveries in epilepsy research over the past few decades. In this review we focus on the high-frequency activity recorded in vivo in chronic models of epilepsy. The presence of HFA particularly of fast ripples (250-600Hz)reflects epileptogenic reorganization of brain tissue, endogenous epileptogenicity and ability to generate spontaneous seizures. The spatial distribution of epileptic HFA can be used to localize epileptic foci. In some regions of brain the localizing value of epileptic HFA is weakened by frequency overlap with physiological HFA. In this situation, only detailed knowledge of the regional physiological activity may provide relevant information which frequencies provide localizing information. In the epileptic hippocampus, the activity from 250Hz to 600Hz frequency band (fast ripples) is always epileptic and can be used as reliable marker of epileptic tissue in all hippocampal subregions. The localizing value of HFA in the identification of the epileptic focus is discussed from an experimental and clinical perspective; as the information provided by HFA can improve presurgical diagnosis and surgical outcome. Finally, research into HFA has contributed to improved understanding and new insights into the cellular and network organization of epileptic foci and the pathophysiology of epilepsy.  相似文献   

8.
《Clinical neurophysiology》2020,131(2):377-384
ObjectiveThe project aimed to determine the alterations in the effective connectivity (EC) neural network in patients with insular epilepsy based on interictal high-frequency oscillations (HFOs) from magnetoencephalography (MEG) data.MethodsWe studied MEG data from 22 insular epilepsy patients and 20 normal subjects. Alterations in spatial pattern and connection properties of the patients with insular epilepsy were investigated in the entire brain network and insula-based network.ResultsAnalyses of the parameters of graph theory revealed the over-connectivity and small-world configuration of the global connectivity patterns observed in the patients. In the insula-based network, the insular cortex ipsilateral to the seizure onset displayed increased efferent and afferent EC. Left insular epilepsy featured strong connectivity with the bilateral hemispheres, whereas right insular epilepsy featured increased connectivity with only the ipsilateral hemisphere.ConclusionsPatients with insular epilepsy display alterations in the EC network in terms of both whole-brain connectivity and the insula-based network during interictal HFOs.SignificanceAlterations of interictal HFO-based networks provide evidence that epilepsy networks, instead of epileptic foci, play a key role in the complex pathophysiological mechanisms of insular epilepsy. The dysfunction of HFO networks may prove to be a novel promising biomarker and the cause of interictal brain dysfunctions in insular epilepsy.  相似文献   

9.
We investigated the relationship between the interictal high‐frequency oscillations (HFOs) and the seizure onset zones (SOZs) defined by the ictal HFOs or conventional frequency activity (CFA), and evaluated the usefulness of the interictal HFOs as spatial markers of the SOZs. We analysed seizures showing discrete HFOs at onset on intracranial EEGs acquired at ≥1000‐Hz sampling rate in a training cohort of 10 patients with temporal and extratemporal epilepsy. We classified each ictal channel as: HFO+ (HFOs at onset with subsequent evolution), HFO‐ (HFOs at onset without evolution), CFA (1.6–70‐Hz activity at onset with evolution), or non‐ictal. We defined the SOZs as: hSOZ (HFO+ channels only), hfo+&‐SOZ (HFO+ and HFO‐ channels), and cSOZ (CFA channels). Using automated methods, we detected the interictal HFOs and extracted five features: density, connectivity, peak frequency, log power, and amplitude. We created logistic regression models using these features, and tested their performance in a separate replication cohort of three patients. The models containing the five interictal HFO features reliably differentiated the channels located inside the SOZ from those outside in the training cohort (p<0.001), reaching the highest accuracy for the classification of hSOZ. Log power and connectivity had the highest odds ratios, both being higher for the channels inside the SOZ compared with those outside the SOZ. In the replication cohort of novel patients, the same models differentiated the HFO+ from HFO‐ channels, and predicted the extents of the hSOZ and hfo+&‐SOZ (F1 measure >0.5) but not the cSOZ. Our study shows that the interictal HFOs are useful in defining the spatial extent of the SOZ, and predicting whether or not a given channel in a novel patient would be involved in the seizure. The findings support the existence of an abnormal network of tightly‐linked ictal and interictal HFOs in patients with intractable epilepsy.  相似文献   

10.

Background and Purpose

There is growing interest in high-frequency oscillations (HFO) as electrophysiological biomarkers of the epileptic brain. We evaluated the clinical utility of interictal HFO events, especially their occurrence rates, by comparing the spatial distribution with a clinically determined epileptogenic zone by using subdural macroelectrodes.

Methods

We obtained intracranial electroencephalogram data with a high temporal resolution (2000 Hz sampling rate, 0.05-500 Hz band-pass filter) from seven patients with medically refractory epilepsy. Three epochs of 5-minute, artifact-free data were selected randomly from the interictal period. HFO candidates were first detected by an automated algorithm and subsequently screened to discard false detections. Validated events were further categorized as fast ripple (FR) and ripple (R) according to their spectral profiles. The occurrence rate of HFOs was calculated for each electrode contact. An HFO events distribution map (EDM) was constructed for each patient to allow visualization of the spatial distribution of their HFO events.

Results

The subdural macroelectrodes were capable of detecting both R and FR events from the epileptic neocortex. The occurrence rate of HFO events, both FR and R, was significantly higher in the seizure onset zone (SOZ) than in other brain regions. Patient-specific HFO EDMs can facilitate the identification of the location of HFO-generating tissue, and comparison with findings from ictal recordings can provide additional useful information regarding the epileptogenic zone.

Conclusions

The distribution of interictal HFOs was reasonably consistent with the SOZ. The detection of HFO events and construction of spatial distribution maps appears to be useful for the presurgical mapping of the epileptogenic zone.  相似文献   

11.
《Clinical neurophysiology》2021,132(7):1452-1461
ObjectiveNeonatal seizures are often the first symptom of perinatal brain injury. High-frequency oscillations (HFOs) are promising new biomarkers for epileptogenic tissue and can be found in intracranial and surface EEG. To date, we cannot reliably predict which neonates with seizures will develop childhood epilepsy. We questioned whether epileptic HFOs can be generated by the neonatal brain and potentially predict epilepsy.MethodsWe selected 24 surface EEGs sampled at 2048 Hz with 175 seizures from 16 neonates and visually reviewed them for HFOs. Interictal epochs were also reviewed.ResultsWe found HFOs in thirteen seizures (7%) from four neonates (25%). 5025 ictal ripples (rate 10 to 1311/min; mean frequency 135 Hz; mean duration 66 ms) and 1427 fast ripples (rate 8 to 356/min; mean frequency 298 Hz; mean duration 25 ms) were marked. Two neonates (13%) showed interictal HFOs (285 ripples and 25 fast ripples). Almost all HFOs co-occurred with sharp transients. We could not find a relationship between neonatal HFOs and outcome yet.ConclusionsNeonatal HFOs co-occur with ictal and interictal sharp transients.SignificanceThe neonatal brain can generate epileptic ripples and fast ripples, particularly during seizures, though their occurrence is not common and potential clinical value not evident yet.  相似文献   

12.
PURPOSE: To characterize the spatial and temporal course of ictal high-frequency oscillations (HFOs) recorded by subdural EEG in children with intractable neocortical epilepsy. METHODS: We retrospectively studied nine children (four girls, five boys; 4-17 yr) who presented with intractable extrahippocampal localization-related epilepsy and who underwent extraoperative video subdural EEG (1000 Hz sampling rate) and cortical resection. We performed multiple band frequency analysis (MBFA) to evaluate the frequency, time course, and distribution of ictal HFOs. We compared ictal HFO changes before and after clinical onset and postsurgical seizure outcomes. RESULTS: Seventy-eight of 79 seizures showed HFOs. We observed wide-band HFOs ( approximately 250 Hz, approximately 120 electrodes) in six patients either with partial seizures alone (three patients) or with epileptic spasms (three patients). Three patients with partial seizures that secondarily generalized had wide-band HFOs ( approximately 170 Hz) before clinical onset and sustained narrow-band HFOs (60-164 Hz) with electrodecremental events after clinical onset ( approximately 28 electrodes). In four postoperatively seizure-free patients, more electrodes recorded higher-frequency HFOs inside the resection area than outside before and after clinical seizure onset. In five patients with residual seizures, electrodes recorded more HFOs that were of higher or equal frequency outside the surgical area than inside after clinical onset. CONCLUSION: For partial seizures alone and epileptic spasms, more electrodes recorded only wide-band HFOs; for partial seizures that secondarily generalized, fewer electrodes recorded wide-band HFOs, but in these seizures electrodes also recorded subsequent sustained narrow-band ictal HFOs. Resection of those brain regions having electrodes with ictal, higher HFOs resulted in postsurgical seizure-free outcomes.  相似文献   

13.
PurposeApproximately 30% of epilepsy patients suffer from medically refractory epilepsy, in which seizures can not controlled by the use of anti-epileptic drugs (AEDs). Understanding the mechanisms underlying these forms of drug-resistant epileptic seizures and the development of alternative effective treatment strategies are fundamental challenges for modern epilepsy research. In this context, computational modeling has gained prominence as an important tool for tackling the complexity of the epileptic phenomenon. In this review article, we present a survey of computational models of epilepsy from the point of view that epilepsy is a dynamical brain disease that is primarily characterized by unprovoked spontaneous epileptic seizures.MethodWe introduce key concepts from the mathematical theory of dynamical systems, such as multi-stability and bifurcations, and explain how these concepts aid in our understanding of the brain mechanisms involved in the emergence of epileptic seizures.ResultsWe present a literature survey of the different computational modeling approaches that are used in the study of epilepsy. Special emphasis is placed on highlighting the fine balance between the degree of model simplification and the extent of biological realism that modelers seek in order to address relevant questions. In this context, we discuss three specific examples from published literature, which exemplify different approaches used for developing computational models of epilepsy. We further explore the potential of recently developed optogenetics tools to provide novel avenue for seizure control.ConclusionWe conclude with a discussion on the utility of computational models for the development of new epilepsy treatment protocols.  相似文献   

14.
Adult brain networks generate a wide range of oscillations. Some of these are behaviourally relevant, whereas others occur during seizures and other pathological conditions. This raises the question of how physiological oscillations differ from pathogenic ones. In this review, this issue is discussed from a developmental standpoint. Indeed, both epileptic and physiological high-frequency oscillations (HFOs) appear progressively during maturation, and it is therefore possible to determine how this program corresponds to maturation of the neuronal populations that generate these oscillations. We review here important differences in the development of neuronal populations that might contribute to their different oscillatory properties. In particular, at an early stage, the density of glutamatergic synapses is too low for physiological HFOs but an additional drive can be provided by excitatory GABA, triggering epileptic HFOs and the cascades involved in long-lasting epileptogenic transformations. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).  相似文献   

15.
Purpose: Human hypothalamic hamartomas (HHs) are associated with gelastic seizures, intrinsically epileptogenic, and notoriously refractory to medical therapy. We previously reported that the L‐type calcium channel antagonist nifedipine blocks spontaneous firing and γ‐aminobutyric acid (GABA)A–induced depolarization of single cells in HH tissue slices. In this study, we examined whether blocking L‐type calcium channels attenuates emergent activity of HH neuronal networks. Methods: A high‐density multielectrode array was used to record extracellular signals from surgically resected HH tissue slices. High‐frequency oscillations (HFOs, ripples and fast ripples), field potentials, and multiunit activity (MUA) were studied (1) under normal and provoked [4‐aminopyridine (4‐AP)] conditions; and (2) following nifedipine treatment. Key Findings: Spontaneous activity occurred during normal artificial cerebrospinal fluid (aCSF) conditions. Nifedipine reduced the total number and duration of HFOs, abolished the association of HFOs with field potentials, and increased the inter‐HFO burst intervals. Notably, the number of active regions was decreased by 45 ± 9% (mean ± SEM) after nifedipine treatment. When considering electrodes that detected activity, nifedipine increased MUA in 58% of electrodes and reduced the number of field potentials in 67% of electrodes. Provocation with 4‐AP increased the number of events and, as the number of electrodes that detected activity increased 248 ± 62%, promoted tissue‐wide propagation of activity. During provocation with 4‐AP, nifedipine effectively reduced HFOs, the association of HFOs with field potentials, field potentials, MUA, and the number of active regions, and limited propagation. Significance: This is the first study to report (1) the presence of HFOs in human subcortical epileptic brain tissue in vitro; (2) the modulation of “pathologic” high‐frequency oscillations (i.e., fast ripples) in human epileptic tissue by L‐type calcium channel blockers; and (3) the modulation of network physiology and synchrony of emergent activity in human epileptic tissue following blockade of L‐type calcium channels. Attenuation of activity in HH tissue during normal and provoked conditions supports a potential therapeutic usefulness of L‐type calcium channel blockers in epileptic patients with HH.  相似文献   

16.
17.
The current study aimed to investigate the spatial and temporal patterns of high‐frequency oscillations (HFOs) in the intra‐/extrahippocampal areas during epileptogenesis. Local field potentials were bilaterally recorded from hippocampus (CA1), thalamus, motor cortex, and prefrontal cortex in 13 rats before and after intrahippocampal kainic acid (KA) lesions. HFOs in the ripple (100‐200 Hz) and fast ripple (250‐500 Hz) ranges were detected and their rates were computed during different time periods (1‐5 weeks) after KA‐induced status epilepticus (SE). Recurrent spontaneous seizures were observed in 7 rats after SE, and the other 6 rats did not develop epilepsy. During the latent period, the rate of hippocampal HFOs increased at the ipsilateral site of the KA lesion in both groups, and the HFO rate was significantly higher in the animals that later developed epilepsy. Animals that later developed epilepsy also demonstrated widespread appearance of HFOs, in both the ripple and the fast ripple range, whereas animals that did not develop epilepsy only exhibited changes in the ipsilateral intrahippocampal HFO rate. This study demonstrates an association between an increased rate of widespread HFOs and the later development of epilepsy, suggesting the formation of large‐scale distributed pathological networks during epileptogenesis.  相似文献   

18.
Epilepsy encompasses a diverse group of seizure disorders caused by a variety of structural, cellular and molecular alterations of the brain primarily affecting the cerebral cortex, leading to recurrent unprovoked epileptic seizures. In this two-part review we examine the mechanisms underlying normal neuronal function and those predisposing to recurrent epileptic seizures starting at the most basic cellular derangements (Part 1) and working up to the highly complex epileptic networks (Part 2). We attempt to show that multiple factors can modify the epileptic process and that different mechanisms underlie different types of epilepsy, and in most situations there is an interplay between multiple genetic and environmental factors.  相似文献   

19.
As an important promising biomarker, high frequency oscillations (HFOs) can be used to track epileptic activity and localize epileptogenic zones. However, visual marking of HFOs from a large amount of intracranial electroencephalogram (iEEG) data requires a great deal of time and effort from researchers, and is also very dependent on visual features and easily influenced by subjective factors. Therefore, we proposed an automatic epileptic HFO detection method based on visual features and non-intuitive multi-domain features. To eliminate the interference of continuous oscillatory activity in detected sporadic short HFO events, the iEEG signals adjacent to the detected events were set as the neighboring environmental range while the number of oscillations and the peak–valley differences were calculated as the environmental reference features. The proposed method was developed as a MatLab-based HFO detector to automatically detect HFOs in multi-channel, long-distance iEEG signals. The performance of our detector was evaluated on iEEG recordings from epileptic mice and patients with intractable epilepsy. More than 90% of the HFO events detected by this method were confirmed by experts, while the average missed-detection rate was < 10%. Compared with recent related research, the proposed method achieved a synchronous improvement of sensitivity and specificity, and a balance between low false-alarm rate and high detection rate. Detection results demonstrated that the proposed method performs well in sensitivity, specificity, and precision. As an auxiliary tool, our detector can greatly improve the efficiency of clinical experts in inspecting HFO events during the diagnosis and treatment of epilepsy.  相似文献   

20.
Epilepsy encompasses a diverse group of seizure disorders caused by a variety of structural, cellular and molecular alterations of the brain primarily affecting the cerebral cortex, leading to recurrent unprovoked epileptic seizures. In this two-part review we examine the mechanisms underlying normal neuronal function and those predisposing to recurrent epileptic seizures starting at the most basic cellular derangements (Part 1, Volume 16, Issue 3) and working up to the highly complex epileptic networks and factors that modulate the predisposition to seizures (Part 2). We attempt to show that multiple factors can modify the epileptic process and that different mechanisms underlie different types of epilepsy, and in most situations there is an interplay between multiple genetic and environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号