首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
CD4+ T cells regulate humoral and cell-mediated immune responses, which are progressively impaired in aging, resulting in susceptibility to infections and cancer. Dendritic cells (DCs) are major activators of T cells, providing signals that drive their expansion and differentiation. In this study, we asked if decreased CD4+ T cell responses were influenced by the age of DCs rather than being exclusively due to T cell defects. Old T cells transferred to young recipients expanded and differentiated similarly to young T cells. However, aged recipients were poor stimulators of both old and young T cells, which failed to acquire CD44 expression and produce interferon gamma (IFN-γ). DCs in aged hosts expressed fewer MHC-peptide complexes. The CD86 expression in the DCs of both hosts was similar; however, CD40 levels were reduced in old DCs. Finally, old DCs failed to produce inflammatory cytokines in response to LPS. Our results indicate that the impairment of aged CD4+ T cell function is intimately related to multiple alterations in aged DCs, rather than being caused solely by intrinsic T cell defects, suggesting that the function of aged T cells may be partially rescued in vivo when appropriate stimulation is applied. These findings are relevant to vaccination design for elderly populations.  相似文献   

2.
免疫衰老的研究进展   总被引:2,自引:0,他引:2  
目前的研究认为,免疫衰老并非不可避免的逐进性退化过程,而是一个漫长的重塑结果.其中大部分免疫功能发生了退行性下降,但是少部分改变不显著,甚至略有加强.免疫衰老是一个与年龄相关的改变,累及非常复杂的机制,包括中枢免疫器官,外周免疫器官和细胞以及免疫分子的各个部分,从免疫细胞在中枢免疫器官的生成至造血干细胞到外周血淋巴细胞的转移、成熟以及增殖、分化、活化的各个阶段.免疫衰老引起的淋巴系统和细胞的功能紊乱,明显地影响了老年人的健康、疾病和死亡.对免疫衰老随龄性改变进行研究,旨在更好地预防老年随龄性疾病的发生发展,进而改善老年人群的生存质量和寿命.  相似文献   

3.
In this study we examine the effects of aging on antigen presentation of B cells and monocytes. We compared the antigen presentation function of peripheral blood B cells from young and old subjects using a system that specifically measures the B cell receptor (BCR)-mediated MHC-II antigen presentation. Monocytes were studied as well. Overall the mean magnitude of antigen presentation of soluble antigen and peptide was not different in older and younger subjects for both B cells and monocytes. Older subjects, however, showed increased heterogeneity of BCR-mediated antigen presentation by their B cells. The magnitude and variability of peptide presentation, which do not require uptake and processing, were the same between groups. Presentation by monocytes had similar variability between the older and younger subjects. These data suggest that poor B cell antigen processing, which results in diminished presentation in some older individuals may contribute to poor vaccine responses.  相似文献   

4.
Immunosenescence is thought to result from cellular aging and to reflect exposure to environmental stressors and antigens, including cytomegalovirus (CMV). However, not all of the features of immunosenescence are consistent with this view, and this has led to the emergence of the sister theory of “inflammaging”. The recently discovered diffuse tissue distribution of resident memory T cells (TRM) which don't recirculate, calls these theories into question. These cells account for most T cells residing in barrier epithelia which sit in and travel through the extracellular matrix (ECM). With almost all studies to date carried out on peripheral blood, the age-related changes of the ECM and their consequences for T cell mobility, which is crucial for the function of these cells, have been largely ignored. We propose an update of the theoretical framework of immunosenescence, based on a novel hypothesis: the increasing stiffness and cross-linking of the senescent ECM lead to a progressive immunodeficiency due to an age-related decrease in T cell mobility and eventually the death of these cells. A key element of this mechanism is the mechanical stress to which the cell cytoplasm and nucleus are subjected during passage through the ECM. This hypothesis is based on an “evo-devo” perspective bringing together some major characteristics of aging, to create a single interpretive framework for immunosenescence.  相似文献   

5.
During aging the immune system (IS) undergoes remarkable changes that collectively are known as immunosenescence. It is a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays a critical role in most chronic diseases in older people. For a long time, immunosenescence has been considered detrimental because it may lead to a low-grade, sterile chronic inflammation we proposed to call "inflammaging" and a progressive reduction in the ability to trigger effective antibody and cellular responses against infections and vaccinations. Recently, many scientists revised this negative meaning because it can be considered an essential adaptation/remodeling resulting from the lifelong immunological biography of single individuals from an evolutionary perspective. Inflammaging can be considered an adaptive process because it can trigger an anti-inflammatory response to counteract the age-related pro-inflammatory environment. Centenarians represent a valuable model to study the beneficial changes occurring in the IS with age. These extraordinary individuals reached the extreme limits of human life by slowing down the aging process and, in most cases, delaying, avoiding or surviving the major age-associated diseases. They indeed show a complex and heterogeneous phenotype determined by an improved ability to adapt and remodel in response to harmful stimuli. This review aims to point out the intimate relationship between immunosenescence and inflammaging and how these processes impact unsuccessful aging rather than longevity. We also describe the gut microbiota age-related changes as one of the significant triggers of inflammaging and the sex/gender differences in the immune system of the elderly, contributing to the sex/gender disparity in terms of epidemiology, pathophysiology, symptoms and severity of age-related diseases. Finally, we discuss how these phenomena could influence the susceptibility to COVID-19 infection.  相似文献   

6.
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions.In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.  相似文献   

7.
A healthy functioning immune system is critical to stave off infectious diseases, but as humans and other organisms age, their immune systems decline. As a result, diseases that were readily thwarted in early life pose nontrivial harm and can even be deadly in late life. Immunosenescence is defined as the general deterioration of the immune system with age, and it is characterized by functional changes in hematopoietic stem cells (HSCs) and specific blood cell types as well as changes in levels of numerous factors, particularly those involved in inflammation. Potential mechanisms underlying immunosenescence include epigenetic changes such as changes in DNA methylation (DNAm) and DNA hydroxymethylation (DNAhm) that occur with age. The purpose of this review is to describe what is currently known about the relationship between immunosenescence and the age-related changes to DNAm and DNAhm, and to discuss experimental approaches best suited to fill gaps in our understanding.  相似文献   

8.
The mammalian immune system defends the organism against pathogens, and possibly cancer, but is known to become dysregulated with increasing age. This results in greater morbidity and mortality due to infectious disease in old people. The most important changes occur in T cell immunity, manifested sometimes dramatically as altered clonal expansions of cells of limited antigen specificity and a marked shrinkage of the T cell antigen receptor repertoire. At the same time, it was independently reported that CMV seropositivity was associated with many of the same T cell changes that were being identified as biomarkers of immune ageing. It has now become clear that CMV is commonly the driving force behind the oligoclonal expansions and altered phenotypes and functions of CD8 cells seen in most old people. These changes are much less obvious in centenarians and most extreme in people whom longitudinal studies have shown to possess an "immune risk profile". This is a cluster of immunological parameters of which CMV seropositivity is one component and which predicts incipient mortality in an elderly population. Taken together, these findings suggest the hypothesis that persistence of CMV as a chronic antigenic stressor is a major contributor to immunosenescence and associated mortality.  相似文献   

9.
In this paper, we presented the results of analysis of experimental evidence for the decline of the human immune system functioning with age using mathematical model of immunosenescence. The most prominent changes in this system are related to the decline in the T-cellular immunity. These include the decline in the nai;ve T cells generation rate, shrinkage of the volume of the peripheral lymphoid tissue, decline of absolute and relative concentrations of nai;ve T cells in the blood, shortening of the average telomere length of T cells. These alterations in the immune system are responsible for sharp increase of morbidity and mortality caused by infectious agents at old ages. Analysis shows that concentrations of memory and nai;ve T cells in peripheral lymphoid tissue are the key variables in this process. Simulation experiments with our model show that the average life span of memory T cells must grow with age, and that decreasing of antigenic load led to considerable increase in organism's resistance in middle ages, but only to slight increase in old ages. Restriction in the rate of thymus involution resulted in an increase of organism's resistance to infections in old ages. However, this growth is accompanied by the decline of concentration of memory T cells and shortening of their life span. The proposed model describes the trade-off between concentrations of nai;ve and memory T cells and their potential to proliferate in human organism.  相似文献   

10.
Primary proliferative T cell responses require stimulation with antigen-pulsed dendritic cells (Ag-DC). Here we show that for optimal stimulation, dendritic cells (DC) not exposed directly to antigen are also required. Ag-DC added to DC-depleted T cells caused negligible primary stimulation; adding back DC resulted in stimulation. These effects were seen using the contact sensitizer fluorescein isothiocyanate (FITC), FITC conjugated to ovalbumin (FITC-OVA) or influenza virus as antigens. DC co-cultured with Ag-DC (using FITC or FITC-OVA) acquired antigen indicating that antigen was transferred between DC. DC that acquired antigen secondarily were separated by cell sorting and stimulated primary T cell proliferation directly. DC were also pulsed with FITC, washed thoroughly and incubated overnight. Super natants contained shed antigen since DC incubated in these supernatants acquired antigen as indicated by flow cytometry. DC acquiring the shed antigen also stimulated T cell proliferation although the stimulation was not as effective as that seen when cell contact between DC and antigen-bearing DC occurred. Thus, in primary stimulation, activation of T cells may occur when there is an antigen gradient between Ag-DC and DC and the mechanisms underlying these effects are now being sought. We propose that this unique interaction between antigen-presenting cells may be a paradigm for self/non-self discrimination.  相似文献   

11.
Tapasin is a member of the MHC class I loading complex where it bridges the TAP peptide transporter to class I molecules. The main role of tapasin is assumed to be the facilitation of peptide loading and optimization of the peptide cargo. Here, we describe another important function for tapasin. In tapasin-deficient (Tpn(-/-)) mice the absence of tapasin was found to have a dramatic effect on the stability of the TAP1/TAP2 heterodimeric peptide transporter. Steady-state expression of TAP protein was reduced more than 100-fold from about 3 x 10(4) TAP molecules per wild-type splenocyte to about 1 x 10(2) TAP per Tpn(-/-) splenocyte. Thus, a major function of murine tapasin appears to be the stabilization of TAP. The low amount of TAP moleculesin Tpn(-/-) lymphocytes is likely to contribute to the severe impairment of MHC class I expression. Surprisingly, activation of Tpn(-/-) lymphocytes yielded strongly enhanced class I expression comparable to wild-type levels, although TAP expression remained low and in the magnitude of several hundred molecules per cell. The high level of class I on activated Tpn(-/-) cells depended on peptides generated by the proteasome as indicated by blockade with the proteasome-specific inhibitor lactacystin. Lymphocyte activation induced an increase in ubiquitinated proteins that are cleaved into peptides by the proteasome. These findings suggest that in the presence of a large peptide pool in the cytosol, a small number of TAP transporters is sufficient to translocate enough peptides for high class I expression. However, these class I molecules were less stable than those of wild-type cells, indicating that tapasin is not only required for stabilization of TAP but also for optimization of the spectrum of bound peptides.  相似文献   

12.
MacrophAging: a cellular and molecular review   总被引:1,自引:0,他引:1  
Aging is associated with the deterioration of several physiological functions, which leads to aged-related pathologies and, ultimately, to death. The immune system is affected by aging, causing an increased susceptibility to infections and mortality, as well as a major incidence of immune diseases and cancer in the elderly. Because macrophages are an essential component of both innate and adaptive immunity, altered function of these phagocytic cells with aging may play a key role in immunosenescence. Here we summarize data about the effects of aging on macrophages and we discuss the molecular events that could be involved in this process.  相似文献   

13.
To investigate how early events in antigen processing affect the repertoire of peptides presented by MHC class I molecules, we compared the presentation of the influenza A nucleoprotein epitope 265 – 273 by HLA-A3 class I molecules in human and mouse cells. Mouse cells that express HLA-A3 failed to present the NP265 – 273 peptide when contained within the full-length nucleoprotein, to HLA-A3-restricted human cytotoxic T lymphocytes. However, when the epitope was generated directly in the cytosol using a recombinant vaccinia virus that expressed the nonamer peptide, mouse cells were recognized by HLA-A3-restricted CTL. Poor transport of the peptide by mouse TAP was not responsible for the defect as co-infection of mouse cells with recombinant vaccinia viruses encoding the full-length nucleoprotein and the human TAP1 and TAP2 peptide transporter complex failed to restore presentation. These results therefore demonstrate a differential processing of the influenza nucleoprotein in mouse and human cells. This polymorphism influences the repertoire of peptides presented by MHC class I molecules at the cell surface.  相似文献   

14.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is frequently used in preclinical and clinical protocols to modulate autoimmune responses, bone marrow transplants, and recovery from immune ablative therapies. The immunological outcome of such therapies is not fully understood. We tested the hypothesis that GM-CSF would enhance the maturation of antigen-presenting cells, facilitating presentation of beta-cell autoantigens to autoreactive T cells. We found that islet expression of GM-CSF greatly enhanced disease in male mice. Islet-derived APC but not splenic APC showed markedly enhanced capacity to stimulate in vitro proliferative responses of islet-antigen-specific autoreactive T cells. In vivo transfer of CD8(+) and CD4(+) T cells demonstrate that autoreactive T cells undergo extensive division in pancreatic lymph nodes of GM-CSF-transgenic mice compared with wild-type NOD male mice. Together, the results presented here demonstrate that expression of GM-CSF in the pancreas can enhance autoimmunity in disease-susceptible mice.  相似文献   

15.
Proteasome‐mediated proteolysis is responsible for the generation of immunogenic epitopes presented by MHC class I molecules, which activate antigen‐specific CD8+ T cells. Immunoproteasomes, defined by the presence of the three catalytic subunits LMP2, MECL‐1, and LMP7, have been hypothesized to optimize MHC class I antigen processing. In this study, we demonstrate that the infection of mice with a protozoan parasite, Toxoplasma gondii, induced the expression of LMP7 mRNA in APC and increased the capacity of APC to induce the production of IFN‐γ by antigen‐specific CD8+ T cells. In vitro infection of a DC cell line with T. gondii also induced the expression of LMP7 and resulted in enhanced proteasome proteolytic activity. Finally, mice lacking LMP7 were highly susceptible to infection with T. gondii and showed a reduced number of functional CD8+ T cells. These results demonstrate that proteasomes containing LMP7 play an indispensable role in the survival of mice infected with T. gondii, presumably due to the efficient generation of CTL epitopes required for the functional development of CD8+ T cells.  相似文献   

16.
This report details the biochemical features of natural peptides selected by the H-2Kd class I MHC molecule. In normal cell lines, the length of the naturally processed peptides ranged from 8 to 18 amino acids, although the majority were 9-mers (16% were longer than nine residues). The binding motif for the 9-mer peptides was dominated by the presence of a tyrosine at P2 and an isoleucine/leucine at the P9 position. The P2 residue contributed most towards binding; and the short peptides bound better and formed longer-lived cell surface complexes than the long peptides, which bound poorly and dissociated rapidly. The longer peptides did not exhibit this strictly defined motif. Trimming the long peptides to their shorter forms did not enhance binding and conversely, extending the 9-mer peptides did not decrease binding. The long peptides were present on the cell-surface bound to H-2Kd (Kd) and were not intermediate products of the class I MHC processing pathway. Finally, in two different TAP-deficient cells the long peptides were the dominant species, which suggested that TAP-independent pathways selected for long peptides by class I MHC molecules.  相似文献   

17.
We have determined the half-life in vivo of antigen/MHC class II complexes in different organ microenvironments. Mice were “pulsed” with myoglobin intravenously and MHC class II-positive antigen-presenting cell (APC) populations from different organs were isolated after various time intervals. Specific antigen/MHC complexes were quantitated by co-cultivation of the APC subsets with myoglobin-specific T-T hybridoma cells in vitro. Half-lives of antigen/MHC complexes differed both between organs and between compartments of the same organ. Half-lives in peripheral organs (spleen and bone marrow) ranged between 3 and 8 h, whereas in the thymus half-lives between 13 h (cortical epithelial cells) and 22 h (medullary dendritic cells) were observed. Half lives in vivo were independent of antigen processing, since intact protein or antigenic peptides yielded similar values. The considerably longer half-life of peptide/MHC complexes in the thymus as compared to peripheral organs may reflect the distinct role which antigen presentation plays in both organs, i.e. induction of tolerance versus induction of immunity.  相似文献   

18.
The outcome following HIV infection depends on the nature and durability of the HIV-specific T cell response induced initially. The activation of protective T cell responses depends upon dendritic cells (DC), antigen-presenting cells which have the capacity to process and present viral antigens. DC pulsed with aldrithiol-2-inactivated HIV and delivered in vivo were reported to induce immune responses and promote virologic control in chronically HIV-1-infected subjects. To gain an understanding of this phenomenon, we characterized the steps involved in the presentation of antigens derived from aldrithiol-2-treated vs. infectious HIV-1 by DC. Antigen presentation, on both MHC class I and II, was independent of DC-specific ICAM-3-grabbing integrin, DEC-205 and macrophage mannose receptor, C-type lectins expressed by the DC. Inhibitor studies showed that presentation on MHC class I was dependent on viral fusion in a CD4/coreceptor-dependent manner, both at the cell surface and within endosomes, and access to the classical endosomal processing pathway. MHC class II presentation of HIV-associated antigens was dependent on active endocytosis, probably receptor-mediated, and subsequent degradation of virions in acidified endosomes in the DC. Our study brings forth new facts regarding the binding, uptake, and processing of chemically inactivated virions leading to efficient antigen presentation and should aid in the design of more effective HIV vaccines.  相似文献   

19.
The ability of human keratinocytes to present antigen to T cells is controversial and, indeed, it has been suggested that keratinocytes may promote T cell hyporesponsiveness. Furthermore, it is unclear whether keratinocytes can process antigen prior to MHC class I and class II presentation. We tested the ability of keratinocytes to induce functional responses in epitope-specific CD4+ and CD8+ memory T cells using peptides, protein and recombinant expression vectors as sources of antigen. Keratinocytes were able to efficiently process and present protein antigen to CD4+ T cells, resulting in cytokine secretion (Th1 and Th2). This interaction was dependent on keratinocyte expression of HLA class II and ICAM-1, which could be induced by IFN-gamma. In addition, keratinocytes could present virally encoded or exogenous peptide to CD8+ T cells, resulting in T cell cytokine production and target cell lysis. Finally, T cell lines grown using keratinocytes as stimulators showed no loss of function. These findings demonstrate that keratinocytes are able to efficiently process and present antigen to CD4+ and CD8+ memory T cells and induce functional responses. The findings have broad implications for the pathogenesis of cutaneous disease and for transcutaneous drug or vaccine delivery.  相似文献   

20.
In 1985, John Monaco—the discoverer of LMP‐2 and ‐7, the inducible components of the immunoproteasome—asked his advanced immunology class as to why the MHC region contained not only structural genes, but several others as well, whose functions were then unknown. As we drew a blank, he quipped: perchance because many of the MHC genes are induced by IFN‐γ! The ensuing three decades have witnessed the unveiling of the profound fundamental and clinical implications of that classroom tête–à–tête. Amongst its multitudinous effects, IFN‐γ induces genes enhancing antigen processing and presentation to T cells; such as those encoding cellular proteases and activators of proteases. In this issue, Keller et al. [Eur. J. Immunol. 2015. 45 : 3257–3268] demonstrate that the limited success of MART‐1/Melan‐A‐targeted immunotherapy in melanoma patients could be due to inefficient MART‐126—35 presentation, owing to the proteolytic activities of IFN‐γ‐inducible β2i/MECL‐1, proteasome activator 28 (PA28), and endoplasmic reticulum‐associated aminopeptidase‐associated with antigen processing (ERAP). Specifically, whilst β2i and PA28 impede MART‐126—35 liberation from its precursor protein, ERAP‐1 degrades this epitope. Hence, critical to effective cancer immunotherapy is deep knowledge of T‐cell‐targeted tumor antigens and how cellular proteases generate protective epitope(s) from them, or destroy them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号